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A NOTE ON THE EXISTENCE OF A NASH EQUILIBRIUM POINT
IN STOCHASTIC DIFFERENTIAL GAMES*

KENKO UCHIDAi"

Abstract. Using the implicit function lemma of Beneg [SIAM J. Control, 1970] we derive a sufficient
condition for the existence of a Nash equilibrium point in a feedback form in N-person stochastic differential
games, which isan addendum to the existence theorem given by the author [SIAM J. Control, 1978].

1. Introduction. In the recent paper [1], we have proved that, if the Nash
condition stated below is satisfied, there is a Nash equilibrium point in a feedback
form in N-person nonzero sum stochastic differential games. The purpose of this
paper is to give a necessary and sufficient condition for the Nash condition to hold,
which can be regarded as the natural extension of the Issacs condition to the nonzero
sum case.

2. The main theorem. We use the same notation as [1]. Let be the space of
continuous functions from [0, 1] to R". x denotes a member of and xt denotes the
value of x at t. is the sigma field of generated by {xs; x , s -< t}, Y" is the Borel
sigma field of R", and q/i is the Borel sigma field of the compact metric space

1, , N. @ is the sigma field of the subset D of [0, 1] qg having the property that
the section of D at time is in t for each and the section of D at x is Lebesgue
measurable for each x.

Now, let the functions Hi, 1,. , N, which correspond to the Hamiltonians in
the N-person stochastic differential games under consideration, be given by

H/" [0, 1Ix cxgmx U1X’’’ X UNR,
such that for each i,

(i) Hi is measurable with respect to the sigma field fl0 (R)" (R) q/1(R)" (R)
(ii) Hi(t,x, pi,.,...,.) is continuous on UIX’"xUN for each (t,x,

[0, 1] x x R".
Then the Nash condition [1] is stated as follows"

DEFINITION. We say the Nash condition holds if there exists a function

U mN mN )([0, 11 x x R (R) - (Ui,

for all 1, , N such that for each (t, x, p)e 0, 1] x xR" and for all vi e

Hi(t, x, Pi, U*l (t, x, p), Ur(t, x, p))

<-Hi(t, x, Pi, u’ (t, x, p), u’i-1 (t, x, p), vi, U+l (t, x, p), u(t, x, p)),
where p (Pl," Pu).

Let us introduce the following function"

N

(t, x, p, u, v)= 2 Hi(t, x, Pi, UI," ", Ui--1, l)i, Ui+l," ", UN)
i=1

N

Hi(t, x, pi, ul,’", u)
i=1

where p (p,. , pr), u (ul," , ur) and v (vl," , vr). Using this function we
can now state the main result.

* Received by the editors February 10, 1978.
i" Department of Electrical Engineering, Waseda University, Tokyo 160, Japan.
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THEOREM. The Nash condition holds if and only if
(1) max min (t, x, p, u, v)= 0

uU vU

for all (t, x, p) [0, 1] c R ,,N, where U U1 x X UN.
Proof. First note that for fixed (u, v), (.,.,., u, v) is measurable with respect to

(R) ,,v and for fixed (t, x, p), (t, x, p, .,. ) is continuous on U U. Note also that
U U1 ’" Ur is compact.

Suppose S is a countable dense subset of U. Then for fixed (t, x, p) and u,

inf (t, x, p, u, v),minou (t, x, p, u, v)=

so that for any a R,

{(t, x, p): min (t, x, p, u, v)< a} vs {(t, x, p)" (t, x, p, u, v)< a}.
vU

Hence, for fixed u, minvu (t, x, p, u, v) is measurable with respect to (R)" in
(t, x, p) and, further, minou (t, x, p, u, v) is continuous in u. Now, for fixed (t, x, p),

max min (t, x, p, u, v)= sup inf (t, x, p, u, v),
u U vU uS vS

so that for any a R,

{(t, x, p)’ max min (t, x, p, u, v)< a} {(t, x, p): min (t, x, p, u, v)< a}.
uU vU uS vU

Hence maxuu mino,u (t, x, p, u, v) is measurable with respect to (R) g ,,N. Then an
implicit function lemma of Bene [2] shows that there is a measurable function

u*,,),
U * mN mN )i" ([0, 1]x xR fi(R) --,(U,, all,),

1,..., N, such that for each (t, x, p),

min (t, x, p, u*(t, x, p), v)= max min (t, x, p, u, v),
vU uU vU

where u*(t, x,p)= (Ul*(t, x,p),. Uv(t, x,p)). Therefore, if max,u minou
(t, x, p, u, v)= 0 for all (t, x, p) [0, 1] R ,,r, we obtain that for each (t, x, p),

(2) cb(t, x, p, u*(t, x, p), v)>=O

for all v U. This inequality is equivalent to

N, Hi(t, x, Pi, u’ (t, x, p), ui_l (t, x, p), vi, u/+l (t, x, p), u(t, x, p))
i=1

N
>-- E Hi(t, x, Pi, u’ (t, x, p), U*lv(t, x, p))

i=1

for each (t, x, p) and all v U. Consequently, for each and each (t, x, p), setting
v (u (t, x, p),..., u-i (t, x, p), v,, u*+l (t, x, p),..., uv(t, x, p)) in (2), we obtain the
following inequalities" for each (t, x, p)

H(t, x, pi, u’ (t, x, p), u’i-1 (t, X, p), vi, Ul (t, x, p), Ur(t, X, p))

>=Hi(t, x, pi, U*l (t, x, p), u*(t, x, p))

for all vi Ui and all 1,..., N. This implies that the Nash condition holds.



EXISTENCE OF A NASH EQUILIBRIUM POINT 3

Conversely suppose that the Nash condition holds. Then, for each (t, x, p), we
have

(3) (t, x, p, u*(t, x, p), v)>-- min dp(t, x, p, u*(t, x, p), v)=O.
vU

On the other hand, it follows from the definition of that for each (t, x, p),

(4) min (t, x, p, u, v)=< 0
vU

for all u e U. Expressions (3) and (4) imply

max min (t, x, p, u, v)= min (t, x, p, u*(t, x, p), v)= 0
uU vU vU

for all (t, x, p)e [0, 1] x c x R "N.
3. Remarks. A. In the previous paper [1], the following type of N-person

stochastic differential game was discussed" The system is described by the stochastic
functional differential equation of the form

(5) dx,=f(t,x, UX," uN)dt+r(t,x)dB,

where B, is a Brownian motion, and corresponding to each choice of the feedback
strategies, player incurs a cost of the form

(6) Pi(Ul, UN)= E{ gi(xl)+ Io hi(t, X, Ul, UN) dt},
1,..., N. In this case, the Hamiltonians are given by

Hi(t, x, pi, Ux, UN) =pif(t, X, UX, UN)+ hi(t, X, Ul, UN),

1,""", N, and Theorem 2 of [1] asserts that if the Nash condition holds there is a
Nash equilibrium point in feedback strategies under the several assumptions [1] to (5)
and (6). Therefore the condition (1) becomes sufficient for the existence of a Nash
equilibrium point in such stochastic differential games.

B. Suppose the case with the following convexity:
(i) Ui is a convex set for all 1,. , N,
(ii) Hi is a convex function on Ui for fixed (t, x, pi, ul, , ui-1, Ui+l, UN)

and all 1,..., N.
In this case, using the theorem of Nikaido and Isoda [3], we can establish the condition
(1). From this fact, we see that the "strict" convexity of hi in the assumption (H2) of [1]
can be replaced by the convexity.

C. Finally consider the two person zero sum case, that is, N=2 and
Hi(t, x, Pl, Ul, U2) q-He(t, x, P2, Ul, U2)-- 0 for all (t, X, Pl, P2, Ul, U2) [0, 1] x c x
R m g U U2 such that Pl + Pz 0. It is remarkable that in this special case the
condition (1) is reduced to the Issacs condition [4]:

min max H(t, x, pl, u, U2)"" max min Hi(t, x, pl, ux, U2)
/,/1 gl /,/2 U2 u2 U2 Ul U1

for all (t, x, Pl) [0, 1] c x R’.
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SOME PROBLEMS IN THE CONTROL OF DISTRIBUTED SYSTEMS,
AND THEIR NUMERICAL SOLUTION*

GREG KNOWLES-

Abstract. The bang-bang control of certain distributed parameter systems is considered, and the

relationship between these results and the approximate controllability of the system discussed. Also, a

technique for the numerical solution of both fixed time and minimum time problems is given and applied to

several control problems governed by the wave equation.

1. Normal Systems. In this note we consider the control problem whose state
equation is given by

(1.1) 3) (t) Ay(t)+ u(t)g, y(0)= Yo,

where g, y0 are fixed elements of X, a Banach space, and A :X X is a closed linear
operator with domain dense in X. We suppose further that A generates a Co
semigroup of bounded linear operators S(t): X- X, t->0 [1]. The (scalar) control
function u will be restricted to take its values in 2/= {u: lu(-) <- 1 almost everywhere}.
For all such admissible controls and -> 0, the integral

(1.2) y(t" u)= S(t)yo+ S(t-r)gu(r) dr

(the integration being taken in the sense of Bochner) defines an element of X, which
we adopt as the solution of (1.1).

Associated with (1.1) we consider two types of cost functionals
(I) A Y 6 X and ’ > 0 are given, and we attempt to control the system to reach

the target set W {x e X:llx y 111 ’} in minimum time.
Problem (I) will only be well posed if we assume W is reachable in some finite

time, i.e.,
(HI) There exists a >0 and a u 6 q/with y(t: u)e W.
The second problem is
(II) A fixed time T > 0, and a fixed y X are given and we attempt to minimize

IlY(T: u)- Yl[I over all u oR.
Here we assume
(H2) For all u R, y(T: u) yl.

A further concept which will not be investigated here but which plays a central
part in this note, is that of approximate controllability of the system (1.1). Namely, we
say (1.1) is approximately controllable in [0, t] (in finite time) if {y(t: u): u s L(0, t)} is
dense in X (respectively, is LI >o{y(t: u): u L(0, t)} is dense in X). It is then an easy
consequence of the Hahn-Banach theorem that (1.1)is approximately controllable in

[0, t] if and only if

(x’, S(’r)g)= O, "c [0, t], implies x’= 0.

Further (1.1) is approximately controllable in finite time if and only if

(x’, S(’)g) 0, " > 0, implies x’= O,

(e.g., [4]).

* Received by the editors July 25, 1977, and in revised form April 3, 1978.
Mathematics Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This

research was supportedjn part by the Office of Naval Research under Grant N00014-76-C-0369.
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A vector gX is called an analytic vector for {S(t)} if the function r S(r)g,
z > 0 is analytic. For this it is necessary and sufficient that the function r -+ (x’, S(r)g),
z > 0 be analytic, for every x’ X’ [13]. (Notice that this definition differs slightly from
the one used in other areas of mathematics, where it is usually assumed that g also
belongs to -_ID(A"). In the case {S(t)} is a group, these two definitions coincide"
e.g., [23, footnote on page 315].) In the cases of main interest here (1.1) will represent
either a parabolic equation, in which case every g X is an analytic vector for {S(t)},
({S(t)), t>0, is an analytic semigroup [13]), or (1.1)will represent a wave equation
and {S(t)} will be a group and then the analytic vectors will be dense in X [19]. Notice
also, that when g is an analytic vector for a group {S(t)}, then the function r-+
(x’,.S(z)g) is analytic for all

The existence of optimal controls for problems (I) and (II) is well known. (See, for
example [1], [14].) The purpose of this paper is to determine when these optimal
controls are bang-bang and unique, and to investigate methods for their numerical
solution. We will proceed via the following two propositions. The first was proven in
([16]), the second is well known (see e.g., [14, Thm. 1.6.3]).

PROPOSITIOn 1.1. If (H2) holds and ff is an optimal control for problem (II) with
IIy(T, a)-yxll- E, then there exists an z’ X’ for which

T T

(1.4) Io (Z’, S(T-z)g)u(z) dz <= Io {z’, S(T-r)g)a(r) dr <-_ (z’, w)

for all w with IIw- yll<=E, and u ll. Further, t(r)= sgn{(z’, S(T-r)g)}.
PROPOSITIOn 1.2. If (H1) holds then an optimal control u* ]:or problem (I) exists,

and if the minimum time t*> 0, then there exists a nonzero x’ X’, for which
t* t*

(1.3) 5o (x"S(t*-r)g}u(’)dr5o (x’,S(t*-r)g}u*(r)dr(x’,w}

for all w W, u oil. In particular u*(r) sgn {(x’, S(t* r)g)}, r e [0, t*].
Remark. If X is a Hilbert space in problem (I), as x’ supports W in y (t*, u*), then

we must have x’ a (yl y(t*, u*)) for some a # 0. Clearly by dividing (1.3) through
by A, we can take x’= yl- y(t*, u*). Similarly in problem (II), z’= yl- y(T, t7).

From Propositions 1.1 and 1.2 it can be seen that the bang-bangness of the
optimal control depends on whether the function r-+(x’,S(t*-r)g), O<-r<-t*, is
nonzero almost everywhere. Accordingly, we call the system (1.1) normal in X, if, for
all t>0,

(x’, S(t-r)) 0 for r e F (0, t), F nonnull, implies that x’= 0

(see [4] and [3]). It then follows from Propositions 1.1 and 1.2 that if (1.1) is normal in
X, the optimal controls for problems (I) and (II) are bang-bang, unique and uniquely
determined by (1.3) or (1.4) [4, Thm. 4]. Also, from our earlier remarks, any normal
system is approximately controllable in [0, t], for any > 0. Conversely, we have

THEOREM 1.1. If g is. an analytic vector for {S(t)} and (1.1) is approximately
controllable in finite time, then (1.1)is normal, and hence u* (respectively ) is bang-bang
and unique. Further this optimal control has at most a couniable number of switches
accumulating at t* (respectively, T). In the case {S(t)} is a group, the optimal control has
at most a finite number of switches.

Proof. We show first that (1.1) is normal in X. Suppose there exists a t>O, and
an x’ X’ such that

(x’, S(t- r)g) O for r e F c [O, t],
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and F is nonnull. As g is an analytic vector, this function is analytic in 7-, and hence
identically zero. That is, (x’, S(7-)g)=O for all 7->0, and so x’=0, as (1.1) is approxi-
mately controllable in finite time.

For the second part of the theorem we remark that by analyticity the function

(1.5) 7- - (x’, S(t*-

can have at most a finite number of zeros in any interval (0, t*-S), for any 8 > 0,
sufficiently small. Consequently the only possible point of accumulation of the zeros of
(1.5) is at t*. Clearly the zeros of (1.5) are the switching times. Finally, in the group
case (1.5) is analytic for all 7- (+eo, ee) and so can have at most finitely many zeros.

The relation between controllability and normality for lumped systems is well
known; it is inherent in the discussion of proper and normal systems in [11]. We see
from Theorem 1.1, that if g is an analytic vector for {S(t)}, then this relation carries
over to infinite dimensional situations. For problem (II) for distributed systems similar
ideas are discussed in [7]. Unfortunately, the assumption that the system be approxi-
mately controllable need not always hold (e.g., [4], [23]). In fact, in general to make
(1.1) controllable one needs at least as many scalar controls as the largest multiplicity
of the eigenvalues of A [23]. However, if the system is not approximately controllable
in X (and hence not normal) is could still be normal in a subspace of X, and this is
often enough to prove the bang-bangness and uniqueness of the optimal control for
the time optimal problem (problem (I)). We will do this, for the case y0 0, under the
following slight strengthening of (H1).

(H3) There exists a tl > 0 and u //such that
LEMMA. Suppose (H3) holds and let 2 be the closure of

L(0, tl)} (given the norm topology induced by X). If u* is an optimal controlfor (I) and
t*> 0 the minimum time, then there exists a nonzero ’ f(’ with

t* pt*

Jo (2’’ S(t* -7-)g)u(7-) d7- <- Jo (’’ S(t* -7-)g)u*(7-) d7-, u Call.

Proof. Denote by B (x, p) the closed ball in X with radius p. Set/ J C1B (y 1, g’)
and sf(t) { S(t-7-)gu(7-) dz: u c?/}, the attainable set of the control system (1.1) in
time t, for 0 _-< =< tx. Assumption (H3) implies that B is nonempty, and by setting u to
be zero on (0, tx- t), we can see that s4(t)c 2, for (0, tx). The sets (t) are weakly
compact and convex in X, and hence also in J, and/ is closed and convex in J. By
(H3) we can choose a p B(yl, 8)X, for some 0< < g’, and then B(p, (g’- 8)/2) (’1
J c/, or/ has nonempty interior in J. Since t* is the minimum time, and s4(t)c
for 0 <- <_-tl, it follows by the usual arguments that (t*)G/ -, (t*)G int/, and so by [3] there must exist a nonzero ’J’ separating sg(t*) and /.
Consequently,

t* t*

(1.6) <2" Io S(t*-z)gu(z)dz><--<2" Io S(t*-z)gu*(z)dz>,

The lemma will follow (by transferring ’ under the integral in (1.6)), if we can show
that S(7-)g , for 7- e (0, t*). By setting u 1, and using the fact that J is a linear
space, we have that

xh S(7")g dT"- S(7")g d

for (0, t*) and h sufficiently small. However, the function 7"- S(7")g, 7" (0, t*) is
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continuous into X({S(t)} is a Co semigroup), and so

lim Xh S (t)g,
h0

i.e., $(t)g , for e (0, t*).
THEOREM 1.2. I]: (H3) holds, g is an analytic vector]or {S(t)}, and t* > 0; then u*,

the optimal control ]:or problem (I), is bang-bang, unique, and has the switching
properties refered to in Theorem 1.1.

Proof. From the lemma u*(r)=sgn {(’, S(t*-r)g)}. Since ’ is a continuous
linear functional on X, it has a continuous extension to all of X; denote this extension
by x’. As g is an analytic vector the function r {x’, S(t*-r)g), 0< r<t*, is analytic;
however since S(t*-r)g, for r(0, t*) (see Lemma 1), (x’,S(t*--)g)=(’,
S(t*-r)g) for all 0< r<t*. The proof then follows as in Theorem 1, since (1.1) is
automatically approximately controllable in X, in time tl.

Notice that (in the notation of 3) if A. is a normal operator with compact
resolvent on a Hilbert space X, the above proof carries through for all those initial
conditions yo X for which (g, Oki)= 0 implies (Yo, qki)= O, k 1, , ri, j 1, 2, .
The proof follows as before, as this assumption implies (t)c ." for 0-< t-< tl.

Finally we remark that these results all extend to the case where the control
appears nonlinearly, and the set of admissible controls need not be convex. Namely,
suppose the state equation takes the form

))(t) Ay(t)+ h(t, u(t))g, y(0)= yo

where h is a bounded Carath6odory function (i.e., measurable in the first variable and
continuous in the second), and the set of admissible controls is now

{u:u(t) U a.e.}, where U is a fixed compact set in . Set h(t, U)={h(t, v):v U},

= {f:f is Borel measurable, and f(r)e co h(t, U) a.e.} (co denotes convex hull), and
denote by y(t:f) the solution of (1.1) with f in place of u, for any f6. Then, for
problem (I)we have

THFORFM 1.3. If there exists a time tl >0 and fsuch that y(t :f)6 W, g is an
analytic vector for {S(t)}, and (1.1) is approximately controllable in finite time; then W
is reached in minimum time t* by an admissible control u* all, and h(t, u*(t)) belongs
to the extreme points of co h (t, U) for almost all (0, t*).

The analogue of Theorem 1.2 can be stated similarly, and for problem (II)
TI-IFOREM 1.4. Ifyl y(T :f) ]:or any, g is an analytic vector for {S(t)}, and

(1.1) is approximately controllable in finite time; then an optimal control u*6 71 ]:or
problem (II) exists and h(t, u*(t)) belongs to the extreme points o]: co h(t, U)a.e.

The proof of these theorems follows as in [15] by defining the vector measure
m,:Y(0, t) X (N(0, t) is the Borel or-algebra on (0, t)) by,

m,(E)= fzS(t-r)g dr
E 6 (0, t), >0. The output of (1.1) can then be represented as

u (7-))(, dm,(’)

and the results follow as in [15, Thms 2, 3 and 4].

2. Applications. Suppose f is a bounded n-dimensional domain, with
sufficiently smooth boundary Of; x =(x,... ,x,,) is a point in f; L(x, O/Ox) is an
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N N matrix with each element Lii(x, O/Ox) a linear differential operator of order 2m
of the form

(2.1) Li x, Z a (x )D" (i, j l, 2, N)

where c (O 1, On (Ofi 0), 0 O1 "+-" q- Ofn, and D (0"1+2+")/
" ()(x) are real and sufficiently(Ox ...Ox, ). We assume the coefficients air

smooth, and L(x, O/Ox) is strongly elliptic i.e.,

N

i,j= [al=2rn
a 6

for arbitrary x 6 D, and real sck, r/ with Ysc, 0, Y. r/ 0, L(x, O/Ox) generates a
linear operator in the space X=/7P(fl) (={y" y =(yl,""", yn) and =l dn<
}), p > 1, defined on those smooth functions satisfying

Oy om-ly
(2.2) Y 10n n Ion On Ion 0

where n is a normal to 0f. This operator allows a closure; denote it by A. Then (2.1)
represents the strongly parabolic system

(2.3)
Oy

-L x, y+g(x)u(t), xef, t>O,
Ot

y (x, o) yo(x ),(2.4) x6f,

with boundary conditions (2.2), where g is any fixed element of/S’(f), and u is the
control function. It is known, that A generates an analytic semigroup [16, 1.8.3], and
hence every g /SP(f) is analytic for this semigroup. Consequently for (2.2), (2.3),
(2.4), Theorem 1.1 becomes

THEOIZM 2.1. If W is reached in some time by an admissible control, and system
(2.1), (2.2), (2.3) is approximately controllable in finite time, then W is reached in
minimum time t* by a unique, bang-bang optimal control u*, which has at most a
countable number of switches accumulating at t*.

Theorems 1.2, 1.3 can be similarly stated.
We remark that analogous results hold for more general boundary conditions of

the Sapiro-Lopatinski type [16, 1.8.3]. When m 1, N 1, similar results hold for the
second boundary value problem

0y
(x, t) a (x)y (x, t) 0, x Of/,

where a (x) --- 0.Now let X =/)I(f)@L2(D) endowed with the energy inner product, i.e.,

([fl, hi], [/’2, h2])x {Vfl. Vf2+ hi. h2} dO.

If
0

D(A) {H2(fl) N/"]rl (")})/1("),
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and g=[O,b]X, yo= [O0, Q1]X then (1.1)represents

02p
Ot----=Ap+b(x)u(t) x, t>0

p(x, 0)= Qo(x) x D

p,(x, 0)= O(x)

p (x, t)= 0 for x e 0f

(where y(t)= [p(., t), p,(., t)]). The operator A is normal (in fact skew adjoint), with
compact resolvent, and generates a group {S(t):te(-c,)}. Consequently the
analytic vectors for {S(t)} are dense in X. Denoting the eigenvalues of A by A# ]
1, 2,. , and its normalized eigenvectors by qik, k 1,’’’, ri(ri is the multiplicity of
Ai), ] 1, 2,. , then we can represent S(t) as,

(2.5) S.(t) Y e x’’ E (g, qi)qi, g e X.
j=l k=l

If {/i} and {ltjk } denote the eigenvalues and eigenvectors of A on L2() (with homo-
geneous Dirichelet boundary conditions), then A x//., and qk [ik,--x/ ik], k
1,...,r,]=l,2,....

It is known that g is an analytic vector for {S(t)} if and only if g D(A") for each
n 1, 2, and

(2.6) y IlA"gl[ t" < c for some > 0.
n=0 n!

Since in this case

A"g A ’ Z (g, qik)qik for g e D(A "),
1=1 k=l

n 1, 2,. , we have

2n
ri

[[A"gll=- E Ai E I(g, ik)l2

/=1 k=l

(2.7)

/=1 k=l

where big (b ik)L2(O). Hence, by applying the root test to (2.6), g is an analytic
vector for {S(t)} if and only if

IliA"gill 1In
lim sup

that is, by (2.7), if and only if

[ [Ai12"+2 ]l/2n2 Ibl2 <.lim

In particular, in the case fl (0, ), A if, and sin Qx), x (0, ), f
1, 2,. , g [0, b] will be an analytic vector for {S(t)} if and only if

.2n+2

(2.8) lim sup
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where bj fo b (x) sin (j, x) dx, j 1, 2,. In particular, this holds if

Ibl Me-for some positive constants M, C, all/" (c.f. [24, Proposition 1]). It is also known that
(for D, (0, 7r)) this problem is approximately controllable in finite time if and only if
bj 0 j 1, 2,. , [23, Example 4.4], [21, Prop. 1].

3. Numerical approximation. In this section we develop further the method in
[8], [9] for the numerical computation of a sequence of suboptimal controls for the
minimum time problem. Specifically suppose the state equation is

(3.1) 3)(t)= Ay(t)+ giui(t), y(0)= yoX
i=1

where gi 6X, u= (ui), i= 1,..., rn, and we wish to control (3.1) to the origin in
minimum time, with admissible controls 07/= {u" lUg[ <= 1, 1, 2, m}. In the remarks
following we shall show that this choice of end-point y 0 places no restriction on the
generality of the method.

In [22] the problem of finding the control of minimum L2 norm transferring
certain systems from initial to final state in a given time T was considered. Here we
suppose (as is more often the case) that the controls are restricted a priori, and we seek
to effect this transfer in minimum time. In the final section we indicate extensions of
this method to problem (II).

Clearly, the results of the first two sections indicate (at least in certain cases) the
feasibility of approximating this problem by bang-bang controls. Following [8], we
propose a simple algorithm for doing this, and show its applicability on a control
problem governed by the wave equation.

For this section assume that X is a Hilbert space, and A is a normal operator with
compact resolvent, having eigenvalues 0.k, k 1,..., r., j 1, 2,..., rj is the multi-
plicity of A.. It is known that the {Ai} are isolated, if A is unbounded, so are {Ai}, and
{Re (Ai)} are uniformly bounded from above. If each r. 1, we simply write {o.}
instead of {i}. With these assumptions we can write the solution of (3.1) as

(3.2) y(t" u)= 11"= kl=
where y (y0, i) and g{ (g, i), 1,..., m. Then the minimum time, t*, for
which y(t*)= 0 (in X) will be, by orthonormality of {i}, the smallest time for which

(3.3) E g e-X"u,(r)d =-y fork=l,...,ri, ]=1,2....

Now defining

yi=

Lgg, g3 Lye’,
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and

hi(Ul’’’, Urn ;t)=

we see that (3.3)can be written as

e-"urn(r) dr

]=1,2,...,

(3.3)’ Gi" hi(Ul, , urn; t*)= -y., ]= 1, 2,. .
Even if the optimal controls were bang-bang, in general it would require an infinite
number of switchings to satisfy the infinite system of equations (3.3)or ((3.3)’), and so
such controls would be impossible to calculate numerically.

An approximating sequence of controls

ul

{u"} !
could be computed by choosing u" so that it removes the first n modes in (3.2) i.e., so
that

(3.4) Gh "" ") /"Ul, , urn -Yi for 1, , n

where is the smallest time for which these equations are satisfied. (However, if
coefficients in (3.3) are known analytically, then convergence could be improved by
modifying this procedure; we return to this point later.) If the ith control u’ is
bang-bang with switches at til," "’, tis, n, then h.(uT, , u, t")=

(3.5) Fi(til) A
+(1-2 exp (--Atll)+ 2 exp (--A/tl2)""" (--1)sa exp (-Ait"))

1
_+(1-2 exp (-Agrn)+2 exp (-Agrn2)" (-1) exp

f=l,2,...

(3.6) GiF](til) -yi for/" 1,. n,

1, , si, 1, , rn. We now give conditions under which the set of equations
(3.6) has a solution, and when that solution will be unique.

Consider the following controllability assumptions
(H4) There exist ui a//, 1,..., m, transferring (3.1) to zero in finite time.

(H5) Rank G r, and Re (Ai)< 0 for j 1, 2,. n.

where the + sign is taken if the control starts with value + 1, and similarly for the
sign. Combining (3.5) and (3.4), we find that under the above assumption the compu-
tation of u" reduces to solving the following set of nonlinear equations"
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(H6) For the case m 1, and A has no multiple eigenvalues (r/= 1), suppose
(g, q/) 0 and Re (A/)<_- 0, /"= 1, 2,. .

TrEOIEM 3.1. If either (H4), (H5)or (H6) holds the system of equations (3.6) has
a solution with minimal and 0 < tx < t2 < t,(= t"), 1, 2, , m. Further this
solution is unique, if A has no multiple eigenvalues and (gi, i)#O for all i=
1, 2,..., m, f 1, 2,. . (This is automatically true for (H6).)

Proof. Consider the finite-dimensional control problem of steering the system
whose state at time is given by

ka[Aity jkOtiOt_z) ](3.7) yn (t, U) e k + E g e (r) i,
j=l i=1

with initial condition

(3.8) yo E E yo
=1 k=l

ad controls ulN1, i=l,2,...,m, to the origiin the space X,=
sp [11, lr, nl," Cnrn], in minimum time. (sp denotes closed linear
span). Any one of the assumptions (H4), (H5), (H6) guarantees the existence of an
admissible control steering the initial state to zero in finite time, ((H4) is self-evident,
for (H5)or (H6)see [23, p. 324] and [16, Cor. 1.3.3, I1.5.17]); consequently an
optimal control, (a,..., u), steering yo to the origin in minimum time, must exist.
We can choose this optimal control bang-bang, with each component having a finite
number of switches [10]. The switching times of the optimal control provide a desired
solution to (3.6); it will be the unique solution if and only if (aT,. , is the unique
optimal control for the problem (3.7), (3.8). The added assumptions of the theorem
imply (3.7) is normal, [11, Thm. 16.1], and so this optimal control is unique.

Remark. In the case {A ,..., A,} are real (for example, if A is self-adjoint), and
the normality conditions in the theorem hold, then s, the number of switches of the ith
control, must be less than or equal to n[20, 111.17.10].

The next theorem guarantees the convergence of the minimum times for the
approximating problems (3.6) to the minimum time for the original problem (3.1).

THEOREM 3.2. If the minimum time, t", for each of the approximate problems (3.6)
exists, n 1, 2, 3,. , then the sequence {t"} is increasing. If the limit lim, t" t* is
finite, t* is the minimum time for the original problem (3.1). On the other hand g {t"}
diverges, there is no admissible control transferring yo to 0 (in X) in finite time.

Conversely, suppose (H4) holds, and t* is the minimum time for (3.1). Then each t"
exists, the sequence {t"} is increasing and lim, t" t*.

Proof. By construction "+ is the minimum time for which the system of equa-
tions (3.6) has a solution (in the sense of Theorem 3.1) for ] 1, 2,. , n + 1. Since t"
is just the smallest time for which (3.6) has a solution for f 1, 2,. , n, by minimality
we must have < n+,n=l,2,....

Suppose lim, t"= t* is finite. We shall next construct an admissible control
transferring yo to zero in time t*; accordingly t* must be an upper bound for the
minimal solution of the original problem. However, if the minimum time for the
original problem, , say, is strictly less than t*, then each of the approximate problems

t" < <t*can be solved in time t" < , and consequently lim, a contradiction.
Suppose u" (u 7," , urn), lull a, 1, 2,..., m, transfers y o to zero in X, in

time t". By extending u" to be zero on (t", t*), each u" is contained in the unit ball in

t*)x c (0, t*)x x c (0, t*),
m times
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and consequently we can extract a weak-star convergent subnet {u}, a A, with
u" - u*, u* (u *,. u*,,), lu *1 <= 1, 1, 2, m. For fixed /’, k consider the
difference between the jkth terms in the expansions of y(t*, u*) and y(t, u),

eX"*y0 + Y g e-X’(’*-u? (z) dr- eX"yo
i=1

(3.9)

since u 0 on (t, t*).
Since t"--> t*, luTI <--1, and u"--> u* in the weak-star topology it is not difficult to

see that (3.9) converges to zero. However we chose u" so that

yiok e ’’" + E gk (,r) d7- 0 fork=l,... ,r.

Consequently, taking the limit in a in (3.9) we will find that each of the coefficients of
the eigenfunction expansion of y(t*, u*) must be zero, or y(t*, u*)= 0.

From our earlier remarks, any time in which we can transfer yo to 0 using an
admissible control is an upper bound for the sequence {t"}, and so if this sequence
diverges, the original problem cannot have a solution.

The converse to the theorem can be proven similarly.
We now consider the problem of estimating the norm (in X) of, (y(t, u)

y" (t ", u")), the remaining components of the state variable after time ’.

Ily (t", u")-yn (t", u )ll e x’’"
j=n+l =1

and since luTI 1 all i, n,

[]y (t", u" )- y" (t ’, u" )11=

where

rj

12 2Re(Ajt-)E Z {[Y/o’ e +C 2 Igkl 2}
/=n+l k=l i=1

/’=1,2,...

So in the case Re (At)= 0 (e.g., the second example in section 2) we have

(3.10)
i=1

where y, g7 are the approximations to yo and gi at the nth step, 1, 2,..., m,
n 1, n 1, 2,. . (Alternately they can be considered as the projections of y0 and gi

onto the subspace of X spanned by the eigenfunctions of Z 1,""", A,,).

iot,,eXi(t, ]2"(r) dr.+. g.k --’r)Ui

le’’"- 11 if Re (a.)# 0G IRe
t" if Re (ai)= 0
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In the case Re (hi) 0 (e.g., if A is self-adjoint), setting

trn 2 sup {Re (h.): n + 1, n + 2,. }

we have crn oo, n co, and

2 Re(ht)tn o’ntne =< e all/’, n

Consequently,

(3.11) [[y(t", u")- y,(t", u")[[z-<_ e""l[yo y]lz+ Z C Z Igk[2

/=n+l k=l i=1

and in the case n is sufficiently large so that Re (hi)< 0 for/’ n + 1, n + 2 we have

(3.12) ]]y(t n, u’) y,(t", u")ll2--- e’"t"l]yo yoll2 + 2 [Ig gi
i=1

Remark. From the estimate (3.12) if follows that for Re (hi) 0, j 1, 2, , the
best convergence will be obtained by solving the equations (3.6) for j jl, j2,"’, j,,
where Re(hh)_->Re(hi2)_->... _->Re(hi,); that is, by removing the modes cor-
responding to the larger eigenvalues first. In the case the eigenvalues are purely
imaginary, it would be best to first remove the modes for which ly0[, and [g{[ are
largest.

Finally in the case y e0, setting y{k =(Yl, qik), we see, by (3.2), the system of
equations (3.3) becomes

I0
t*

--Ai’r(3.13) .. g{k e uit’c) dr-ylk e =--yJok k 1,’’’, ri, j 1, 2,’’’

and the equations (3.56) become

(3.14) G;F;(/,)-y e-’’= -yo,
where

The system (3.14) again gives a set of nonlinear equations for the switching times

(albeit, more complex) which can be solved by a suitable modification of the methods
of4.

4. Numerical solution. In this section we return to the set of nonlinear equations
(3.6) which determine the switching times, and consider methods for their numerical
solution. We will assume that rank G =r for each/" 1, 2,..., n. (This assumption
occurred in the controllability assumption (H5).) If it does not hold, it means that
there are not enough controls to force the system to zero from all the possible starting
points. The following is well known.

LEMMA. If rank Gi= ri, j=l,2,...,n, there exist unique vectors

(a ], a? such that Giai =yi f 1, 2,. n.
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The problem of solving (3.6) then reduces to the nm nonlinear equations in
Si unknowns (ta) 1 2,. si, 1, 2 m,

(4.1)

+[1- 2exp (-A/t11)+ 2 exp (-Ait12) (- 1)sl exp (-A/t")]

+/-[1- 2 exp (-A/til)+ 2 exp (-Aiti2)’’" (-- 1)s’ exp (-A/t")]

+[1-2 exp (--A/tml)+ 2 exp (--Aitm2)’’" (-- lf" exp (-A/t")]

for j= 1,2,... ,n, i= 1,2,... ,m.
We now investigate methods for the numerical solution of (4.1). For simplicity

consider a particular case of the second example in 2, with f [0, 1], yo [Oo, O1]
g [0, b]. The problem, then, is to bring the string with initial position Oo and velocity
O1 to rest (i.e., position and velocity zero) in minimum time. In this case r/= 1 for each
j= 1,2,...,and so we consider the solution of (4.1) for m 1. The methods
developed will extend to cover any finite number of controls. We have

y= ([O0(x), O1 (x)], [sinjx/_.(jx), i.sin/.(Jx)]) x
_i Oio _i-G G

j=1,2,...,

where

and

Qio Qo(x ) sin (ix) dx, Q Ql(X) sin (ix) dx

.2 1lyo 12 ]__. (ljo)2 -t--- (O)2, j 1, 2,’’"

Similarly g/= ibi/x/-r and [g/[2 (1/Tr)b where

b/= b (x) sin (ix) dx,

/’=1,2,..., and /= +ij, j=l,2,....
The equation (4.1) with m 1 for the switching times tl, t2," , tl becomes

+/-(1-2 exp (-A/t1)+2 exp (-A/t2)" (- 1)" exp(-A/t))

or, equivalently, when separated into real and imaginary parts,

(4.2)
sin (/h)-sin (it2)+ +--------- sin

(- 1)’+x
(it,l) + (__/1

cos (/h)-cos (it2)+ +(- 1)"+1
COS (/’tsl)= + ( 21 /2Q/o1

for j 1, 2,- , n. (+ indicates the control starts with + 1; it starts with 1.)
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As a particular example take b(x)= (2/Tr)x, Ql(X)= 0, and

O0(X)
2 1 "+- (-- 1)i4"1

.3 sin (ix), 0<_-x _-< rr.

It is easy to verify that the control u -21- transfers [O0, O1] to [0, 0] in rr seconds, and
so for this example t* _<- rr. Also

igil 2
4 12 1(1+(-1)i+1).2, and lye0 .4 /’=1,2,3,...;

rrl rr I

accordingly the equations (4.2) should be solved for /’= 1, 2,..., n. In this case
equations (4.2) become

(_ 1)+,

cos (t)-cos (t)+ + cos (t,,) 1

(_ 1),,+,
sin (t)-sin (t2)+ + sin G,)=0

(- 1),+’ 3-(_1)
cos (jt)-cos (jr2)+ +cos (jt)

2 4(4.3) (_ 1)/
sin (jtl)-sin (/’t2)+ +sin (]t,)= 0

(-1)",/ 3-(-1)"
cos (ntl)-COS (nt)+ +cos (nt,)

2 4

(-2y,*1

sin (ntl)-sin (nt2)+ +
2

sin (ntis)= 0, j 1, 2,... n

and so the problem is reduced to the solution of a set of n nonlinear equations in s
unknowns. Unfortunately we cannot always expect s n (as was done in [11]), and
even when s was equal to n, we found the Newton-Raphson scheme used in [9] was
very sensitive to the initial guess and difficult to use (particularly for large n). Clearly
given any solution to (4.3), we can generate an infinite number of different solutions
by adding multiples of 27r to any of the unknowns, and so this instability is to be
expected. To understand the key to a successful numerical scheme we return to
Theorem 3.1, where it was shown that the equations (4.3) have a solution under the
restrictions that 0 < t < t2 < < ts, and that t is minimal. (In this particular case,
g/ 0 all j, and by Theorem 3.1 this solution is unique.) For t (t, , t) define

(- 1)a+ (- 1)i-3f.(t) cos (/’t)-cos (/’t2)+ +cos (]t)+2 4

(_),/
&.(t) sin (/’t)-sin (jt)+ +sin (]t), j 1,..., n;

then the desired solution of (4.3) is the unique solution of the following nonlinear
programming problem,

P" minimize t subject to 0 < t < t2

f.(t) 0, gi(t) 0 for ] 1,. , n.
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Of course, there are many ways of solving P1 numerically. One, which proved
successful here, was to first remove the inequality constraints, by means of the
transformation:

2
tl

t2 y +y.

2

Then when we set y (y l, ", Ysl), and

fi(Y) =f(t), gi(y)= gi(t), ./= 1, 2,..., n

P1 is equivalent to,

P2: minimize y 21 + y 2 +.. + y 1 subject to
(4.4)

]’i(y)=0, i(y)=0, /=1,2,...,n.

Various methods for solving the equality constrained optimization problem P2
were used, amongst them (i) the SUMPT (penalty function) method [5], (ii) Lagrange
multipliers, and (iii) the Powell-Hestenes method of multipliers [12], [21]. Of these
the Powell-Hestenes method proved the most satisfactory and accurate. Both
methods (i) and (iii) proved relatively insensitive to the initial guess for y. The
disadvantage of these methods is that for high accuracy they can require many
unconstrained minimizations.

The method finally decided upon, was to firstly solve P2 by the SUMPT method
for moderate values of the penalty term. That is, we solved

2 {[/.(y)lZ + [i(y)]2},P3" minimize y 2 + Y +... + Y sx + r
i=1

for increasing values of r, until ]/l, Iil 0.1. This usually only required one or two
unconstrained minimizations. The resultant solution y was then used as the initial
guess for the problem

P4: minimize f(y)+... + ]v,(y) +2 (y)+... + 2,, (y).

Since the initial guess was already reasonably close, convergence to the true solution
was rapid, and of course only one unconstrained minimization is required. In this way
the locally quadratic convergence of Newton type methods could be taken advantage
of, with relative insensitivity in the choice of the starting point. (Notice that if s 2n,
Newton’s method could be used for the solution of/.(y)--g(y)--0, /-- 1, 2,..., n,
instead of P4.) Finally both P3 and P4 are just the minimization of a sum of squares,
and were solved using a modification due to Brown and Dennis [2] of the Levenberg-
Marquardt algorithm 17], 18].

Unless the eigenvalues {A ,..., A,} are real the number of switches s cannot in
general be determined a priori. (If the eigenvalues are real then S --< n see the remark
following Theorem 3.1). However if too few switches are used, increasing the number
of switches decreases the calculated final time tl. If too many switches are used, the
solution of P3 has that extra number of components zero. In this way the actual
number of switches can be found by starting with, say, s 2n, and increasing s until
t stops decreasing or the solution of P3 is returned with some components zero.
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The numerical results were obtained on a UNIVAC 1108. The computation time
required for the solution of (4.3) (with the residuals (10-4), for, say, n 8, s 14 was

20 seconds.
Table 1 gives the values of the switching times for various values of n, and Fig. 1

gives the corresponding output distributions at the final times. For n 8 the maximum
magnitude of the output was less than (.015)(7r/2), and was too small to be
accurately plotted. Finally, in the case n 8, the energy norm was reduced by a factor
of eight, from 1.6 (to 2 s.f) for the initial distribution to 0.2 for the finat distribution.

TABLE
Switching times ]:or nth approximate control minimum time problem.

n tx t2 t3 t4 t5 t6 t7

0.50536 1.8235

2 0.20163 1.2696 1.6941 2.6462

3 0.10098 0.79505 1.0855 1.9731 2.2622 2.8960

4 0.06000 0.53088 0.74085 1.4284 1.6655 2.3523 2.5615

5 0.04000 0.37700 0.53502 1.0738 1.2651 1.8490 2.0413

8 0.02412 0.23328 0.33370 0.68560 0.81389 1.2159 1.3534

n t8 t9 tlo tll t12 t13

4 2.9960

5 2.5798 2.7365 3.0465

8 1.7680 1.9054 2.3072 2.4354 2.7867 2.8869 3.0822

As a final remark we observe that the numerical solution of problem (II) can be
handled with only minor changes. Namely, we construct an approximating sequence
of controls un, where u minimizes

(4.5) kli=1
yiok e x’r + X gk ea’(r-) ui(z) dz- y{k [U,I <= 1

i=1

i= 1, 2,..., m, and y/lk (y l, (]k). For this problem the theorem of Halkin [10]
automatically guarantees u" may be taken bang-bang and finite switching (of course,
no controllability assumptions are needed here), and the same assumptions as in
Theorem 3.1 guarantee uniqueness of the switching times. Accordingly, when we
evaluate the integrals in (4.5) in terms of these switching times (c.f., (3.5)), (4.5)
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INITIAL DISPLACEMENT

n =3 n =4

FIG. 1. Wave displacement at final time ,for rain. time problem n 1, 3, 4).

becomes a minimization of a sum of squares of functions of the switching times. This is
just a problem of the type P4, except now the final time is fixed.

For instance, when we take the previous example with y 0, and the switching
times of u be {tl,’’’, ts, T}, u can be computed from the unconstrained minimiza-
tion,

P4" minimize fl (]/)2 "t" -t- fn (r)2 d" g (’) -’1" -- n (r)2

Y (Yl," Ys), where

.(y)=jQo+l--)[1-2cos(jy)*"" *2(-lf cosj(y2 *"" *y)

+ (- )/ cos (i r)]

j(y)= _Q +/-(.b’)[2 sin (/.y)+ +2(_ 1)S-lsin] (y21 +... +y2)

+ (- 1) sin (/" T)]

j 1,. , n. The switching times of u" are then calculated from
2

tl=yl

t2=y+y

t,=y+y+...
With the previous initial conditions Qo and Q1 --0, the switching time for n 8,

and various final times T, are given in Table 2 and Fig. 2.
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TABLE 2

Switching times for n 8 fixed time problem.

T tl t2 t3 t4 t5 t6 t7 t8 t9 to tl t2

2.0 0.164 0.475 0.609 0.906 1.040 1.359 1.475 2.000

2.5 0.105 0.414 0.530 0.838 0.968 1.351 1.505 1.905 2.031 2.500

3.0 0.030 0.266 0.377 0.766 0.908 1.348 1.498 1.950 2.100 2.537 2.674 3.000

2.0 INITIAL DISPLACEMENT

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
x=Tr

-0.2

FIG 2. Wave displacement for fixed time problem at various final times (n 8).
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STRONG STABILIZABILITY OF LINEAR CONTRACTIVE
CONTROL SYSTEMS ON HILBERT SPACE*

N. LEVAN’I" AND L. RIGBY:I:

Abstract. Strong stabilizability of linear "contractive" systems on Hilbert space, that is those systems
denoted by (A, B) and described by the equation : Ax + Bu, in which A generates a semigroup of Hilbert
space contraction operators, is studied. Necessary and sufficient conditions are given, which are shown to
depend on controllability of the system (A, B), and that of (A*, B) also. Our technique is based on some
rather simple properties of invariant and reducing subspaces of Hilbert space operators, and on a canonical
decomposition of contraction semigroups due to B. Sz-Nagy and C. Foias.

1. Introduction. Given a system (A, B), that is the equation

Y =Ax +Bu

on some abstract space, the problem of finding a state feedback operator F: u Fx, so
that the feedback system (A+BF, B) is stable in a suitable sense, is called the
stabilizability problem. Such a problem was considered by R. Datko [1] and M.
Slemrod [2a], [2b] for the case of Hilbert space, and by R. Triggiani [3] for the Banach
space case. In [2b] Slemrod studied the case in which A generates a strongly con-
tinuous semigroup of contraction operators. He obtained, among other results, con-
ditions for strong stabilizability of unitary groups, and for weak stabilizability of
contraction semigroups. Recently R. E. O’Brien [4] and C. D. Benchimol [5] also
studied weak stabilizability of contraction semigroups. Their methods were quite
different from those of Slemrod.

This paper will study only strong stabilizability of contractive systems on Hilbert
space. The main feature of our work is that, for these systems, controllability prop-
erties of the systems (A, B) and (A*, B) play an equally important role in the
problem. This was not pointed out before.

In 2 we give some basic facts about the controllable and uncontrollable sub-
spaces of the systems (A, B) and (A*, B). Section 3 will be concerned with some basic
properties of contraction semigroups, and with the canonical decomposition of these
semigroups. This decomposition will be the basic tool for our stabilizing procedure,
which will be given in 4.

2. Mathematical preliminaries. All spaces that we deal with will be separable
complex Hilbert spaces with inner product [.,. and norm [[. [[. Operator will always
mean linear, but not necessarily bounded Hilbert space operator, while semigroup will
always be a (Co) strongly continuous semigroup of bounded linear operators over a
Hilbert space [6].

By a system (A, B)on a Hilbert space H we mean the state-control equation

(2.1) : Ax +Bu

where x belongs to Hmthe state spaceuand u belongs to Umthe control space. The
operator A is closed with dense domain (A) in H, and it is always taken to be the
generator of a (Co)semigroup, denoted by [T(t); t-> 0], over H.

* Received by the editors July 20, 1977, and in revised form March 7, 1978. This work was supported
in part by the National Science Foundation under Grant Eng 75-11876.

" Department of System Science, University of California, Los Angeles, California 90024.
$ Department of Computing and Control, Imperial College, London SW7 2BZ, Great Britain.
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By a feedback operator F we mean a bounded linear operator from H to U,
defined by u Fx. Consequently, the feedback system (A + BF, B) is characterized by
the equation

(2.2) 2 (A + BF)x +Bu

where, of course, (A +BF) is also the generator of a (Co) semigroup, denoted by
[S(t);t >- 0], on n [6].

Consider the "mild" solution [6] of (2.1):

(2.3) x(t)= T(t)x(O)+ T(t-r)Bu(r)&r, t>0,

for x(0) in H. Following [6], given x(0)= 0, a state x in H is called controllable if for
an e > 0, there is a u(. ) in L2[(0, t); U] so that

for some > 0.

Thus, the set of all controllable states of (A, B), denoted by Mc, is [6]

(2.4) Mc LI T(t)BU
t__>0

where, as always, denotes the closure.
The orthogonal complement in H of Me, denoted by Mu, is then a set of

uncontrollable states of the system, and

(2.5) Mu f-I Ker[B*T(t)*].
t__>0

If Mc H, equivalently, Mu {0}, then (A, B)is said to be (approximate)con-
trollable on H. A subspace M of H is said to be controllable for (A, B) if M c_ M.

Clearly Mc is a closed subspace of H and it is invariant for [T(t); -> 0], T(t)M
_

M for all -> 0. Similarly, Mu is invariant for [T(t)*; -> 0].
We associate with (A, B) the "adjoint system" (A*, B):

(2.6) =A*y+Bu.

Then since A generated [T(t); => 0], its adjoint A* generates the adjoint semigroup
T(t)*; -> 0]. We have for (A*, B)

(2.7) M,= LI T(t)*BU
to

and

(2.8) M, f’l Ker [B*T(t)].
t__>0

M, is now invariant for [T(t)*; => 0] while M,u is invariant under [T(t); t->-0].
It is clear from the above that BU is contained in M and in M,. Therefore Mu

and M,u are subspaces of Ker B*. We now prove
LEMMA 2.1. (i) Any proper subspace of Ker B* which is invariant for [T(t)*; _->

0] (resp. [T(t); -> 0]) is contained in Mu (resp. M,u). EquivalentlyM (resp. M,) has
no proper subspace containing BUand is invariantfor [T(t); t->0] (resp. [T(t)*; _-> 0]).

(ii) Any reducing subspace of [T(t); -> 0] in Ker B* is contained in Mu M,
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Proof. Suppose Muc is not trivial, i.e., the system (A, B) is uncontrollable. Let
McKerB* be invariant for [T(t)*; t_>0]; then T(t)*M_McKerB* for all t=>0.
Hence

[T(t)*M, BU] 0 [M, T(t)BU], t>=O.

Therefore M 2_Mc which implies that M
_
Mu. The proof is similar for M Ker B*

and is invariant under [T(t); >-0].
For the equivalent statement we have only to note that if N is an invariant

subspace of [T(t); t>=0] andMNB, then Muc N-c Ker B* and N-is invar-
iant for [T(t)*; => 0]. But this contradicts the previous assertion. This completes the
proof of part (i).

Part (ii) is an easy consequence of part (i).
It is clear from the above that we have
THEOREM 2.1. The system (A, B) (resp. (A*, B )) is uncontrollable if and only if

T(t)*; -> 0] (resp. T(t); >- 0]) has an invariant subspace in Ker B*.
Finally, we recall the following definitions which will be needed in subsequent

sections.
DEFINITION 2.1. A system (A, B) is said to be s(strong)-stable if: T(t)x

for all x in H.
If (A, B) is not s-stable and if a feedback F can be found so that the system

(A + BF, B) is s-stable, then (A, B) is said to be s-stabilizable.

3. Contractive systems. We study in this section some basic properties with
respect to s-stabilizability of contractive systems.

A system (A, B) is called contractive if its operator A generates a semigroup of
contraction operators, or simply a contraction semigroup.

First, let us recall the following important properties of contraction semigroups,
due originally to R. S. Phillips [7].

LEMMA 3.1. Let [T(t); >=0] be a semigroup on H, with generator A. Then,
(i) [T(t); ->-0] is a contraction semigroup: IlT(t)]l < 1 for all t >-0, ifand only irA

is dissipative: Re [Ax, x] <= 0 for all x in (A), and furthermore it does not admit any
dissipative extension in H. Hence A is called maximal dissipative.

(ii) [T(t); t>=O] is an isometric semigroup: IIT(t)xtl-Ilxll for all t>=O and all x in
H, if and only ifA is maximal dissipative and Re [Ax, x] 0 for all x in (A).

(iii) [T(t); t->0] is a unitary semigroupmor what amounts to the same thing
[T(t); -<t <] is a unitary group--l}T(t)x[[= lixll IlT(t)*xll for all >=0 and all x in
H, if and only ifA is skewad]oint: A =-A*.

We now recall the notion of a completely nonunitary (cnu) semigroup of B.
Sz-Nagy and C. Foias [8].

DErINITOr 3.1. A semigroup IT(t); => 0] on H is cnu if for each nonzero x in H
there is a > 0 such that, either IlT(t)xl[ [Ixll or [[T(t)*xl[ [[xll.

It is evident that the only subspace which reduces a cnu semigroup to a unitary
one is the trivial subspace {0}.

The following canonical decomposition of contraction semigroups of Nagy and
Foias will be the main tool of this paper.

THEOREM 3.1 [8], [9]. To every contraction semigroup [T(t); ->0] on H, there are
reducing subspaces ncnu(T) and Hu(T) such that:

H=Hcnu(T)Hu(T)
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uniquely. Hence [T(t); >-0] admits the decomposition

(3.2) T(t) Tcnu(t) Tu(t), _-> 0,

where Tcnu(t)= T(t)[Hc,u(7- is cnu and Tu(t) T(t)lHu(r is unitary.
Hu(T) is the maximal reducing subspace on which the semigroup is unitary, and

(3.3) Hu(T) {x in H; IlT(t)xll Ilxll IIT(t)*xll, > 0}.

It follows from this theorem that we have
COROtLARY 3.1. (i) A contraction semigroup [T(t); t_>0] and its adfoint

[T(t)*; => 0] can either be both cnu or both unitary.
(ii) The subspaces (A)H(T) and (A*)fqHu(T) are dense in Hu(T), and

@(A) fq H(T) (A*) f’) nu(T).
(iii) IfM is a reducing subspace of [T(t); => 0], then the semigroup is unitary on M

if and only if
(3.4) Re[Ax, x]=O=Re[A*x,x], xin(A)M.

Proof: Part (i) is trivial. We only have to note that [T(t)*; -> 0] is also a contrac-
tion semigroup, and H(T)= Hu(T*), by (3.3).

For part (ii), from the canonical decomposition (3.2), Tu(t) is the restriction of
T(t) to its reducing subspace Hu(T); hence the subspace (A)f-IHu(T)is the domain
of Ainu(r) which in turn is the generator of Tu(t). Hence (A)fqHu(T) is dense in
Hu(t). The proof is similar for the subspace (A*)f’IH,(T). Next., since [Tu(t); t->0]
is unitary on Hu(T), therefore Ainu(r) -A*[n,(r by Lemma 3.1(iii). Consequently
(A)fqH(T) is identical to (A*)Hu(T)as expected.

Finally, part (iii) is just a direct application of Lemma 3.1(iii) to the semigroup
[Z(t)[; _-> 0].

Remark. It is clear that (A)Hau(T) and (A*)f-IH,u(T) are also dense in
Hu(T). However, they are not in general identical. Also, we do not have in this case
the equivalent of Corollary 3.1(iii). For example, for an isometric semigroup, we
always have IIT(t)xll=llx[I, t>-O and x in H, while IIT(t)*xllllxll, t>-O and x in
n.u(7").

It is evident from the above that, if the subspace Hu(T)of a system (A, B) is not
trivial, then of course both (A, B) and (A*, B) can never be s-stable! Thus the very
first step in s-stabilizing contractive systems should be that of "converting a contrac-
tion semigroup into a cnu one, by means of a suitable feedback operator." This is what
we are going to discuss next.

THEOREM 3.2. Let T(t); -> 0] be a contraction semigroup on H with generator A,
and B be a bounded linear operator from U to H. Then,

(i) A-BB* generates a contraction semigroup IS(t); =>0] (say) on H, and
(ii) H(S)_Hu(T)Ker B*.
Proof. Part (i) is trivial. We only have to note that A-BB* generates a (Co)

semigroup which is also contractive, since A is maximal dissipative by Lemma 3.1(i),
and -BB* is bounded dissipative. In fact it is a negative operator on H.

To show part (ii), since [S(t); >=0] is unitary on Hu(S) and (A-BB*) (A),
we have

d
d-SllS(t)xl[=o- 2 Re [(A-BB*)S(t)x, S(t)x], >=O, x in (A)H(S)

or

Re[AS(t)x,S(t)x]=l[B*S(t)x[[2, t>=O, x in@(A)Hu(S).
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But if x is in @(A), S(t)x, t_>0, lies in @(A), and since A is dissipative, this last
equation implies that

(3.5a) Re [AS(t)x, S(t)x]=O, >-_0, x in (A)Hu(S)

and

(3.6a) B*S(t)x=O, t>=O, x in@(A)f-lHu(S).

Similarly, from (d/dt)llS(t)*xll and since @(A)fl Hu(S)= (A*) Hu(S) by Corollary
3.1 (ii), we obtain

(3.5b) Re[A*S(t)*x,S(t)*x]=O, t>-O, xin(A)Hu(S)

and

(3.6b) B*S(t)*x=O, t>=O, x in@(A)f-IH(S).

It then follows from (3.6a) that Hu(S)
_
Ker B*, since (A) Hu(S) is dense in Hu(S).

It remains to show that Hu(S)_ Hu(T). This can be seen in two different ways.
First, on @(A)fqH(S)_KerB* we have A-BB*=A. Hence S(t)x= T(t)x and
S(t)*x T(t)*x, for t->0 and x in Hu(S), again by the denseness of (A)tqH(S).
These then imply that the subspace Hu(S) also reduces [T(t); =>0] since it already
reduced [S(t); => 0]. Consequently, by (3.5a), (3.5b) and Corollary 3.1(iii), [T(t); >=
0] is unitary on H(S)---or better still, by the fact that IS(t); -> 0] is already unitary on
Hu(S). Thus H(S)c__ Hu(T) by the maximality property of Hu(T) from Theorem 3.1.
This completes the proof.

Another way of showing that Hu(S)Hu(T) is to use (3.6a) and (3.6b) in the
following identities [6]"

(3.7a) $(t)x T(t)x T(t- r)BB*S(r)x d

(3.7b) S(t)*x T(t)*x- T(t-r)*BB*S(r)*x dr.

Then we obtain as before, S(t)x T(t)x, and S(t)*x T(t)*x, for t>_-0 and x in
(A) f3 H(S), hence for x in Hu(S).

Remark 1. The subspace Ker B* is also the unitary subspace Hu(R)of the
selfadjoint contraction semigroup [R (t)= e -nn*’, > 0]. To see this we use (3.4)

Re [-BB*x,x]=-[[B*x[12=O, x in fig(BB*)fqH,(R)=Hu(R)

which implies that Hu(R)_ Ker B*. On the other hand, it is evident that e-BB*tX X

for t_--> 0 and for all x in Ker B*. This implies that Ker B* reduces [R(t); t->_ 0] to a
unitary semigroup; hence H(R)_Ker B*; therefore Hu(R)= Ker B* as expected.
This certainly makes sense since -BB* is selfadjoint; the only subspace of H on which
-BB* can be skewadjoint is either {0} or Ker B*.

Remark 2. It can be easily seen that Theorem 3.20) holds for any dissipative
operator C, instead of just for -BB*. If C is also selfadjoint, then -C is positive. In
this case we also have as in Remark 1, Hu(S)Hu(T)f-IKer C, where Ker C is again
the unitary subspace Hu(R) of [R (t)= e ct’, > 0].

If C is just dissipative, then besides (3.5a) and (3.5b), we have

Re[CS(t)x,S(t)x]=O, t>-_O, x inffJ(A)f-qH(S)

Re [C*S(t)*x, S(t)*x]=O, >=0, x in (A)f-IHu(S)
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instead of (3.6a) and (3.6b).
Thus, by Corollary 3.1(iii), if the subspace Hu(S) reduces [T(t); t->_0] and

[R(t); t->_0], then these semigroups are unitary on Hu(S) and therefore Hu(S)_
H,(T)fqH(R).

Applying Theorem 3.2 to contractive systems, we have
PROPOSiTiON 3.1. Let (A, B) be a contractive system on H. Then the system

(A -BB*, B) is a cnu contractive system if any one of the following conditions holds:
(i) The range space BU is dense in H. [Condition C1]
(ii) The unitary subspace Hu(T) is controllable ]’or (A,B) or for (A*,B), i.e.,

H(T) is contained in M or in M,. [Condition C2]
(iii) (A,/3) and (A*, B) do not admit any common uncontrollable states, or ff they

are controllable. [Condition C3]
Proof. We have from Theorem 3.2(ii)

Hu(S) Hu(T) f’) Ker B*.

Hence Hu(S) is a subspace of Ker B*. It also reduces [S(t); t_->0], and since con-
trollability is invariant under any bounded feedback--i.e., (A, B) and (A +BF, B)
share the same controllable states [6]--we also have Hu(S) Mucf-)M, by Lemma
2.1(ii). Hence Hu(S)__Hu(T)fqMucM.. This can also be seen from (3.6a) and
(3,6b), i.e.,

B*S(t)x=O, t>_-O, x in(A)f-lH(S)

B*S(t)*x =0, t_-_20, x in (A)fqHu(S).

Thus from the definitions of Mu and M.uc, equations (2.5) and (2.8), the above imply
that (A)f-)Hu(S)_Mu and (A)f-)Hu(S)_M.uc. Hence, by the denseness of
@(A) f’)Hu(S), we have Hu(S)_ Mufq M.u as expected. This completes the proof of
the proposition.

We note from the above that if Hu(T) is a subspace of BU, then Hu(S) is also
trivial. But this implies that H(T) is controllable for (A B) or for (A*, B)--which is
condition (ii)of the proposition.

We conclude the section by noting that if [T(t); ->_ 0] is a unitary semigroup, then
Hu(T)=--H, and by Lemma 1.1(iii), A =-A*. Hence Hu(S)c_ Muc, and we state

PROPOSITION 3.2. If (A, B) is contractive and [T(t); => 0] is unitary, then (A-
BB*, B) is a cnu contractive system if the system (A, B) is controllable.

4. Strong stabilizability of contractive systems. Using the results of 3 we now
show a procedure for s-stabilizing contractive systems.

As in the above, let (A, B) be a given contractive system with A generating a
contractive semigroup T(t); -> 0] on H. Let Ms(T) be the set of s-stable states of the
system,

(4.1) M(T) {x in H; T(t)x O, - oo}.

Then clearly Ms(T) is a closed invariant subspace of [T(t); t->0]. Furthermore
the semigroup [T(t); t>=0] is cnu on Ms(T), and from Theorem 3.1 we must have
Ms(T) Hnu(T). We now find conditions for semigroup to be s-stable on Hc,u(T).

Now, since [T(t); >-0] is a contraction semigroup, IIT(t)xll is a nonincreasing
function of t. Therefore lim IJT(t)xl[, o, always exists. It then follows that the
positive contractions T(t)* T(t) for > 0 converge in the strong operator topology to a
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positive contraction pZ say,

(4.2) p2= lim T(t)*T(t).

Similarly, let

(4.3) 02--- lim T(t)T(t)*.

Then, it follows that

(4.4) IIPxll= lim ]lT(t)xll

(4.5) IIQxll= lim IIT(t)*xll
tc

and for all >= 0,

(4.6) T(t),p2T(t) p2

(4.7) T(t)Q2T(t),= Q2.
We prove
THEOREM 4.1. The contraction semigroups [T(t); >_-0] and IT(t)*; >_-0] over H

are s-stable on Hcnu(T) (= Hcnu(T*)) if and only if P=- Q is a (orthogonal) profection
onH.

Proof. Suppose that P O p2. Then for any x in H, let y x-Px; we have
Py Oy Px -PZx 0. Therefore

IIPyll2= IlOyll2= 0 lim IlT(t)yll2= lim IIT(t)*yll2

which shows that

(I P)H {y in H; T(t)y O, }

{y in H; T(t)*y - O, c}.

Hence (I-P)H-Ms(T)=Ms(T*); consequently it reduces [T(t); t>_-.O] (to a cnu
semigroup). Then so does its orthogonal complement PH. We therefore have

(4.8) T(t)P PT(t), for _-> 0

(4.9) T(t)*P PT(t)*, for t_>- 0.

Combining (4.6), (4.7), (4.8) and (4.9) we find, for all _-> 0:

T(t)e]*[ T(t)e] P: P

T(t)P][ T(t)P]* P: e.

Hence the semigroup [T(t); _>-0] is unitary on PH, while it is cnu on (I-P)H. From
the uniqueness of the Nagy-Foias canonical decomposition we conclude that (I- P)tt
(= Ms(T)-" Ms(T*))-- Hcnu(T) and PH Hu(T). The semigroups IT(t); t_-> 0] and
[T(t)*; _-> 0] are therefore s-stable on Hcnu(T).

Conversely if Hcnu(T) Ms(T) Ms(T*), then Px Ox =0 for x in Hnu(T).
Moreover, from the definition of Hu(T) and from (4.4) we find IIPYll IlY[[ for all y in
Hu(T). This of course is equivalent to Py y, since P is a positive contraction.
Similarly, Qy =y for all y in Hu(T). Therefore, since Hcnu(T)+/-Hu(T), P and O are
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indeed orthogonal projections with range Hu(T). This completes the proof of the
theorem.

We note that when [T(t); =>0] is normal, T(t)T(t)*= T(t)*T(t) for >-0. Then
P=O and of course Ms(T) Ms(T*). Furthermore, from the spectral theory of
normal operators [10] we have readily Hcnu(T)= Ms(T)= Ms(T*). Hence, we have

COIOLI.ARY 4.1. A normal contraction semigroup [T(t); t->0] is s-stable on
Hcn(T) and P =-O is the projection with range H(T).

We are now ready to state our first s-stabilizing result.
THEOREM 4.2. A contractive system (A,B) whose semigroup [T(t); t>-0] is

normal, and ri0(A)= @(A*), is s-stabilizable by the feedback -B*
(i) if any one of the Conditions C1, C2, or C3 of Proposition 3.1 is satisfied, and
(ii) only//Ha(T) is controllable for (A,B) or for (A*,B).
Proof. First, we note that if [T(t); t->0] is normal and @(A)= (A*), then so is

the semigroup [S(t); >=0] generated by A-BB*. To see this we use the fact that
[T(t);/_->0] is normal lI.T(t)xll2-11T(t)*xll2, t>=O, x .in nC:>Re fAx, x]= Re [A*x,
x], x in @(A)=- @(A*). Consequently, we have for [S(t); t_>0]

Re [(A -BB*)x, x] Re [(A -BB*)*x, x], x in @(A).

Hence [S(t); >-0] is also normal.
Now if the conditions of Proposition 3.1 are satisfied, then [S(t); t_>-0] is a cnu

normal contraction semigroup. Hence by Corollary 4.1 it is s-stable, i.e. (A, B) is
s-stabilizable.

Suppose now that the system (A-BB*,B) is s-stable. Then since [$(t); t->0] is
normal, the adjoint semigroup [S(t)*; t->0] is also s-stable when [S(t); t_>0] is s-
stable. Using (2.5) in (3.7b) we have T(t)*x $(t)*x, >= O, x in Muwhich is just the
fact that controllability is invariant under feedback [6]. Hence, from the above, and by
assumption we can conclude that T(t)*x 0, oo, for all x in Mu. That is, Mu
nenu(T)Crnu(T) Me. Similarly, M,c___ Hcnu(T)Crnu(T) M,c. This completes the
proof.

Theorem 4.2 holds in particular for selfadjoint contraction semigroups. In this
case Mc M,; therefore we have

COROLLARY 4.2. A contractive system (A,B) with [T(t); t_->0] selladfoint is
s-stabilizable by the feedback -B*, i,f and only ifH(T) is controllable .for (A, B).

This result was given by Benchimol in [5] using weak stability properties of
contraction semigroups.

Let us now s-stabilize the contraction semigroups which satisfied Theorem 4.1.
First we prove

LEMMA 4.1. I,f [T(t);t>=O] and [T(t)*;t>=O] are s-stable on ncnu(T), then
[S(t); _>-0] generhted by A-BB* and [S(t)*; -> 0] are s-stable on Hcnu(,).

Proo] Let p2 be as in Theorem 4.1 and define

j2=limS(t)*S(t)

K2= lim S(t)S(t)*.

Then since H(S) (Hu(T)fqKerB*) reduces [T(t);t>=O], S(t)x=T(t)x, and
$(t)*x T(t)*x, for _-> 0 and all x in Hu($), by Theorem 3.2. It is evident that

JZx Px Kx, for x in Hu(S).

Now, by assumption and by Theorem 4.1, P is the orthogonal projection with range
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Hu(T). Thus the above implies that

(4.10) j2x K2x x, for x in Hu(S).

Again, as in the proof of Theorem 4.1 we also have

(4.11) Jx Kx x, for x in H(S).

Equations (4.10) and (4.11) and the fact that J and K are positive imply that these
operators are projections with range Hu(S). Thus by Theorem 4.1, the lemma is
proved.

Combining this lemma and Theorem 4.1, we have
THEOREM 4.3. If]or the semigroup [T(t); =>0] of a contractive system (A, B)

H.u(T) {x in H; T(t)x O, }

{x in H; T(t)*x - O, },

then the system is s-stabilizable by the feedback -B*
(i) if any one of the Conditions C1, C2, or C3 is satisfied, and
(ii) only if Hu(T) is controllable for (A, B) or for (A*, B).
Proof. The proof is the same as that of Theorem 4.2 and will be omitted.
Remark. It is of interest to note that in Theorems 4.2, 4.3 and Corollary 4.2, the

subspace H(T) can be regarded as a set of "s-unstable states" of (A, B). Thus
controllability of this set is necessary and sufficient for s-stabilizability of the system.
This is an analogue of the well known finite dimensional result of Wonham [11],
namely, a finite dimensional state space system is stabilizable if and only if its unstable
modes are controllable. For w(weak)-stabilizability of contractive systems, another
analogue of Wonham’s result was obtained by Benchimol [5]. For a contractive system
(A, B) define

Mw(T) {x in H; T(t)x -->0 weakly, --> c}.

Then it was shown in [5] that controllability of the w-unstable states Mw(T)x is
necessary and sufficient for (A, B) to be w-stabilizable by the feedback -B*. This was
obtained by means of a result of Foguel [14], namely, for a contraction semigroup
[T(t); ->0], Mw(T)x Mw(T*)x and it reduces the semigroup to a unitary one; hence
Mw(T)+/-H(T) by the Nagy-Foias theorem. It is evident from this and from our
results above that if Mw(T)-= Hu(T) then w-stabilizability and s-stabilizability are
equivalent. This is indeed the case when T(t) is selfadjoint and when its generator A
has a compact resolvent, as is shown in [5] using semigroup theoretic techniques. Our
Corollary 4.2 is equivalent to Corollary 3.2 of [5], except that there Mw(T)---which in
fact becomes H(T) as soon as the semigroup is selfadjointm was required to be
controllable. Our results were obtained by means of Theorem 4.1, and in fact there
are no results in [5] which are equivalent to Theorems 4.2 and 4.3. We further note
that in both Theorem 4.2 and Theorem 4.3 controllability of (A*, B) also plays a role
in s-stabilizability of the system. This is something which does not occur in the finite
dimensional case.

In the above we considered the class of contraction semigroups which together
with their adjoints were s-stable on the cnu subspace. Now let us consider the case in
which only the semigroup itself is s-stable on this subspace. We prove,

LEMMA 4.2. A contraction semigroup [T(t); -> 0] on H is s-stable on Henu(T) if
and only if [T(t)*; ->0] is a semigroup of.isometries on H.



32 N. LEVAN AND L. RIGBY

Proof. Suppose that [T(t)*; t->0] is isometric. Then of course T(t)T(t)* =I,
t>0, and the operators T(t)*T(t), t>0, .are orthogonal projections with ranges
T(t)*H. Therefore from (4.2)

p2= lim T(t)*T(t)= P.

Thus as in the proof of Theorem 4.1

(I P)H {y in H; T(/)y 0, }.

This shows that PH is invariant for [T(t)*; t->_0]. From (4.6) and the fact that the
adjoint semigroup is isometric, we find PT(t)= T(t)P, > 0. Thus P commutes with
T(t), and therefore with T(t)* also. Hence PH is reducing for [T(t)*; t->_ 0]. Then as
in the proof of Theorem 4.1, [T(t)*; t->_0] is unitary on PH, while for x in (I-P)H,
I[T(t)*xll Ilxll and [[T(t)xll Ilxll for all > 0. Hence [T(/)*; -> 0] is cnu on (1 P)H, so
that

Hcnu(T)=Hcnu(T*)=(I-P)H={y inH; T(y) 0, too}

and one half of the theorem is proved.
For the other half, it is well known that if [T(t); >-0] is s-stable on ncnu(t), then

T(t)[nonu(r is unitarily equivalent to the backward translation semigroup [12]mwhich
is the adjoint of a semigroup of isometrics called the forward translation semigroup.
This together with the Nagy-Foias decomposition of [T(t); -> 0] completes the proof
of the lemma.

This lemma suggests that for this class of semigroups, if a feedback F can be
found so that A +BF will generate a contraction semigroup [S(t); ->_ 0] whose adjoint
[S(t)*; t->0] is isometric, then as in the previous cases, the s-stabilization problem
simply becomes that of "trivializing" the subspace Hu(S).

It follows from Lemma 3.1 that [S(t); t->0] is contractive if BF is dissipative,
equivalently if -(BF +F’B*) is positive. Then [S(t)*; t->0] is isometric if and only if
Re [(A +BF)*x,x]=O for x in (A*) by Lemma 3.1(ii), therefore, if and only if
BF =-F’B*, since Re [A*x,x]=O for x in N(A*). This shows that the feedback
F =-B* will not work in this case! However we have,

THEOREM 4.4. Let (A, B) be a contractive system such that A* generates an
isometric semigroup T(t)*; _-> 0]. Then

(i) A-iBB* generates a contraction semigroup [S(t);t>-O] whose adjoint
[S(t)*; t->0] is isometric;

(ii) /f neither (A,B) nor (A*,B) is controllable and if Hu(S) is contained in
Ker B*, then (A, B) is s-stabilizable by the feedback -iB*

a) ifH(T) is controllable for (A, B) or for (A*, B), and
b) only ifH(T) is controllable for (A*, B).
Proof. Part (i)is trivial.
For part (ii), we note that the operator -iBB* is dissipative and skewadjoint.

There from the second remark following Theorem 3.2, if Hu(S) reduces [T(t); t-> 0]
and [R(t)=e -iBB*t’, t>0],= then Hu(S)c_ H(T)f’IHu(R). The semigroup [R (t)’, t>0]=
in this case is clearly unitary on all of H, so that Hu(S)_ Hu(T).

Now if H(S) is a subspace of Ker B*, then Hu(S)_MucfqM, by Lemma
2.1(ii). But as we have seen in the proof of Theorem 3.2(ii), Hu(S)_ Ker B* also
implies that Hu(S) is a reducing subspace of [T(t); ->_0]. Therefore Hu(S)

_
Ker B* ::),

Hu(S)___ Hu(T)f’IMf-IM.u gives sufficient proof. The necessary proof is the same as
that of Theorem 4.2.
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Finally we close the section with some illustrative examples. Consider the heat
equation

Ox O2x
3t 02sr’ sr in [0, 27r], t>0

x(0)= x (27r), .f(0) (2rr).

LetH L2[0, 2"n’], A c2/02( and

(A)= {x in H; x, ,f absolutely continuous, , k" in H,

and x(0)= x (27r), i(0)= i(2rr)}.

Then A is selfadjoint and dissipative on (A) [6]. Hence it generates a selfadjoint
contraction semigroup IT(t); _-> 0] which is given by

e ix, b,,]b,, bn ei"C/x/, >= 0 and x in H.

Let us characterize the subspaces Hu(T) and Hcnu(T). We have

llZ(t)xll2 Y. e-2"’l[x, ,/,.]lz -IlZ(t)*xllz, > O.

Therefore,

and

Hu(T) {4,0}

Hcnu(T) span {b,,, n + 1, +/-2,...}.

Thus the system is s-stabilizable by a feedback -B* as soon as the state bo is
controllable. Let B be an element b(sr) of H. Then

Mu {x inH; [T(t)b,x]=O, t->0}

and b* is a bounded linear functional on H. Thus let [S(t); =>0] be the semigroup
generated by A-bb*" (A-bb*)x =Ax-b[x, b], x in (A). Then

Hu(S)
_

{bo} (3 {x in H; x _1_ T(t)b, >= 0}.

Therefore if [T(t)b, bo] 0, t => 0, then Hu(S) is trivial. But this also implies and is
implied that bo is controllable. Thus any element b of H such that [b, bo] -0 will
result in an s-stabilizing feedback -b* for the system (A, b).

As a second example, consider the equation

Ox Ox

0t cr’ sr in [0, 27r], > 0

x(0) x(ZTr),

again with H Lz[0, 27r], A -O/0sr and

@(A)= {x in H; x absolutely continuous, in H and x(0)= x (27r)}.

Then A =-A* and [T(t); t->0] is therefore unitary and is given by

e in
T(x) , ei"t[x, qb,.]b., b. 2x/’

->_ 0 and x in H.
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Let us now reduce [T(t); =>0] to a cnu contraction semigroup. As in the previous
example, let B be an element b(r) of H. Then for the semigroup [S(t); t-> 0] gener-
ated by A- bb*, we have

Hu(S)_Muc={X inH; [T(t)b,x]=O, t>_-0}.

Hence if (A, b) is controllable then Hu(S) is trivial, i.e., [S(t); => 0] is cnu. We have
[T(t)b, x] Y._ ein’[b, b,,][x, 4,]. Therefore, if [b, b,] 0 for any n, then [T(t)b, x]
0, _-> 0 implies [x, b, 0 for all n, i.e., x 0, and (A, b) is indeed controllable 13].

The reduction of a unitary semigroup to a cnu contraction one, as shown in this
example, is also applicable to other complicated situations. For instance, for the wave
equation with homogeneous Dirichlet boundary conditions:

=Ax, A=
A

where A is the Laplacian. If f is a bounded smooth domain of R" and H =/-]rl(I))
H0(D.), then A is skewadjoint on (A)= {H2(f)f’l/-/l(f)}/-l(I)). Hence it gener-
ates a unitary semigroup on H. This was considered by Slemrod in [2b]. According to
his Theorem 3.6, if (A, B) is controllable, A has compact resolvent and generates a
unitary semigroup. Then the system is s-stabilized by the feedback -B*. The wave
operator A does indeed have a compact resolvent and therefore the system is s-
stabilizable as soon as it is controllable. It is of interest to note that controllability in
this case implies that A-BB* generates a cnu contraction semigroup. Then by a
theorem of Foguel 14], the cnu contraction semigroup is also weakly stable. Hence, if
A is compact then this implies s-stabilizability. For weak stabilizability of contraction
semigroups using Foguel’s theorem we refer to [4] and particularly [5].

Finally, although we study only s-stabilizability of contractive systems as stated in
the Introduction, it is of interest to note that the heat equation example is also
exponentially stabilizable [3] and so is the wave equation example [5].. Conclusion. We have seen in this paper the important role of the Nagy-Foias
canonical decomposition in the s-stabilization problem of contractive systems. Indeed
an s-stable contraction semigroup is necessarily cnu.

Proposition 3.1 showed that a contraction semigroup can be reduced to a cnu one
by means of the feedback -B*. It was here that controllability of (A, B) and (A*, B)
came into play. This is due to the fact that the unitary subspace Hu(T) is invariant for
the semigroup, as well as for its adjoint. Proposition 3.2 explains why for unitary
semigroups, the system has to be controllable before it can be stabilizable. This agrees
with a result established by Slemrod [2b]. Indeed controllability in this case is to insure
that A-BB* will generate a cnu contraction semigroup, which together with Slem-
rod’s compactness condition, will also be s-stable.

In this paper we have avoided imposing any compactness condition, but instead
rely on the strong convergence property of contraction semigroups. This allows us to
s-stabilize a class of contraction semigroups which includes the normal and selfadjoint
ones as special cases.
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SOLVING THE NONLINEAR COMPLEMENTARITY PROBLEM
BY A HOMOTOPY METHOD*

LAYNE T. WATSON"

Abstract. Let F be a C map from n-dimensional Euclidean space into itself. It is proved that, under
some mild conditions on F, the complementarity problem z >=0, F(z)>=O, zF(z)=O can be solved by a
homotopy algorithm developed by Chow, Mallet-Paret, Yorke, and Watson. The algorithm is globally
convergent with probability one, and uses Mangasarian’s nonlinear system equivalent to the complemen-
tarity problem. Convergence theorems for the algorithm simultaneously prove existence of a solution,
although existence is already well known. Some computational results are included.

Introduction. Let F be a map from n-dimensional Euclidean space E into itself.
The (nonlinear) complementarity problem is to find a vector z in E such that

z >-O, F(z)>=O, zF(z)=O;

i.e., z and F(z) are orthogonal and have nonnegative components. The nonlinear
complementarity problem and the linear complementarity problem, where F(z) is an
affine map, have been studied extensively, for example [5], [7], [9], [11], [15], [16].
Typically the linear problem is solved by algebraic methods based on "complementary
pivoting" [7], [11], [15], and the nonlinear problem is solved by simplicial fixed point
methods [2], [3], [7], [10], [12], [13]. Murty [11] has shown that complementary pivot
methods can have exponential computational complexity, and Watson [15] showed
that they fail for many classes of problems. The simplicial methods of Eaves [2], [3],
Merrill [10], and Saigal [12] are reasonably efficient, when implemented properly, but
the supporting theory is rather complex.

Recently some completely different approaches to computing fixed points have
been advanced by Chow, Mallet-Paret, Yorke [1], Kellog, Li, Yorke [6], Li [8], and
Watson [17]. All these new approaches, though, require the function to be C or C2,
and the standard formulation of the nonlinear complementarity problem as a fixed
point problem results in a function which is not even C [10], [15]. However, there is a
very clever reformulation of the complementarity problem, due to Mangasarian [9], as
a zero finding problem

G(z)= 0,

where G(z) can be made as smooth as desired. The intent of this paper is to show that
the complementarity problem can be solved by the homotopy metliod of Chow 1] and
Watson [17], by use of the equivalent formulation G(z)= 0.

The equation G(z)= 0 is useful only in a local sense, in that if an initial approxi-
mation to the solution z? is known, then locally convergent iterative techniques will
compute z. If no good estimate of the solution is available, then the problem G(z)= 0
is just a different, and equally hard, version of the complementarity problem. For the
linear complementarity problem F(z)= Mz +q, a good initial estimate amounts to
knowing which complementary cone [15] contains q, but this is tantamount to know-
ing the solution. The local nature of the nonlinear system G(z)= 0 is overcome by a
homotopy method: It will be proved that, under certain mild conditions, the Chow-
Yorke algorithm is globally convergent with probability one.

* Received by the editors August 27, 1977, and in revised form May 18, 1978.
? Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.
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As a historical note, homotopy-type methods were applied to the linear
complementarity problem with moderate success in [15] and [16], but were not
extensively developed because sufficiently powerful theoretical tools (now provided
by Chow [1]) were not available then. See also Davidenko [18].

One-dimensional linear case. To motivate the general case and gain some insight
into homotopy methods, consider the one-dimensional linear case

z >=O, mz +q >=O, z(mz +q)=O,

where m and q are real numbers, z solves this linear complementarity problem if and
only if G(z)= 0, where

G(z)= [mz +q-z[3-(mz +q)3- z3.

This corresponds to taking 0(t)= in Mangasarian’s Theorem 1 [9]. 0(t)= 3 was
chosen because it is the simplest function which is strictly increasing, satisfies 0(0)= 0,

and for which 0(Itl) is a C2"function. Homotopy theorems typically require C2

differentiability [1], [17], and thus G(z) must be C2. Consider the following homotopy
map, which has a strong supporting theory [1] and is easy to work with"

qa (a, z)= AG(z)+ (1-A )(z- a).

The idea is to track in h -z space the zero curve of 0,(h, z) emanating from (0, a).
Hopefully this zero curve reaches a zero of G(z) (at h 1) after traveling a finite
distance. The parametric equations h h (s), z z (s) of this zero curve, where s is arc
length, are defined by

Thus

qa(A (s), z(s))= 0, A (0)= 0, z(0)= a.

cloo (X (s ), z (s ))
ds

Dqga (A, z

da dA
-s

=[G(z)-z+a, 1-A +G’(z)]
ss

dz dz

=0, x(0)= 0, z(O)=a.

For concreteness, take rn 1, q 1, so D0, (A, z) 1 (z 1)3 z 3 z + a, 1 A +
A(-3(z-1)2-3z2)]. Now dA/ds=O when Dqa(A, z)= 1-A +A(-6z2+6z-3)=0,
which happens at tho curve z (1 +/(2-5A)/(3A))/2. By analyzing the signs of the
quantities involved, it is easily verified that this curve (see Fig. 1) contains the locus of
turning points for the zero curves of q, and constitutes a "barrier" between A 0 and
A 1. When any zero curve (except the trivial one starting at a 1) hits this barrier, it
turns back and slides along beside the barrier curve toward - (if a < 1) or cc (if
a>l).

Observe that if the homotopy map uses -G(z) instead of G(z), then Dzq (A, z)>
0 for any (A, z), 0<=A -<_ 1. Therefore dA/ds is never zero, which means that the zero
curve does not turn back for any a. A straightforward analysis of the signs of the
various quantities shows that for every a the zero curve of qa reaches the solution
2--1.
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a=l

=2/5
z= 1/2

1/4

FIG. 1. Barrier curve (solid line) and zero curves (dashed lines) of q,(A, z).

The general nonlinear case. Let F: E"--> E be a C: map. Keep in mind that z
solves the complementarity problem

(1) z >=O, F(z)>-O, zF(z)=O

if and only if

()

where

a(z)=O,

Gi(z)=lFi(z) zil (Fi(z))3 z 3
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This corresponds to taking O(t)- 3 in Mangasarian’s theorem 1 [9]. Let

(3) H(z)= -G(z)

and

(4) o.(a, z)= aH(z)+ ( -a )(z a).

The use of H(z) instead of G(z)was motivated by the one-dimensional example. For
completeness the following very important result, due to Chow et al. [1], is stated
here:

LEMMA 1. Let f: E" --> E" be a C2 map such that zf(z) >- 0 on some sphere IIz r.
Then f(z) has a zero in the ball I[z]] <= r, and for almost all a in the interior of this ball
there is a zero curve of the homotopy map

a(A, x Af(x + (1 )(x a

leading from (0, a) to a zero of f(x). Furthermore, rank DTa(1, x)= n along this zero
curve.

THEOREM 1. Let F(z Mz + q, M I. Then for almost all a E, there is a zero
curve of p(A, z) joining (0, a) to (1, ), where solves the complementarity problem.
Dp (A, z) has full rank along this zero curve.

Proof. This theorem is a corollary of some later theorems in this paper, but it also
illustrates an application of Lemma 1.

H,(z)= -Iq, + (z, + q,) + z,.
Now zH(z)= 2 E= z + lower order terms => 0 for [Izll r sufficiently large. Therefore
by Lemma 1 the result follows. Q.E.D.

LEMMA 2. Let the map p: E" [0, 1) E --> E" be defined by

p(a, A, z)= AH(z) + (1 -A )(z a).

Then p is transversal to zero.
LEMMA 3. For almost all a E, the map Pa [0, l) )< F_, ---> ], defined by

p(A, z)= AH(z)+(1-A)(z-a)

is transversal to zero (i.e., for almost all a the Jacobian matrix Dp has full rank on

O’1 (0)).
A proof and discussion of Lemmas 2 and 3 can be found in [1]. Lemma 3, known

as a "parameterized Sard’s theorem", is the theoretical foundation of the homotopy
methods developed in this paper. The application of Lemma 3 to computing fixed
points of C2 maps was given in detail in [1] and [17]. Note that p(A, z) and H(z) are
C2 maps since F(z) is C2.

LEMMA 4. Let the ]acobian matrix DH(z) be nonsingular at every zero of H(z).
Then for almost all a E, them exists a zero curve T of to,, (A, z) emanating from (0, a)
along which Dpa (A, z) has full rank. T either has finite arc length and reaches a zero of
H(z) (at A 1) or wanders off to infinity.

Proof. The existence of 3/ and full rank of Dp(A, z) along y are just a restate-
ment of Lemma 3. Suppose T remains bounded. Extend Pa and /to [0, 1] E" in the
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obvious fashion. Let (A, 5) be any point on 3" in [0, 1] x En. Then

DO,(A, )= (1 )I + &Dh(5)

has full rank, and by the implicit function theorem, y has finite arc length in a
neighborhood of (A, 5). Therefore by compactness 3" has finite arc length. The implicit
function theorem also proves that 3’ cannot intersect itself and must reach A
1. Q.E.D.

Note that y is a C curve.
LEMMA 5. Under the hypotheses of Lemma 4, let a >0 be such that the

conclusions ofLemma 4 hold. If (, 5) is on the zero curve 3/Ofpa (h, Z) emanatingfrom
(0, a), then 5 > O.

Proof. The ith component of pa(h, z) is given by

A (- [F (z)- zi[ 3 + (Fi(z))3 + z/ )+ (1 Z )(zi-

Suppose that Yi < 0. Then -IF/(5)- -il 3 + (Fi(5))3 + 5 3i < 0 and 5i ai < 0. Since 0 < X <
1, the ith component of pa(X, z-) is negative, which contradicts pa(, Z)= 0. Therefore
2>0. Q.E.D.

THZORZM 2. Let the Jacobian matrix DH(z) be nonsingular at every zero ofH(z).
Suppose that there exists r > 0 such that z > 0 and Zk Ilzl[ >= r imply Fk (z)> O. Then
for almost all a > 0 there exists a zero curve 3’ ofpa (A, z), along which Dp, (, z) has full
rank, having finite arc length and connecting (0, a) to (1, 5), where 5 is a zero of H(z).

Proof. The existence of the zero curve 3/along which rank Dp(A, z)= n follows
from Lemma 4, and if it can be shown that 3" remains bounded, then the rest
of the theorem also follows from Lemma 4. By Lemma 5, 3" lies in K=
[0, 1)x{z En[z >0}. There is no harm in assuming r>llall. Let (X, 5)6K be any
point with ---I]et[_->r. Then .-a >0 and -If(.)-e13+(f(zZ))3+zr >0 since
5k >_-r >llall_-> a and F(5)> 0 by hypothesis. Therefore

2(-IF (z:) e 13 + (F (e))3 _. e 3k -[- (1 X)(Sk ak > O,

which means that p(A, z) : 0 for 0 -< A < 1 and [[zll --> r. Hence 3" is contained in the box

[0, 11 x{z]z
and the theorem follows from Lemma 4. Q.E.D.

Note that Theorem 2 proves the existence of a solution to the complementarity
problem (1) under certain conditions on F, besides providing an algorithm for
computing the solution. Before applying Theorem 2 to the linear case F(z)= Mz + q,
some definitions will be needed. Let M be a real n x n matrix and q a real n-vector. M
is strictly row diagonally dominant if ]Mii[>ii [Miil for i= 1,..., n. M is positive
definite if xtMx > 0 for all x - 0. M is called nondegenerate if all its principal minors
are nonzero, and a P-matrix if all its principal minors are positive. M is nonnegative if
each element of M is nonnegative, and strictly copositive if xtMx >0 for all x->0,
x 0. q is nondegenerate with respect to M if q is not a linear combination of any
n 1 columns of (L -M). M is strictly semimonotone if for each nonzero x _-> 0, there
exists an index k such that Xk(MX)k > O.

COROLLARY 1. The conclusion of Theorem 2 holds for the linear case F(z)=
Mz + q, where M is strictly row diagonally dominant with positive diagonal elements,
and q is nondegenerate with respect to M.
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Proof. Assuming that q is nondegenerate means that any solution .; to the linear
complementarity problem

z>=0,

satisfies

Mz+q>=O, z(Mz+q)=O

.+F(.)> 0.

Furthermore DF()=M is a P-matrix [15], hence nondegenerate. Therefore by
Corollary 1 of Theorem 1 in Mangasarian [9], DH(z) is nonsingular at every zero of
H(z). (This can also be easily proved by explicitly writing out DH(z).)

Since M is strictly row diagonally dominant, it is possible to choose r > 0 such that

M,,- y IM,I + q> 0, 1,. , n.
ii r

Then for zk Ilzll r, Fk(z)=(Mz +q):zk(M, +2j,Mkizj/z +q/z,)>=
z(Mkk-Ei# IMl+qz/Z)>O. Q.E.D.

Corollary 2. The conclusion of Theorem 2 holds for the linear case F(z)=
Mz + q, where M is a nondegenerate nonnegative matrix with positive diagonal ele-
ments, and q is nondegenerate with respect to M.

Proof. The nonsingularity of DH(z) follows as in Corollary 1. Choose r such that
r>[q[/M, i=l,...,n. Then for z>0 and zg=llzllr, F(z)=(Mz+q)=
Mz + Mizi +q Mr+q > 0. Q.E.D.

For technical reasons, it was convenient earlier to define p on [0, 1)x E", leaving
out 1. For Lemmas 6, 7, 8 and Theorem 3, assume that p(h, z) given by (4) is
defined on [0, 1]x E.

LEMMA 6. For a 0, any zero of p(A, z) satisfies z 0.
Proof. Suppose z < 0. Then the kth component of O (A, z) satisfies A (-]F (z)-

z[3+(F(z))3+z)+(1-A)(z-a)<O, and p(A, z)0. Hence p(A, z)=0 implies
z0. Q.E.D.

LEMMA 7. Suppose there exists an r>O such that z 0 and Ilzl[r imply
zF(z)> 0 for some index k. Then the set of zeros of po(A, z) is contained in

[0, 11 {z{ z >= O, Ilz{} < r},

and hence is bounded.
Proof. Let po(, ) 0. By Lemma 6, z" >= 0. If I111o--> r, then zT > 0 and F(.)> 0

for some k. This implies that (po(, Z))k X(-IF()-1 + (Fk (zT))3 + ,)+ (1 --)-k >
0, a contradiction. Therefore IlzTl[ < r and the result follows. Q.E.D.

LEMMA 8. Under the hypothesis ofLemma 7, them exists > 0 such that a >- 0 and
Ila Iloo < 6 imply Pa (A, Z) 0 ]’or 0 <--_ A <-- 1, Z >-- O, ]IZ [1 r.

Proof. IIp0(A,z)ll is a continuous function on the compact set K=
[0, 1] {zlz ->_ 0, Ilz[[o= r}, and therefore has a minimum value on K. By Lemma 7,
mink IIp0(A, z)[I a >0. Now (a)= mink IlPa(A, z)[[ is a continuous function of a,
(0) 0, and therefore (a) 0 in some neighborhood of 0, say Ilal] < 3. The lemma

now follows since (a): 0 implies pa (A, z) 0 on K. Q.E.D.
THEOREM 3. Let the Jacobian matrix DH(z be nonsingular at every zero ofH(z ).

Suppose there exists an r>0 such that z >=0 and [Izll>=r imply ZkFk(Z)>O ]’or some
index k. Then them exists 6 > 0 such that for almost all a >-0 with Ilall < 6 there is a
zero curve 3’ of pa(A, Z), along which Dp,, (A, z) has full rank, having finite arc length
and connecting (0, a) to (1, 2), where is a zero o[H(z).
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Proof. The theorem will follow from Lemma 4 in the same fashion as Theorem 2,
if the zero curve 3’ remains bounded. Choose 6 >0 according to Lemma 8 (and
assume 6 < r). Then by Lemma 8, pa (h, z) # 0 on the surface of the cube

O=[0, 1] x{zlz

corresponding to I[zll; r, and therefore by Lemma 6, 3" is contained in O. Since 3" is
bounded, the result follows. Q.E.D.

Remark 1. Note that Theorem 3 considerably generalizes Theorem 2, but a price
is paid, namely the permissible starting points are restricted. As explained later, the
restriction of a in Theorem 3 has little, if any, significance for practical numerical
computations.

Remark 2. Theorems 2 and 3 could be generalized by removing the assumption
on the Jacobian matrix DH(z). Without this assumption, Theorems 2 and 3 have
exactly the same conclusions as before, except that the arc length of 3" may not be
finite. Thus if one is only interested in the existence of a zero, the Jacobian assumption
is superfluous. However, for practical numerical computations, it is desirable for
DH(z), or more generally Dpa(A, z), to have full rank at the zeros of H(z).

Remark 3. Theorem 3 could be further generalized by replacing the condition

zkFk (z) > 0 by zk > 0 and F (z) >- 0, and assuming the solution set of (1) is discrete.
However, the intent here is not to present the most general homotopy theorem
possible, but rather to merely justify the application of homotopy methods to the
complementarity problem (1).

COROLLARY 1. The conclusion of Theorem 3 holds ]:or the linear case F(z)=
Mz + q, where q is nondegenerate with respect to M, and M is any one of the following"

(A) positive definite,
(B) a P-matrix,
(C) nondegenerate strictly copositive,
(D) nondegenerate strictly semimonotone.
Proof. The nonsingularity of the Jacobian matrix DH(z) at zeros of H(z) follows

from the nondegeneracy of M and q exactly as in the proof of Corollary 1 to Theorem
2. A positive definite matrix is a P-matrix, and a P-matrix is strictly semimonotone by
the sign-reversal property of P-matrices [4]. Also a strictly copositive matrix is clearly
strictly semimonotone. Therefore it is sufficient to prove just case (D).

For nonzero x >_-0 define

(x) max (Mx)i.
xi>0

qt(x) is continuous and satifies (ax) ce qr(x) for real a > 0. Let Ix (r) min (x) over
the compact set {x[x >-0, r>0, Since M is strictly semimonotone, (x)>0
and Ix(r)> 0. Ix(r) also has the property that Ix(at)= sIx(r) for real c > 0. Therefore
.(r)> Ilql[ for r->- [Iqlloo/.(1)+ 1 Y. It now follows that for z =>0, Ilzl] _>- there is an
index k such that Zk(MZ + q) >0 since (Mz)-q(z)>-(llzll)>=(F)>llqll >-

Iq[. Q.E.D.
Remark 4. If Theorem 3 were generalized as indicated in Remarks 2 and 3,

Corollary 1 would generalize to include semimonotone matrices M.
Remark 5. The question of the arc length of 3" will be considered in a future

paper.
The previous theorems seem to flow so easily that one might think almost any

homotopy method would work. Actually it is quite tricky to get a homotopy method to
work. It is easy to get a zero curve leading to the solution, but not so easy to get a zero
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curve which can be tracked. Some examples for the linear case F(z)= Mz + q, M a
P-matrix, will be given. Let

3 3 3
IWx-Zxl -wx -zl

G(,, w, z)=
.3 3 3

]Wn--Znl Wn--Zn
w [(1 A )I + AM]z

Since M is a P-matrix, (1-A)I + AM is also a P-matrix for 0-<A _-< 1. The linear
complementarity problem has a unique solution for a P-matrix, and thus G(A, w, z)
has a unique zero for each A, 0 <-A =< 1. Hence there is a zero curve 3’ of G(A, w, z)
leading from (0, q/, q-) to the desired solution. Unfortunately DG will have less than
full rank at many points along 3’, and thus 3’ cannot be easily tracked. The homotopy
defined by

(h, z I[(1 h )I + AM]i.z + qi Zi 13 ([(1 h )I + AMli.z + qi )3 Z/3

has essentially the same characteristics as the G(A, w, z) above.

Computational results. The power of Theorems 2 and 3 is that they simul-
taneously prove the existence of a solution to the complementarity problem (1) and
provide an algorithm for computing a solution to (1). The algorithm is beautifully
simple: just follow the zero curve of pa(A, z) emanating from (0, a) until a zero of
H(z) is reached at A 1. This algorithm is guaranteed globally convergent with
probability one, in the sense that it works for almost every starting point a. In practice
one chooses a 0 and starts computing. Due to roundoff error, what is actually
computed are points on zero curves of nearby homotopy maps pc(A, z), c 0. Now
every such computed point could correspond to an inadmissable starting point c (a
mathematical possibility, since the floating point numbers have measure zero), but this

TABLE

Number of Jacobian Execution
Arc length evaluations time

4.35 231 10.6

q(2) 9.21 224 10.3

q(3) 14.02 218 9.8

q(4) 17.62 349 15.9

qt5 19.43 234 10.8

q(6) 19.43 234 10.9

q(7) 17.62 349 16.1

q8) 14.02 218 9.9

q(9) 9.21 224 10.2

q(lO) 4.35 231 10.4
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is hardly likely. The point is that floating point arithmetic blurs the mathematical
distinction between admissable and inadmissable starting points, and in practice the
phrase "almost all a" has no significance. Similarly the requirement that Ilall < is not
a serious restriction, since a computer program would start with a 0 anyway.

The numerical algorithm for following the zero curve of pa (h, z) emanating from
(0, a) will be sketched only briefly here, since it is presented in detail in [17]. The zero
curve is parameterized by arc length, and coincides with the trajectory of the initial
value problem

d
-;-pa(h (S), Z(S))= 0, h (0)= 0, Z(0)= a,
as

The crucial property of the zero curve is that rank Dpa(A, z)= n along it, which
implies that (5) has a unique solution. Thus the zero curve is tracked by solving (5),
which can be done accurately and efficiently [14]. Note that A is not a parameter, and
hence the zero curve may "turn back" with no adverse effect.

The numerical results given here were obtained using a version of the algorithm
in [17], modified to compute zeros of (3) via the homotopy (4). Execution times are in
seconds on a CDC 6500, and all answers were obtained accurate to 8 decimal places.

Example 1. F(z)=Az+q, where A is a 10xl0 symmetric, positive definite
matrix given by A,=6, A0.=-4 for Ii-jl-1, Aj= 1 for Ii-jl--2, and Aj=0
otherwise. Let q() be the vector with -1 in the ith coordinate and zeros elsewhere.
The rather long arc lengths in Table 1 are because the solution vectors z have large
components (---10). By scaling the q vectors, the arc length and execution time can be
cut by a factor of 4.

Example 2. F(z)= Az + q, where

1 -5 0 0 0
o1 0 0

-3 1 2 -1- -4 2 1 23-5 -1 4

A is neither a P-matrix nor strictly copositive, but is strictly semimonotone. With q
the same as in Example 1, the results are given in Table 2. Of course this problem

(i)

TABLE 2

Number of Jacobian Execution
q Arc length evaluations time

8.36 132 1.94

q(2) 8.33 193 2.88

q(3) 1.91 76 1.14

1.45 58 .84

1.35 80 1.18
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could be solved much more efficiently by simply checking all 25 32 possibilities. The
point is that the computational effort for the homotopy method varies as (number of
Jacobian evaluations)x n 3, and this is better than 2 for n large.

Example 3. F(z)= Mz + q, where

-2-1011220-1
101-2-1-10200
21-1010-1-1-11

-2 0 1 1 0 2 2 -1 1 0
-1 0 1 1 1 0 -1 2 0 1
0 -1 1 0 2 -1 0 0 0 -1
0-220012 2-10

0-1 022111 1 O/2 -1 -1 0 1 0 0 -1 2 2/

M is not strictly semimonotone, and none of the standard algebraic techniques will
solve this problem (although it has been solved by the heuristic hybird n-cycle
algorithm [15]). Table 3 shows the results for

TABLE 3

Number of Jacobian Execution
q Arc length evaluations time

q(1) did not converge

q(2) 4.90 402 18.38

q(3) 6.64 620 28.65

q(4) 5.49 264 1.1.96

did not converge

q(6) 6.50 241 11.17

q(7) 11.95 303 14.04

q(8) did not converge

q(9) 9.34 628 29.86

q(lO) 2.72 181 8.56

Example 4 (nonlinear programming problem). Consider the convex pro-
gramming problem

min0(x)=exp( (xi-i+2)2) subjectto x_->0.
i=1
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The Kuhn-Tucker optimality conditions applied to this problem result in a comple-
mentarity problem with

Xl+l

5 x2

F(x) V0(x)2exp( (xi /+2)2) X3--

X4

X5

To obtain the solution (0, 0, 1, 2, 3) the homotopy method required 377 Jacobian
evaluations and 5.62 seconds of CPU time, with an arc length of 4.537.

Acknowledgment. The proof of Theorem 3 was the result of collaboration with
Lee Sonneborn. The author is also indebted to S. N. Chow and K. G. Murty for
encouragement and many helpful discussions.
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FINITE PRIMAL CUTTING PLANE ALGORITHMS
FOR INTEGER PROGRAMS*

GRAHAM LINKS’ AND DAVID S. RUBIN:

Abstract. Several primal cutting plane algorithms have been proposed for the pure integer program.
They all require that the entire tableau remain integral at every iteration. We show how to relax this
condition and require integrality of only the right hand side. Several cuts are discussed, and sufficient
conditions to guarantee finiteness are developed.

1. Introduction. We are interested in the pure integer program

max c-rx z

IP subject to Ax b

x _-> 0 and integer

where A is m x (rn + n) and has rank m, and b, c, and x are appropriately dimen-
sioned. We assume that the elements of A, b, and c are integers. This assumption
entails no loss of generality if A, b, and c are rational or if L {x lAx b, x >= 0} is
bounded; see references [12] and [14]. If the objective value of IP is bounded, there is
no loss of generality in assuming that L is bounded, so we will make that assumption
henceforth. Relaxing the integrality requirement on x gives us the associated linear
program LP. We will add cuts to the constraints of IP, but we shall continue to refer to
the resulting problem as IP, and to its linear relaxation as LP.

Primal cutting plane algorithms successively find basic feasible solutions to LP
which are all-integer and hence feasible in IP. These successive solutions yield
nondecreasing objective values, and optimality is reached when the current solution is
optimal in LP. Earlier work on primal algorithms has been done by Ben-Israel and
Charnes [4], Young [15], [16], [17], Glover [7], and Arnold and Bellmore [1], [2], [3].

If we partition A as (B, N) (rearranging columns if necessary), where B is rn x m

and nonsingular, and similarly partition x as and c as then we may
XN CN

represent LP in the usual tableau form:

z=cB-lb
xB=B-lb
xN=O

--XN --XN1 --XNn

cB-1N-c z Yo0

B-1N or x1 yl0

-I

Xm+n Ym+n,O

YOl YOn

Yll Yln

Ym+n,1 Ym+n,n

In the latter representation of the tableau, we keep the variables in their natural order,

so the rows corresponding to basic and nonbasic variables are intermixed. We let yi

denote the vector (yl,, y2,,"’, y,,, +,,,, )v and 37i denote the vector (y0i), for /’=
Yi

0,1,...,n.

* Received by the editors October 18, 1977.
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t School of Business Administration and Curriculum in Operations Research and Systems Analysis,

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514.
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If B-lb >= 0 and integer, then the current basic feasible solution for LP is feasible
for IP. In all of the earlier work cited above, it is also required that/3 be unimodular,
so the entire tableau is all-integer at each iteration. We will relax this requirement,
and require only that B-lb >-0 and integer; the other elements in the tableau may be
noninteger. We will show that finite algorithms can be obtained for large classes of
cuts if we impose a certain weak restriction on the absolute value of the determinant
of B.

In 2 we give some preliminary results. Section 3 states a general primal cutting
plane algorithm, and proves that it is finite. Section 4 briefly discusses some of the cuts
which can be used in the context of this general algorithm. Section 5 gives some
concluding remarks.

2. Preliminary results. Our development will closely parallel that given by
Garfinkel and Nemhauser [6] in their proof of the finiteness of the SPA ("simplified
Primal Algorithm") of Glover [7] and Young [16]. Our results are generalizations of
these earlier results, and the SPA is a special case of the algorithm we present in the
next section.

Given two vectors a and/3 with the same number of components, let a </3 mean
that a is lexicographically smaller than/3, i.e., a /3 and for the first such that at #/3,
we have ai </3i. We assume that the initial tableau has a special row (or "reference
row") with the following two properties:

(Pl) If )/< 0, then ys > 0.

(p2) For / 1,. , n with Ysi 0, let R/= 37i/yi, and let

Rk lex min {R/lyi > 0}

If ysi < 0, then R/< Rk.

Given the assumption that {x [Ax= b, x >= 0} is bounded, we can initially choose y. 1
for ] 1,..., n, and let yo be a suitably large integer. We note that the columns
)71,..., )7, are linearly independent (since they contain a negative identity matrix),
and hence the index k in (P2) is unambiguously defined. Notice also that )Tk < 0 in all
tableaux prior to the optimal tableau.

We move from one tableau to the next by the usual simplex step; however, we
will only allow pivots to be done in column k defined in (P2). if the pivot element is
yrk # 0, then the new tableau is given by

Yr/
yi=yi-k, j=0,1,...,n; jk,

Yrk

1

Yrk

LZMMA 1.1. If (Pl) and (P2) hold in the current tableau, then

y-.> Ys____L for allj= l, n; j # k.
Ysk

Proof. if yi=0, then i >0 by (Pl). If yi>0 (<0), then Ri>.Rk (<R), and
multiplying through by y/yields the result. Q.E.D.

LEMMA 1.2. If (Pl) and (p2) hold in the current nonoptimal tableau, and we pivot
on any y, O, then (Pl) holds in the next tableau.
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Proof. For column k, 37k < 0 and hence Ysk > 0 by (Pl). Thus

sk Ysk \ Ysk

by (Pl). Hence Y’sk >0 if )7 < 0.
For column j k, suppose

Then

and so

Y sj Ysi Ysk O.
Yrk

Ys___Li <
Ysk Yrk

Y,’i Ysi
Y,k

by Lemma 1.1. The result now follows by contraposition. Q.E.D.
The next two results are based on the following observation. If we pivot on any

yk : O, then for any/" k we have:

R-Rk=-I;-(-y 37k) ----1k
Y si Yrk Ysk

1 ( yskYrJk_(Ysj k)YrjYsk(1)
Y ’iYk Yki

Yk Yk /

1(
Also, the proof of Lemma 1.2 shows that R R, so equation (1) holds for ] k

as well.
LEMMA 1.3. I (p) and (p) hold in the current nonoptimal tableau, i we pivot on

any y 0, and i y’ < O, then R R , and the inequality is strict i[ ] k.
Pro@ The result is immediate from Lemma 1.1 and equation (1). Q.E.D.
LMMA 1.4. I[) and (pa) hold in the current tableau, i we pivot on y O, and

i the next tableau is not optimal, then R , R (with the inequality strict i y > 0),
where

R , lex min {Ry, > 0}.

Pro@ From Lemma 1.1 and equation (1), if y’ > 0, then R > R. Now if
then y’ =-y/y <0 by ). Thus k’ k, so R, > R. However, if y <0, then
y; > 0, and so R , R R by equation (1). The result is now immediate. Q.E.D.

We may put all these results together to get
TOaM 1. I (p) and (p) hold in the initial nonoptimal tableau and we always

pivot in column k, then ) and (p) hold in all subsequent nonoptimal tableaux, and
urthermore, the sequence {R} is lexicographically nondecreasing.

Pro@ All we need show is that (p) holds in the second tableau if it is nonop-
timal, and then the result follows from Lemmas 1.2 and 1.4 by induction. Now
R-R R-R by Lemma 1.4. Thus if y<0, it follows from Lemma 1.1 and
equation (1) that R} < R ,. Q.E.D.
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The Glover-Young SPA always chooses a pivot element Yrk 1, and for it we can
strengthen Theorem 1 to say that the sequence {Rk} is lexicographically increasing.
Thus allowing pivots on arbitrary nonzero elements in column k weakens the result
only slightly, and it turns out that the weakened version will still support a finiteness
proof. It is somewhat remarkable that this crucial result depends only on the choice of
the pivot column, and has nothing whatsoever to do with the source row for the cut or
type of cut which is added.

3. A general finite primal cutting plane algorithm. If the vector R ever satisfies
Y0k = 0, then optimality has been reached. In order to satisfy this condition, attention
must be directed to the nature of the cut. Consider the condition

C (q): Yk <---- Yqo.
The SPA uses Gomory all-integer cuts [9], and can be shown finite provided that the
source row of the cut is chosen in such a way as to guarantee that C(q) holds for each
row q at finite intervals. There are several source row choice rules which guarantee
that this condition will be met; see references [7] and [16]. The proof of finiteness of
the SPA depends on the integrality of the tableau. When this integrality is relaxed,
finite reoccurence of Cl(q) no longer suffices to guarantee finiteness.

Let 6 be the absolute value of the determinant of B, and let A be an arbitrary
positive integer. Consider the conditions:

C3: ;k is all-integer.

THEOREM 2. Suppose IP has a bounded feasible region. Consider any primal
cutting plane algorithm which

a) always pivots in column k,
b) pivots on positive yrg at finite intervals, and
c) guarantees for each row q that at finite intervals Cx(q) will hold in con]unction

with either C2 or Ca.
That algorithm is finite.

Before proving the theorem, we note that in the SPA, Yrk 1 at all iterations, so
8- 1 throughout the algorithm, and C2 and Ca are always satisfied. Thus we see that
the SPA is just one member of a large class of finite primal algorithms.

Proof. We know that
i) {Rk} is lexicographically nondecreasing (by Theorem 1), and
ii) at finite intervals Cl(S) holds in conjunction with either C2 or Ca.
Since {yo} is bounded, {Y2o} is also bounded, say by M. At those tableaux where

ii) holds, Yk is a nonnegative rational number, bounded above by M and having
denominator no larger than A. Thus at those tableaux Yk can assume only a finite set
of values. From condition i), the sequence {Yok/Yk} {Rok} is nondecreasing, and this
same sequence is bounded above by 0 prior to optimality. Thus at tableaux where ii)
holds, Rok can only assume a finite number of values. Hence after a finite number of
iterations the sequence {Rok} must be constant.

Suppose {Rog} has reached its limit at iteration to. Let M be an upper bound for
{ylo}. Consider the next nonoptimal tableau at which C1(1) holds in conjunction with
either C2 or C3; denote its elements by )i. Then )lk =< 310 and 33k > 0, SO

lk )10
M1A.
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Now the sequence {Ylk/Ysk} {Rlk} is nondecreasing for all iterations from to on, and
is bounded above by M1A. Consider all subsequent tableaux satisfying ii). Repeating
the earlier argument, we see that Rlk can only assume a finite number of values, and
hence there is an iteration tl after which {R lk} is constant.

Repeating this argument for each row in turn, we see that after a finite number of
nonoptimal tableaux {Rk} becomes constant. But at this point, the tableau must be
optimal, for if not, then Yok < 0 and we would continue. However after a finite number
of additional iterations, condition b) guarantees that we would pivot on a positive
element. This (by Lemma 1.4)would cause Rk to increase which is impossible. Thus
the algorithm is finite. O.E.D.

We must now consider how to get condition c) of the theorem to hold. It turns out
that C2 and C3 are relatively easy to establish, so we shall discuss them first. In the next
section we discuss cuts which enable us to establish the conditions Cl(q).

LEMMA 3.1. In the current nonoptimal tableau, suppose that fk is not all-integer.
Then we may add a Gomory fractional cut [8] and pivot on it in column k to

a) reduce the determinant, and
b) retain the same pivot column at the next iteration.

Proof. If 17k is not all-integer, there exists a row r

nro nrj
Xr Yr0-- YrjXNj -XNj

j=l 8 /’=1

such that yrk is not an integer. Here we have expressed yi as a ratio of integers
where 8 is the absolute value of the current basis determinant. Let n;i ni (mod
and add the cut

xt
nt,o (_nti’x2vi=Yt.o_ yt,.xri >_ 0.
8 j=a 8,] j=l

Notice that -1 < yrk < 0. Hence if we pivot on yt, part a) follows because 8’=
and b) follows from Lemma 1.4. O.E.D.

Thus if Cx(q) holds, but neither C2 nor C3 holds, we can use fractional cuts to try
to satisfy C2 and/or C3. Of course in the process yq will increase (since y
-yq,/y,,), yo will be unchanged (since Yt’o 0), and thus C(q)may cease to hold. The
following result shows that this difficulty can be overcome.

LEMMA 3.2. In the current nonoptimal tableau, suppose that Cl(q) does not hold.
Then we may derive a Gomory all-integer cut and pivot on it in column k to

a) retain the current determinant,
b) change the pivot column at the next iteration, and

< -1/6and’c) make yq, y yo yqo.
Proof. Let [A denote the greatest integer not exceeding A. Since C(q) does not

hold, 0 -<_ yo < yq and so [yo/yk] 0. Suppose we add the all-integer cut

Xc 0- [y./y]x/>- 0
i=1

and pivot in the cut row and column k. The pivot element is + 1. Then a) follows since
8’ 8 1, and b) follows from Lemma 1.4. For c) we note that

for all ] : k.
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In particular Y qo yqo. Also, since 0_--<h-[h]< 1 for all real numbers A, and since

Yok ----> 0, it follows that Yu < yk for all f # k, and c) now follows from b). Q.E.D.
It follows immediately that if 0 <= yqo < yqk at any iteration, we can force Cl(q) to

hold after the addition of no more than 6(yk- yoo) all-integer cuts. Thus the last two
lemmas tell us that we can always get condition c) of Theorem 2 to hold by the
application of a finite number of fractional and/or all-integer cuts at appropriate
intervals. In the meantime, we are free to use any valid cuts whatsoever which will
retain the primal feasibility of the tableau. Of course it is desirable to use cuts which
help achieve the conditions Cl(q).

4. Cuts for the general algorithm. The current extreme point is x yo, and the
line {x yo-AYIA => 0} contains an edge of L, the LP feasible region. The last lattice
point along that edge can be found by solving the "edge congruency problem"

Ak max A

subject to x yo-Ayk--0 (mod 1)

O <-- A <-- Ok min Yi---O
Yik > O }.

Yik

Since the primal simplex algorithm moves from one vertex to an adjacent vertex, it is
desirable to add cuts that go through the point yo-Akyk. The edge congruency problem
is simple to solve, and the interested reader can find the details in reference [13].

In his dissertation 13], Links discusses a class of cuts that he calls "facial". These
are determined by pivoting on some Yrk tO an IP infeasible point, looking at the corner
polyhedron [10] at that point, and determining a facet of that polyhedron which goes
through the point y0--AkYk. He proves the following result:

THEOREM 3. Determine the value
/.Lk min A

subject to x yo- Ayk 0 (mod 1)

A>=I.
Consider any row with Yqk >0 and Y,0/Yk < [d,k. If we add the facial cut through
y0--AkYk obtained from the corner polyhedron where XNk replaces xq in the basis, and
pivot on that cut in column k, then y,o --> Yqk’. That is to say, if Cl(q) does not hold in the
current tableau, it is possible to add a single facial cut and have C (q) hold in the next

tableau.
The proof of this result is quite lengthy and involves a careful examination of

facial cuts. We refer the interested reader to reference [13]. A great deal of work is
involved in determining facial cuts, so we would now like to look at other cuts through
the point y0--AkYk. These other cuts are related to Dantzig cuts [5].

Again consider any row with Yqk > 0. If Y,0/Yk Ak, then a pivot on Yk leads to a
lattice point. If Y0/Yqk > Ak then pivoting on Yqk leads to a nonlattice point; in this
case the Dantzig cut

Y xui+x>=l
/=1

is a valid cut. Consider the strengthened Dantzig cut

xN+ x=>l.
j= Yq0 AkYqk
j#k
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The only lattice points it excludes besides those excluded by the Dantzig cut are
elements of {x>=Oll<xq<YqO--AkYqk, XNj=0 for jk}, but this set contains no
feasible lattice points by virtue of the definition of hk. Hence the strengthened cut is
valid. If we clear fractions, we may write it as

(Yqo- AkYqk )XNi d- Xq Yqo- AkYqk.
j=l
jk

Recalling that x Y0-"q=l yqjXNj, we may express the strengthened cut in terms of
the current nonbasic variables as

Xc AkYqk (Yqi Yq0 + AkYqk )XNi yqkXNk O,
j=l

and clearly this cut goes through the point yo-AkYk.
Now we may distinguish between transition cycles, in which the objective value

increases, and stationary cycles, in which the objective value is unchanged. In a
stationary cycle, there is at least one row q with yo < Yqk, i.e., for which Cl(q) does not
hold. For this row Ak 0, and it yields the strengthened Dantzig cut

Xc 0- (yqj yqO)XNj YcIkXNk O.
/=1
jk

If we add this cut and pivot in the cut row on column k, then the pivot element is
Yqk > 0, SQ k : k by Lemma 1.4. Furthermore, y q0 yqo and Yi yqo for all j : k.
Thus C(q) holds in the next tableau.

It is well-known that ordinary Dantzig cuts do not lead to a finite dual cutting
plane algorithm [11], but the above result suggests that these strengthened Dantzig
cuts might yield a finite primal algorithm. Unfortunately, note that the pivot element
Yqk can be large and so these cuts can cause the determinant to grow. In fact, Links has
shown [13] that these cuts do not yield a finite algorithm when they are the only cuts
which are used. However, the above result does show that they have the desirable
property of forcing the condition C(q) to hold after a single iteration.

Let us again consider a row with Yok > 0 and tk Yqo/Yqk < [-k. Note that if we
pivot on Y,k,

YqO
Yo =Yo--Yk

Yqk

is not a lattice point, and so the vector y =--Yk/Yk is not all integer. Charnes and
Ben-Israel [4] have shown how to strengthen the ordinary Dantzig cut to

yxN+x>=l where={/{1,...,n}\{k}ly0(modl)}.

Analogous to our strengthening of the ordinary Dantzig cut, we may strengthen this
cut to . (Yqo- AkYqk )XlV] .3_ Xq YqO-- AkYqk

which may be expressed in terms of the current nonbasic variables as

Xc AkYqk . (Yqi yqo + AkYqk )XNi .. YqiXNi YqkXNk O.
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If we choose a row for which Cl(q) does not hold, and generate this strengthened cut
and pivot on it, then k’C:k, y q0 =yq0, yqj=y0 for all /’J, and yoj=0 for all
j I1 {k}. Thus Cl(q) holds in the next tableau.

5. Conclusions. We have shown how to relax the integrality requirement on the
entire tableau and still get a finite primal cutting plane algorithm. The finiteness proof
essentially permits the use of any cuts whatsoever that guarantee that a certain set of
conditions will hold at finite intervals. Subsequent results showed how to use
Gomory’s fractional and all integer cuts to establish these conditions, and we also
discussed several new classes of cuts which forced a subset of these sufficient condi-
tions to hold.

We have done no computational testing of algorithms based on these results.
There are several interesting questions which should be investigated, such as"

1. What effect does the arbitrary parameter A have on computation times?
2. Does it make sense to bring the determinant back below A whenever it gets

higher, or would it be better to restore the condition at fixed intervals?
3. Are the relatively weak Dantzig-like cuts superior to the stronger facial cuts

because of their relative ease of computation?
We hope to address these questions in future work.

6. Other related work. In [14a], Salkin et al. also discuss relaxing the condition
that the entire tableau be all-integer. They show that the Glover and Young algorithms
are also finite even if the data are rational and not necessarily integral. However, their
discussion applies only to a problem of the form

max cTx z

IP’ subject to Ax <=b

x >_-0 and integer,

where the slack variables which constitute the initial basis need not be integer valued. It
is not valid for the general equality constrained problem which we have discussed.
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D-STABILITY AND MULTI-PARAMETER SINGULAR PERTURBATION

HASSAN K. KHALIL? AND PETAR V. KOKOTOVIC"

Abstract. A new multi-parameter singular perturbation problem is formulated. Sufficient conditions
for uniform asymptotic stability are derived, and asymptotic behavior of solution is investigated.

1. Introduction. Single parameter singular perturbations have been extensively
used in analysis and control of dynamic systems [1]. Even if they possess several small
parameters, electrical networks with parasitics and control systems with small time
constants, masses, etc., are modeled as single parameter problems. This is done by
expressing small parameters as known multiples of a particular parameter/z, such as
m =Clt, T=c2tz, where m is a small mass and T is a small time constant. A
characteristic of this approach is that its results depend on the scaling coefficients ci
which are assumed to be known. In many cases of practical interest such an assump-
tion cannot be justified. In multi-controller problems and differential game problems
small parameters may represent different independent ways in which individual
control agents simplify the model of the overall system, and therefore the relation
between the small parameters must remain arbitrary [2]. It may be argued that a more
realistic study of parasitics should also allow for the ignorance of the ratios of small
parameters.

The purpose of this paper is to examine the vector singular perturbation problem
when all the small parameters are of the same order of magnitude, but can have
arbitrary bounded ratios. This problem is different from the multiple time scale
problem [3], [4] when the parameters are of different orders of magnitude. We treat
the uniform asymptotic stability and initial value problems for multi-parameter
singular perturbations. In contrast to the boundary layer system stability requirement
of the single parameter case [1], we employ a generalization of D-stability. Several
tests are given delineating important classes of systems satisfying this condition.

2. Multiparameter perturbations. Linear systems with N singular perturbation
parameters el,- , eN have the general form

N

(la) 2 Ao(t)x + E Aoj(t)zj, x(t0) Xo,
/’=1

N(lb)
eii Aio(t)x + Aij(t)zi, zi(to) Z,o,

i=1

where x R %, z R n’, that is the system dimension is n F/o+iN=I g/i. The small
positive scalars el,’’’, eN represent time constants, inertias, masses and similar
physical parameters [1]. They are ordered as components of a vector e R N. System
(1) satisfies

Assumption I. For all t-> to, all the matrices on the right hand side of (1) are
continuous, bounded and have bounded first derivatives.

A characteristic of singularly perturbed systems is that the variables z; are fast
since their derivatives are 1/si large. Under the additional assumption that ei+l/F, -0

* Received by the editors November 10, 1977. This work was supported in part by the Department of
Energy, Electric Energy Systems Division, under Contract U.S. ERDA EX-76-C-01-2088, and in part by
the National Science Foundation under Grant NSF ENG-74-20091.

? Decision and Control Laboratory, Coordinated Science Laboratory and Department of Electrical
Engineering, University of Illinois, Urbana, IL 61801.
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as e-> 0, the system (1) exhibits N time scales, that is Zi+l is fast relative to Zi. In [3],
[4] such multi-time scale systems are treated by nested single parameter pertur-
bations. However, in many real systems the parameters are of the same order and do
not allow the multi-time scale assumption. We therefore assume that the ratios of
el,. , er are bounded by some positive constants rfi and M

(2) rfi e/<_- Air, i,/’= 1,’’’, N,
e.

that is the possible values of e are restricted to a cone H c R v. In contrast to the
multi-time scale systems, in our case all zi’s are in the same time scale. We call this
case the multi-parameter problem. A fundamental requirement for every multi-
parameter perturbation result is to hold for all sufficiently small e H, that is as e -+ 0
along any arbitrary path in H.

System (1) is rewritten in a form resembling a single parameter perturbation
problem

(3a) Ao(t)x + Aot(t)z, X(to) Xo,

(3b) 2 DAro(t)x + DAr(t)z, Z(to) Zo.

However, it is not a single parameter problem because both

(4)

and

)1IN--(E1E2 EN

depend on all ei’s. The above form is convenient since, in view of (2), the matrix D is
bounded for all e e H,

(6) m<=<=M
where m, M depend on rh, M. The matrices Aot, Aro and A are formed of the
submatrices Aoi, Aio and Aij, i, ] 1 N, respectively, and z’= [z’l, , z]. A
reduced system is now formally obtained by setting e 0 in (3),

(7a) ao(t) + ao(t)Y, >- (to)= Xo,

(7b) 0 ato(t) + at(t)3.

Assuming that det A(t) k > 0 for all to, (7) can be rewritten as

(8) =[ao(t)-ao(t)aX(t)ato(t)] a(t), (to) Xo.

We also define a boundary layer system

(9)
d
d DAt(to)(r), (0)= Zo-e(to),

where r (t-to)/t is the "stretched" time scale.
We are concerned with two problems. First, we seek conditions for the uniform

asymptotic stability of (1) for all sufficiently small e s H. Second, we want to approx-
imate the solution of the initial value problem (1) in terms of the solution of the
reduced problem (8) and the boundary layer problem (9).
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For the first problem we make the following
Assumption II. The reduced system (8) is uniformly asymptotically stable.

3. Main results. Our crucial assumption is a generalization of the so called
D-stability property of the boundary layer system.

Assumption III. For all -> to, the matrix Ar(t has the property that

(10) Re A {DAr(t)} <= -2r < 0

where o" is a fixed scalar independent of e, possibly depending on the bounds m and
M.

The main results of this paper are summarized in the following
THEOREM 1. Under Assumptions I, II and III there exists a positive scalar u such

that for all e H, 0 < lie <- u, system (1) is uniformly asymptotically stable.
THEOREM 2. IfAssumptions I and III are satisfied then for every finite T > to them

exists a positive scalar u such that for all [to, T] and all e H, 0 < lie <- u, the solution

of the initial value problem (1) is approximated by the solution of the reduced problem
(8) and the boundary layer problem (9), that is,

(1 la) x(t) 2(t)+

(1 lb) z(t)= -a- (t)afo(t)g(t)+ z’0")+

Moreover, for all [tx, T], to < tl < T

(12a)

(12b)

x(t)= g(t)+ o(11 II)

z(t)= -A-/1 (t)Ao(t)g(t)+
If in addition Assumption II is satisfied then (11) and (12) hoM for all T (to, ).

Our Assumption III has a general form, but it is not verifiable by an algorithm
with a finite number of steps. It is satisfied in special cases such as when A(t) is block
diagonal or block triangular with the on-diagonal matrices satisfying the condition

(13) ReA{Aii(t)}<=-ci, for allt->_t0, i=l,...,N.

Another special case is when A is constant and the zi’s are scalars. Then Assumption
III means that Af is D-stable, that is DAr is a stable matrix -for all diagonal matrices D
with positive elements. Several D-stability conditions have been investigated in the
economic literature [5]. Recently this concept has been used in large scale system
analysis [6], [7].

Our Assumption III can be considered as an extension of the notion of D-
stability to matrices depending on and to vector rather than scalar subsystems, that is

when n > 1. In this more general framework we now examine several conditions
allowing us to test Assumption III. The first condition is the following"

(i) There exists a block diagonal positive definite matrix P(t),

(14) P(t)= Block diag [Pl(t),’’’, PN (t)l

satisfying

(15) c211xll2-< x’P(t)x <- cllxll2 for all x R ’n’, _>- to,

such that Q(t)given by

(16) P(t)Ar(t)+ A’r(t)P(t)= -Q(t)

In this section c x, 2," are used to denote various fixed positive constant scalars.
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is bounded from below by

(17) x’O(t)x _->cllxll2, for all x R ’’’, -> to.

This condition implies (10)since the Lyapunov function v(x)= x’P(t)D-lx for the
system dx/ds=DAt(t)x has the negative definite derivative dv/ds=-x’O(t)x.
Although this condition does not require the knowledge of D, it is still not finitely
verifiable. However, it can be used to generate classes of matrices satisfying (10). An
example is the case when At(t) is symmetric with A{At(t)} <=-c5 for all >= to. Then
condition (i) is satisfied by P L while c2 c3 1, c4 2c5 satisfy (15), (17).

The next condition involves two different conditions introduced in [8], [9] as
sufficient conditions for stability of matrices with dominating diagonal blocks.

(ii) The matrices Aii(t) are symmetric with

(18) A{Aii(t)}<=-c6 for all t_>- to, i=l,...,N,

and either

(19) IlAik(t)ll<c6 forallt=>to, i=l,...,N.
ki

or

(20)2 , [[Al(t)A,k(t)ll<l forallt>-to, i=l,...,N.
ki

If At(t satisfies (18) with (19) or (20) then DAt(t) satisfies the same condition with c6
replaced by mc6 where m is the lower bound in (6).

The last two conditions are due to Siljak [6] and Michel [7] who derived them
using the decomposition aggregation method to test the stability of interconnected
systems when the isolated subsystems are stable. In these conditions the matrices
A.(t) satisfy (13) and symmetric positive definite Pi(t), Q(t) are such that

(21) P(t)A.(t)/Ai(t)Pi(t)=-Q(t), i= 1,... ,N.

Then there exist positive constants :i, 7r, 7r2, 71"i3 and 7r satisfying

(22) IlA(t)ll----< i, for all _-> to,

(23)  , llxl[2 <=x’Pi(t)x <=  ,=llxll2, for all x R"’, -> to,

(24) r,3llx[Iz <- x’ Q(t)x <- rnllxil2, for all x e R n,, -> to.

In both Siljak’s and Michel’s condition an N xN aggregation is formed and tested for
the stability of At(t). The elements of Siljak’s aggregation matrix S are

--’F/i3,1 j,
(25) Sij

ijTQ]-I T/i4, #/"

where

7"/’i 3 71"i 2, T/i4T/il 4"/1, ’0i3 2 7"/’i2 4"/1
and those of Michel’s matrix T are

(26)
-diTri3,

tii diTr’i2ii + diTri2ii,
i=j,

ij,

The matrix norm in (20) is defined as IIAII-- [Amax(Am’)] 1/2.
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for some positive numbers d1,’" ", dN.
The Siljak condition is the following:
(iii) The matrices Aii(t) satisfy (13) and the principal minors Mk of S have

alternating signs, that is

(27) Mt‘ (- 1)t‘ det > 0, k 1, , N.

t,1 st,t,_[

To show that his condition implies Assumption III we consider the Lyapunov
function

N Eii(28) v(x):

with

(29) vi(xi)= (xlPi(t)xi)!/2,
where 6i > 0, 1,. , N, are yet unspecified numbers. By derivation similar to that
in [6] it can be shown that the derivative of v with respect to the system

(30) d-- DAf(t)x

satisfies the inequality

(31)
ds -i=

It is shown in [6] that when inequalities (27) are satisfied there exist numbers 6i > 0
(i 1,..., N)and r >0 such that

dv N

----7"r il)i.(32)
ds i=1

Hence

dv
(33) <--Trmv A-c7v.ds-

The last condition is that of Michel:
(iv) The matrices Aii(t) satisfy (13) and there exist numbers di, 1,. , N, such

that the matrix T is negative definite.
To show that this condition implies Assumption III we consider the Lyapunov

function (28)with i replaced by di and vi(xi)given by

(34) vi(xi) xPi(t)xi.

In a way similar to [7] it can be shown that its derivative with respect to (30) satisfies the
inequality

dv
(35) d-- <- -’ tillxil[ [ixll,

i,]

Since T is negative definite, let A Arnax(r)< 0; thus

(36) dv<=-A 2 [Ixil --AIIx[I2
ds i=1
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Using (22) and (36) we obtain

dv -Am x< v -CsV.(37) ds -max/di max/7’/’i2

Michel’s condition is not finitely verifiable since it requires the existence of positive
numbers dl,’", dN. However, a more conservative, finitely verifiable, condition
implying Michel’s condition can be obtained [7] by writing the matrix T as

(38)

where

(39)

and W is given by

T=DW+ WD

D diag [dl," dN],

=j,
(40) Wi]

7ri2ij, f.

di>O,

Then, if the principal minors of W have alternating signs, that is, satisfy (27), there
exists matrix D such that T is negative definite.

It is important to notice that Siljak’s and Michel’s conditions are not equivalent.
In fact examples can be constructed for matrices which satisfy one of them and do not
satisfy the other, and vice versa [9]. These two conditions are particularly important
since they are applicable to large scale systems. They are also applicable to nonlinear
systems. Grujic [11] has used the decomposition-aggregation method to test the
stability of a class of nonlinear singularity perturbed systems. The motive to look at
these two conditions and study their implication to our Assumption III was that the
aggregation matrices S and T which satisfy the respective condition are D-stable.
However, as we have shown, the proof that Siljak’s or Michel’s condition implies
Assumption III does not rely upon the D-stability of S or T, because we have chosen the
Lyapunov function in either case in such a way that we obtain the aggregation matrix
independent of D.

The above discussion of Assumption III shows that the class of matrices Ar(t
satisfying Assumption III contains important subclasses. However a complete charac-
terization of that class is yet to be made by further studies.

4. Proof. We follow [12] to separate the fast and slow modes of (3). Using

(41) [ Yv ] [ I txMD-1LL txMD-1I ][z]X
the system (3) is transformed into

(42a) (Ao(t)- Aor(t)L(t))y,

(42b) txO (DAf(t)+ txL(t)Aof(t))v,

where L(t) and M(t) satisfy

(43)

(44)

txL DAfL DAfo- txLAo + txLAofL,

MD- -MAr +Aof IzMD- LAof + I.tAoMD- I.zA ofLMD-1,
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with the initial conditions

(45) L(to) A- (to)Aro(to),

(46) M(to) Aor(to)A- (to).

We first observe that the fast subsystem (42b) is of the form

(47) /x2 (DAr(t)+ Ix F(/, e ))z

whose properties we examine in Lemmas 1 and 2. Then in Lemmas 3 and 4 we
establish the existence and convergence of solutions L(t) and M(t) of (43) and (44).
Lemmas 1, 2, 3 and 4 are stated under the Assumptions I and III.

LEMMA 1. There exist positive scalars u, K1 and 3’1 such that for all e H,
0<]]e[[ -< u and >-s, the state transition matrix q91(t, S) of the system (47) with F=0 has
the property that

(48) 11q91 (/,S)11 g exp [ 3’-2 (t-s)].
Proof. By Assumption I and (6)we have IIDAt(t)[I<= K2, for all t_-> to and e H.

Using (10) and Lemma 4 of [13, p. 116] we get for all 0>_-0, e H

(49)

where K3 depends only on o" and K2. Also there exists /3 > 0 such that IIDAI,(t2)-
DA(tl)ll<=[t2-tl[, tl, tz>=to. Then by Theorem 12 of [13, p. 117] there exists/x*>0
such that for all tx < tz*, qgx(t, S) satisfies (48) with gl g and 1 < O’; and v can be
chosen to be the .radius of the largest ball centered at the origin with < *.

LZMMA 2. If IlF(t, e)ll -< g4, for all >= to, e H, then there exist positive scalars v,
y2 < y 1, such that for all e H, 0 < lie <- v and >- s, the state transition matrix q92(t, S) of
(47) satisfies

(50) Ilq2(t, s)ll-- Kl exp [ 3’2 s)

Moreover, there exists v > O, K5 > 0 such that for all e 6 H, 0 < lie <-_ v, >-_ to, the matrix
q3(t, to) qz(t, to)- exp [OAt(to)((t- to)/lx)] satisfies

(51) [Iq3(t, to)l] Ksl]e II.

Pro@ Inequality (50) follows from Lemma 1 and Theorem 9 of [13, p. 70]. To
prove (51) we notice that q3(t, to) satisfies the equation

b3(t, to) I[DAt(t)+ r(t, e)lq93(t, to)

1 [ ( )]+--[DAt(t)- DAe(to)+ z r(t, e)l exp DAe(to)
to

Noting that 3(to, to)= 0, we obtain

3(t, to) (t, ,) [DAt(r)- DAe(to) + F(r, e)l exp DAf(to) dr.
N
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Using Lemma 1, (50), and the fact that [[DAr(t)- DAr(to)ll <-fl(t- to), we obtain

[iq03(t, to)l[ __< K e_(.v2/)(t_,)_l [fl(z to)+ xK4] e -(v’/g)(’-t) dz

<K -(v2/)(-to)e [(z- to)+ K41 dz

_(VZ/ )(t_to t- to

m(Y2e

Next we establish the existence of solutions of (43) and (44). Let us first remark
that the state transition matrix of the system Ao(t) satisfies

(52) IIo(t, s)ll K6 exp [3[t- sl], for all t, s e to,

for some positive constants.K6, y, (see [14, p. 287]).
LEMMA 3. There exists a positive scalar u such that for all e e H, 0 < lie , t0,

there exists a continuously differentiable bounded soluaon L(t) o[ (43) and (45),
satis[ying

L(t)= A-f (t)Afo(t)+(53)

Proof.3 Every solution of the integral equation L(t)= SL(t), where

SL(t) qg,(t, to)A-/ (to)Ato(to)qo(to, t)
(54)

+ (t, s) DAo(s)+L(s)Ao(s)L(s) q,o(S, t) ds

is a solution of (43) with initial condition (45). Hence it is sufficient to prove the
existence of a solution of this integral equation. Using the identity

(55) LAorL EAor (L )AorL +Aor(L

and expressions (48)and (52)we obtain

(56) ]ISL(t)- sE(t)[I =< K1K6] IlL Ell IIAorII(IIL[I + IIEII),

and

(57)
Ilst(t)ll = KIK6 ([[DAroII+ zllAorll Iltll)

In this proof L belongs to the space of bounded continuous Y. ni x no matrix functions on the interval

[to, eo) with the norm IILII--sup,,o IlL(011 where the matrix norm can be any norm. This space is a Banach
space.
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Letting

(58) P= 2KIK6(@ll[[DA’oI[+IIA-/a(to)[]
we choose/x*> 0 so small that

Yl 4KIK6/x *
(59) /x*y_-<- and IlAollp --<1/2.

If IILII--< , 11/211-<- , then for 0 </x -<_/x* we get

(60) IISL Sll <-- kilL I2ll
and

(61) IISL(t)ll <- o.
By the contraction principle the solution L(t) exists and is unique in IlL[I--< 0. To prove
(53) we let

(62) L(t)=a-/l(t)afo(t)+AL(t)&Lo(t)+AL(t).
We note that AL(t0)= 0 and that AL(t)satisfies

(63) A/ I
(DAf + p,LoAo)AL ALA + ALAofAL + R1,

where R1 LoAofLo- LoAo- Lo. Let pr(t, S) and 4(/, S) be the state transition
matrices of equation (8) and tx= (DAf(t)+ txA- (t)Afo(t)Aof(t)), respectively. The
norm of qr(t, S) satisfies an inequality similar to (52) with constants K7 and y4. By
Lemma 2, the norm of q4(t, s) satisfies an inequality similar to (50) with constants K1
and y5 < yx. Then from the form of the solution of (63)

(64) AL(t) p4(t, s)[AL(s)Aof(s)AL(s)+ Rl(S)]rCr(s, t) ds,

it follows that

KIKTt.t (llAofl[ [[ALI[: + IIR 111)

KIK7(65) <- tt(llaor[[(llLol[ / IILII)2 + [IR 111) -< ttK8
5

for some positive constant K8, which proves (53), and , can be chosen in a way similar
to that in Lemma 1.

LEMMA 4. There exists a positive scalar p such that for all e H, 0 < ]]e I]-<- ’, _-> to;
there exists a continuously differentiable bounded solution M(t) of (44) and (46),
satisfying

(66) M(t)= Aof(t)A? (t)+

The proof of this lemma is similar to that of Lemma 3. Based on Lemmas 3 and 4
the matrices of the transformed system (42) can be written as O([[e[[) perturbations of
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At(t), DAf(t), that is (42) becomes

(67a) ) (Ar(t)+ O(I]e II))y, y(to) Xo + O(lle ][)

(67b) V(to) Zo + Lo(to)Xo + o(ll II).

Proof of Theorem 1. Since the transformation (41) is nonsingular for all
sufficiently small e H and L(t), M(t) are bounded for all >- to, it is sufficient to show
that each subsystem (67a) and (67b) isuniformly asymptotically stable. This immedi-
ately follows from Lemma 2 and Theorem 9 of [13, p. 70].

Proof of Theorem 2. The uniform convergence y (t) a?(t) as lie I1-" 0 follows from
the continuous dependence of the solution of (67a) on the right-hand side and the
initial conditions. Lemma 2 guarantees the uniform convergence v(t) Y.((t-to)/ix)=
z’(z). Using the inverse transformation of (41), we obtain

(68a) x(t)= y(t)+ txM(t)D-lv(t) Y(t)+ O(11 II),

(68b) z(t)= -L(t)y(t)+ (I- txL(t)M(t)D-1)v(t) -A-/1 (t)Aro(t)Y(t)+ z’(r)+ o(11 11)
which proves (11).

Acknowledgment. The authors are grateful to Professor D. D. Siljak for his
fruitful discussions during the course of this work.
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CONTROL AND STABILIZATION FOR
THE WAVE EQUATION IN A BOUNDED DOMAIN*

GOONG CHEN

Abstract. Exact controllability problem of the wave equation is studied by the stabilizability method of
D. L. Russell. It is shown that if we use the linear "velocity feedback," then the energy of the system will
decay uniformly exponentially and exact controllability can be achieved. In case the velocity feedback
contains a certain nonlinear dissipative term, then we prove that this system evolves as a nonlinear
semigroup with respect to time. Certain estimates for the nonlinear equation are also obtained.

1. Introduction. In this paper we shall be concerned with the control problem for
the wave equation

(1.1) 02-W--Aw =f(x, t), X f, >0,
Ot2

in a suitable function space, where f is a bounded domain in and f(x, t) is a
distributed parameter control.

Control problems for the wave equation in a bounded domain have been dis-
cussed by very many mathematicians, notably, [10], [11], [19], [20], [21], [22], [23],
[28], [29], to mention a few. In comparison with the existing literature, the controls we
have obtained in this paper have the following features"

i) they are distributed parameters of the "velocity feedback" form;
ii) they provide us with better regularity property (Theorem 2.5);
iii) exact controllability is achieved.
Basically, this paper consists of two parts" the linear part 2 and the nonlinear

part 3. In 2, the linear theory of controllability and stabilizability is discussed; the
main theorems are Theorems 2.4 and 2.5. There we show the exponential decay of a
semigroup associated with a wave equation with dissipation; thus, it provides us with
the feedback controllers to achieve exact controllability, by D. L. Russell’s "con-
trollability via stabilizability" principle. In 3, we consider the case when the feed-
back controllers are of a specific dissipative nonlinear form. We prove that this system
evolves as a nonlinear semigroup (Theorem 3.3). Certain estimates for that nonlinear
equation are obtained (Theorem 3.5). Unfortunately we have not been able to derive
a nonlinear version of Russell’s "controllability via stabilizability" argument.

Throughout this paper, f denotes a bounded, open, connected subset of with
piecewise C regular boundary F (= 0fi). There is no restriction on the geometry of
the domain f, as is in contrast to the case of the boundary value controls [4], [17],
18]. We use H (f) to denote the real Sobolev space of order rn > 0. We use H (D.)
to denote the completion of C () in H (D.).

From now on, 1 and e will denote the spaces Hlo (f)H(f) and (H(f)f")

H01 (f))0)H (f), respectively. They are equipped with the inner products

((Wl, Vl), (WE, VE))e I, (grad Wl" grad w + Vl" v2)dx,

(1.2) ((w1,/.) 1),

The inner product (1.2) is the "energy inner product" on . By Poincar6’s inequality,
(1.2) induces a norm on

* Received by the editors November 22, 1977, and in revised form February 10, 1978.
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901. Now at

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
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The homogeneous wave equation

(1.3)
02w
Ot2

Aw =0

can be written in the form of a system

(1.4, tt[:] =[0A ][:]=-a[:]=[Aw],
with A defined as above and D(A)= 2.

We are now in a position to pose the
EXACT CONTROLLABILITY PROBLEM (ECP): For the system

02y (x, t)
-hy(x,t)=f(x,t), xf, t>0,

Ot2

(CS) y(x, t) O, xOl), O<-t<-T,

given any initial state

z(x, 0) y,(x, 0) Zo

find a control f L2(fl x [0, T]) so that the solution of (CS) and (1.5) satisfies the zero
terminal condition

y(x, T)--0, z(x, T) =- y,(x, T)=0, x

This is the problem of "null" controllability. The general controllability problem
can be solved by using the time reversibility of the wave equation.

2. Controllability via stabilizability principle applied to the wave equation. The
main idea in this paper is "controllability via stabilizability" principle. It can be said to
be the most efficient method to obtain exact controllability for hyperbolic partial
differential equations. For a finite dimensional control system

d-x Ax + Bf, x e r, f e M,
(2.1) A, B are constant N N, N M matrices,

Russell’s principle can be stated as follows"
THEOREM 2.1 (Russell [18]). Let the system (2.1) be both (+) and (-) stabilizable,

(or, completely stabilizable), namely, there exist two M N constant matrices K+ and
K- such that

(2.2) A+= A +BK+,
(2.3) A- =- A +BK-

have, respectively, only eigenvalues with negative and positive real parts. Then the
system (2.1) is controllable.

The main idea in the proof of the above theorem is to use feedback signals

(2.4) f+(t) K+x+(t), /-(/) K-x-(t)

from auxiliary systems. The control f is obtained by "blending" the above signals, i.e.,

(2.5) f(t) f+(t) + f-(t).
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In the proof, it is essential that we have
A --at(2.6) lie tl[=<Ka e =0,

(2.7) lie-a-ill <- K2 e ’, <= O,

for some K1, K2, ce > 0, in order to guarantee the invertibility of a certain trans-
formation when is large.

Theorem 2.1 can readily be extended to an infinite-dimensional control system
after a suitable modification. Let X be a Banach space of functions and let

d
(IDCS) d--x =Ax +Bf, x(O)=xoX

be a linear evolution equation in X, where
x x(t): the state of the system at time t;
A: an (unbounded, densely defined, closed) operator from D(A) into X;
f: control, an element in the control space C;
B: an (usually bounded) operator from C into X.

Suppose we can find two operators K/, K- from D(K/)X, D(K-)GX into C
satisfying the following requirements:

R1) D(K+)_D(A), D(K-)_D(A);
R2) A+=A +BK/ and A-=-A +BK-generate two strongly continuous semi-

groups S/(t) (t => 0) and $-(t) (t =< 0) which decay forward and backward with respect
to time, namely,

(2.8) IIs+(/)l[ =< Ma e -1’, M1, O)1 0, => 0,

(2.9) Ils-(/)ll M2 e ’2’, M2, w2 => 0, <- 0.

Then the exact controllability result for the control system (IDCS) follows immedi-
ately.

Let us return to the distributed parameter control problem of the wave equation.
First, we consider the damped wave equation

O2w Ow
-g+a(x)--Aw=O infl,

(2.10) wit= 0 (boundary condition);

w(x, 0)- Wo(x) H2()tH(),

where

Wt(X O)-- Vo(X H (-)
(initial conditions),

(2.11) a(x)>-a>O a.e. on f, a L(f).

It can be written in the following form as a system

(2.12)
d 0 I w

with D() 2.
v A a(x)I v v

We summarize the functional properties of the operator A below.
TI-IZORM 2.2. i) is a densely defined, closed, dissipative linear operator on 1.
ii) -1 exists and is a compact operator on . Furthermore, the resolvent operator

R( ) ( )-1 is compact for every belonging to the resolvent set of.
iii) is the infinitesimal generator of a strongly continuous semigroup S(t) of

contractions on a.
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Proof. Without loss of generality, we shall assume that a (x)=- 23, > 0.
i) it is a routine procedure to verify that A is densely defined, closed and linear.

To show that A is dissipative, let (Wl, Vl) D(/]).
W1 W1

/)1 W1--23’/)1

Ia [grad Vl" grad wl + (AWl-23’vl)v1] dx

(2.13) =-I /)1" AWl dx+I AWI" /)a dx-23"I v21 dx

[ v dx2T

ii) Let (f, g) be any given element . Consider the equation

This is equivalent to solving

(2.15) v =f,

(2.16) Aw 23"v g.

Substituting (2.15) into (2.16), we obtain

Aw 23"f+g, wit=0.
The above inhomogeneous boundary value problem has a unique solution w
H2(f/)fqH (f) with the property that

(2.17) IIW[IH2(a) <= K[123"f+

Thus (2.14) is completely solvable and

Since 2 is compact in 1, we conclude that fi.- exists and is a compact operator on
09’

From a theorem of classical boundary value problems, we know that can have
at most a point spectrum and that (A -/)-a is a compact operator for every A in the
resolvent set of A.

iii) This follows immediately from (i) and (ii) and Lumer-Phillips’ theorem [16].
This proof also follows from Theorem 3.1.1 [16] because ft, is a bounded perturbation
of a skew-adjoint operator A (which is the generator of a group of isometries on 1).

From the analytic theory of semigroups, we obtain the following theorem.
THEOREM 2.3. The abstract Cauchy problem

(2.18) -7 v(., t) a(x)I v(.,t) v(,t)

has a unique solution

(2.19)
w(’, t)

S(t) e C([0, oo);
v(’,t) Vo
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for every initial state (Wo, Vo) x. We have, furthermore, the classical solution

(2.20)
w(., t)

S(t)
v(.,t) vo

if the initial state (Wo, Vo) belongs to D(,)= Y(2, where [Yg2] is normed with the graph
norm of

In the following theorem, we give a proof of exponential decay for the contrac-
tion semigroup in Theorem 2.3, based upon the energy method (cf., e.g., [24]).

THEOREM 2.4. Let w(x, t) be the solution of the equation

02W OW
AW --0(2.21)

Ot2
+-a(x) 0-7-

with initial state (Wo, Vo)S 1. Then there exist K, > O s_&uch that

(2.22)

for all (Wo, Vo)e .
Proof. We first consider those (Wo, Vo)e 2. We multiply (2.21) by Ow/(Ot) and

integrate by parts to obtain

1 d I [(0_)2(2.23) d-- + Igrad wl2] dx+ f a(x)(O---)dx=O.
Similarly, we use Aw and obtain

(2"24) a[tl gw I(O-) 2 21 dlat I [2 ]w dx dx + 7 -7 (x )w gx + [gradw ax =0.
ot

Adding (2.23) and (2.24), we obtain

(2.25)

1 d I [(O_) 2

,2 0W ]+lgradw +2aw+aa(x)w2 dx
2 dt Ot

+ ,,t Igrad w 2 (w.]]A\-! l
dX O.

We write the above simply as

d
(2.26)

td--TP + Q O.

By Poincart’s inequality, there exists a constant C1 such that

f W2 dx <- C1 f [grad WI2 dx.(2.27)

Let C2 be a constant such that

(2.28) ess sup a (x)_-< C2.
xl-

Now if we take 0<X -<min (1/2, 1/(2(C -1- C1C2))), from (2.25) we have

} :I4
+lgrad W[2 dx <-P(t) [(Ow z

< + Igrad w dx.
L\Otl
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On the other hand, if we take 0 < h <- min (1/2a, 1/(2Cl))

Q(t) >- a +h[grad w[2 dx >-C3 +[grad w[2 dx >-_C3P(t),

where C3 min (1/2a, h ). Thus (2.26) implies

d- d
d-P+C3P<--P+O =0.

Hence

P(t)<=P(O)e -c’,
so we obtain

(2.29) S ] li[ }il:2
-C3t C3t WO+[grad WI2 dx <-4P(t)<4P(O)e <-4 e

L\ Ot / Vo el

Since (2.29) is independent of the z-norm of (w0, v0) by the continuity of the
semigroup $(t), (2.29) remains true for (Wo, v0) in 1. Q.E.D.

Now, the exact controllability problem (ECP) posed in 1 is readily solvable.
THEOREM 2.5. There exists a control f(x, t) L2(D, [0, T]) such thatfor any given

initial state (Wo, Vo)6 , f steers the system (CS) to the state (0, O) at time T if T is long
enough. Furthermore, f can be chosen in C([0, T], L2(D,)).

Proof. The method we use here is standard, [17], [18], [21], indeed, it is the
infinite-dimensional version of "controllability via stabilizability" principle. We let
be the solution of

(2.30) 02 A -a(x Ol
Ot2 )---f a (x) satisfies (2.12),

(2.31) [4o] frill (initial state).o
An energy decay result of the form (2.22) then applies. We take T large enough so
that

(2.32) K e-r < 1

and obtain

(2.33)

For 0 <- <- T we let

(2.34) )r(x, t) -a (x)-0-- (x, t).

Now let be the solution of

(2 35) 0 0
0-7- a, ,(x),

(2.36) (terminal state).
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The term a(x)O/(Ot) in (2.35) causes energy to decay as decreases, an estimate of
the form (2.22)now applies to give

For 0 _-< _-< T we let

(2.37)

We let

(2.38)

and observe that

(2.39)

is a solution of

(2.40)

if we take

(2.41)

We have

(2.42)

(-, T)

fl(x, t) (x) (x, t).

(o, o)= ( (., o), (., o))

n (., 0) #o- ,o,

(2.43) st( ., 0) =-(., 0) sro-sro,

and (by (2.36)and (2.39))

Thus the control [ steers the initial state (2.42), (2.43) to (0, 0) during (0, T).
From (2.35), (2.36), it is clear that (ro, o) depends linearly on (ro, (o) so we can

write

(2.44) (’Oo, ’*o)= F(’o, o), F" o "-> Ol, IIFII <= K e -tsr < 1.

Then (2.42), (2.43)become

(o, (o)= (I- F)(o,

and since [[F]I < 1, we can solve for arbitrary (rio, sro)e OCI to give (Wo, Vo) in Theorem
2.5. Thus [ solves the exact controllability problem.

Since the steering function [ is defined by (2.34), (2.37) and (2.41), we obtain

f e LZ(f x [0, T]). By choosing a(x)a positive constant, we obtain f e C([0, T], L2(f))
since both O/Ot and O/Ot are in C([0, T], L2(’)). Q.E.D.

Remark 2.6. Theorem 2.5 was obtained independently by D. L. Russell by using
the controllers (2.34), (2.37) with a(x) C > 0. His result was unpublished.

Remark 2.7. From (2.32) and (2.44), we easily see that the control time T cannot
be made as short as we wish, due to the presence of the constant K. The reason is
simple: because we have used velocity feedback as our controls, the wave propagation
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speed in a bounded domain is finite; therefore it takes a while to spread the control
effect all over the domain f. In order to obtain exact controllability as fast as we wish,
we must include a compensation factor in the feedback. See [5] for the details.

Likewise, the decay rate coefficient/3 in (2.22)cannot be magnified by magnify-
ing the damping coefficient a(x) in (2.11). This can be shown by an eigenfunction
argument as follows. Let {bK} be a complete orthonormal set of .eigenfunctions of
(-A) in Lz(fl), with corresponding (strictly positive) eigenvalues {A :}. For any w(x, t)
which is the solution of the damped wave equation

+ -Aw =0,(2.45)
Ot2 2y----

with initial state (Wo, Vo)e 2, we can represent it by

(2.46) w(x, t)= ak e’kttk(X)
k=l

and the/zc’s are determined by (2.45):

(2.47) Y’. (itXk )Zak ei"k’4)k + , (ilXk )2yak ei"k’qbk / Y’. A kak ei"’4)k O.

2The L -convergence of each of the above series is ensured by the regularity of the
initial condition. Thus each/d,k must satisfy

--tX2k + 2ylz + I Zk =0
SO

(2.48) /A.k iT :i: x/A k 3’

A formula in [7], [12] informs us that

(2.49) Ak 2rr k large,

where N is the dimension of RN, wN is the volume of the N-dimensional unit ball and
V is the volume of f. Thus (2.49) can be used to obtain asymptotic values for
Hence

Ilw(’, t)ll’ K1 e-’ll(wo, vo)be, KI>0,

where

(2.50) /3 -=-sup Re {i/x}= > 0.

Similarly,

Thus

IIv(’, t)ll (., t)
n

Wo

K2>0.

By continuity of the semigroup, (2.51)remains true for (Wo, Vo) x. From (2.48)and
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(2.51), we see that as y becomes large,

fl -sup Re {i/./,k} --sup Re {-3/+ x/3,,2-A k2}

’]/(1--41--(/. 1/]/)2)"’ 0 as y ’ oo.

Therefore magnifying the damping coefficient 23, will have the opposite effect of
diminishing/3. This phenomenon can also be overcome by adding a compensation
term [5].

Remark 2.8. Theorem 4.2 can be proved without using the energy method. An
alternative proof by control-theoretic method (first developed by Quinn and Russell
in [17]) proceeds as follows. First, we notice that we have proved (2.51) in Remark
2.7. Hence Theorem 2.5 is true Oust think of ct(x)=27>0). Let w(x, t) be the
solution of (2.21) and let y(x, t) be the solution of

O2y
0t2

Ay=f, Ylon=0,

y(x, 0)=0, z(x, 0) y,(x, 0)= 0 (initial conditions),

steered by a control " from the initial state (y (x, 0), z (x, 0))= (0, 0) to the final state
(y(x, T), z(x, T))= (w(x, T), v(x, T)) (=-(w(x, T), wt(x, T))).

Applying the divergence theorem, we have
T OW[O2yOy[OZt Ow w)+ -Ay-f)] dx dt

-+grad y. grad w dx dr+

Therefore

;(x, r)) +lgrad w(x, r)l2 dx= [-a(xlOY]aWdxdt.
ot J ot

By the Cauchy-Schwartz inequality,
T

(2.52) o f (0) {I[(Ow/(Ot’(x’T"+’gradw(x’T)la]dx}
dx dte ff l [-(x)(Oy/Ot)] dx dt

In the controllability proof of Theorem 2.5, we know that the denominator of the
right-hand side of (2.51) can be bounded by a positive multiple of [(Ow/(Ot)(x, T))2 +
Igrad w(x, T){2] dx, i.e.,

(2.53)
T 2Io I [’-a:(x)ty] dx dt<Kl= I I(0w-- (x, T))2 + Igrad w(x, T)I2] dx.

It is implied by (2.21) that

I [(-(x, 0))2+ Igrad w(x, 0)12] dx- I [(-(x, T)) + Igrad w(x, T)I2] dx

T=Io Ia(X)(t (X’t)) :zdxdt
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:::> by (2.12), (2.52), (2.53),

>---- a loT I (t x, ))
2 a i[(O_. ))2dx dt >---1 (x, T + Igrad w(x, T)I2 dx.

Hence

v(x, T) e,- l +K v(x, O) e,
(K =-a/K1).

Repeating the above reasoning, we have

v(x, (k + 1)T)_I e,- 1 +K v(x, kT)_l e,

(1 + K)k+l t(x, 0) 1"
Hence the exponential decay result is proved.

Remark 2.9. Comparing in (2.13) with A in (1.4) as well as with A+ in (R2),
we notice that/ plays the role of A+ with

=A+BK

A a(x)I A 0
+

0 a(x)I

so
0 a(x)I

plays the role of BK+. In [51, a more general form of BK+ with the

appearance

BK+=[aI bI]cI dI’
a, b, c, d complex numbers,

is discussed. This, in particular, means feedback signals of the second order (i.e.,
involving 02w/ (0t2)).

3. The case when the feedback control contains a nonlinear term. In the previous
section, we see that the steering function f(x, t) is obtained by "blending" two
feedback signals. In this section we shall study the evolution of the system when the
feedback signal contains a nonlinear dissipative term. Let f(x, t) have the form

(3.1) f(x, t) -rl--- T2 Vl,

We are interested in studying the equation

2
(3 2) ____w_. Aw f(x, t),

Ot2

which is a nonlinear wave equation. Following 2, we can also write (3.2) in the form
of a system

(3.3)
d

v Aw-
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where A is a nonlinear operator on Y(1.
In general, fi is a well-defined operator on Y( with domain [H2()Ho (f)]@

(H (f)fqL6(f)). However, if the space dimension N is less than or equal to 3, we
have

(3.4) H()_LP(f), l_-<p<, N=2,.

(3.5) H (") .._. t6(’]), N 3,

by the Sobolev imbedding theorem. Therefore for the sake of simplicity we shall
assume N-< 3 and this will be sufficient for all practical purposes. Thus A becomes a
nonlinear operator on oca with domain 2.

Our main tool in studying the system (3.3) is nonlinear functional analysis. Some
nonlinear terminology such as maximal dissipative sets, nonlinear semigroups, mono-
tonicity, hemicontinuity, etc., will be needed. We refer the readers to [2], [8], [9], [13],
[26], [27] for their definitions.

PROPOSITION 3.1. The operator A on 1 defined by

(3.6) A
V AW --lV 2/.)

3

with domain D(A)= ?2 is a maximal dissipative operator on 1.
Proof. For (w, v)D(A), we have

(3.7) (fi[], []/=-I (TlV2+T2v4)dx<-O,

where every term in this integral is well-defined because v H()t6() L4().
Thus A is dissipative.

In order to prove that A is maximal dissipative, we must, by Minty’s theorem,
show that R(I-A)= 1, [2], [8]. Let (f, g) be any given element in 1. We want to
show that

is always solvable. This means

(3.9) w -v =f,

(3.I)

(3.10) v AW "J- VlV "+" ’]/2/.)3 g.

Formally, we can substitute w v +f into (3.10) and obtain

(3.11) -Av "1-(1 "4- ’1)’/-) "4-" 2’/)
3 g + Af,

(3.II)

(3.12) -Aw g-(1 +7l)V--2/3 3,

where Af is a distribution in the space (H (f))’-H-I(D). It is easy to see that (3.1)
and (3.II) are equivalent because the Laplacian A is an isomorphism from H (lq) onto
H-(f).

We first solve (3.11), which is a nonlinear elliptic equation of the function v only.
The method is by variational inequalities. We use the following theorem:



THE WAVE EQUATION IN A BOUNDED DOMAIN 77

PROPOSITION 3.2. Let E be a reflexive Banach space, T a monotone hemicon-
tinuous operator from E into E’. Suppose that the coercivity condition

(3.13) (Tu’u) oe as [lu[[E oe

holds. Then T is surfective from E onto E’.
We define

T(z)=---Az +(1 +I)Z +V2Z3"

then T maps H()into H-()+L2()=H-I(), since z L6() implies z3
L2(). Now, with slight modifications of Lemmas VI.8, VI.9, Theorem VI.1 and
Example VII.1 presented in [27], we summarize the properties of T below:

1) T is strictly monotone from H() into H-I().
2) T is hemicontinuous, indeed, T is continuous from H() strong into H-I()

strong.
3) The coercivity condition (3.13) is satisfied.
Thus the assumptions of Proposition 3.2 are satisfied. Hence. T is surjective. T is

also injective due to the strict monotonicity. Indeed, T- exists and is locally H61der
continuous with exponent (2/3), i.e.,

2/3

for fl Tux, f2 Tu and l[f-fllu-()small.
Therefore the solution of (3.11) exists and is unique. Now w can be solved from

(3.12) (with the Dirichlet boundary condition), since the right hand side of (3.12) is in
L2(). A unique w H2()H() solves (3.12). Thus (3.8) is solved and the proof
is complete. Q.E.D.

We readily conclude the following:
THEOREM 3.3. The nonlinear operator A in (3.6) generates a strongly continuous

nonlinear semigroup of contractions on .
This theorem follows from Proposition 3.1 and a theorem of Crandall and Pazy

[9]:
Let S be a maximal dissipative set in H x H, where H is a Hilbert space.
Then there is a unique strongly cbntinuous semigroup of contractions S(t)
on D() such that T, the minimal section of T, is the generator of S(t).

Because the operator is single-valued, we know that g 0 is the generator of
S(t). We know [9] further that for any x D(A)= 2:

(i) S(t)x D(A) for all 0 and the function AS(t)x is continuous from the
right on [., ).

(ii) S(t)x has a right derivative (d+/dt)A (t)x at every t0 and (d+/dt)S(t)x
AS(t)x for all 0.

(iii) (d/dt)S(t)x AS(t)x exists and is continuous except at a countable number
of values 0.

From the above we see that S(t)x is "less smooth" than a classical solution
because (d/dt)S(t)x S(t)x is only right continuous on [0, ).

Remark 3.4. From [13], we have learned that ifwe use the "method of com-
pactness," then the solution w(x, t) of the nonlinear equation

(3 14)
ow ow [ow3

+: + -w=0, H(),
t

w
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(3.15) w(., 0)= woHZ(fl)OH(l)),

(3.16) w,(., 0) Vo H (D),

exists and is unique, with the following properties"

(i) w L(0, T; H2(f)H) (f));

(ii)

(3.17) Ow/Ot L(0, T; H) (f));

(iii) 02w/Ot2 L(0, T; L2(f));
(iv) Ow/Ot L4(f (0, T)) (implied by (3.17) in this case).

If the initial conditions (3.15), (3.16) are less smooth, say, we have

(3.14), w(., 0)= Wo Ho (f), wt(’, 0)= Vo LE(f),

and if we use a combination of the method of "monotonicity" and "compactness,"
then the solution also exists and is unique, with

(v) w L(O, T;H (fl));
(vi) Ow/Ot L(0, T; L2(f)).
In the following theorem we show some growth rate estimates for solutions of

(3.2) with smooth initial condition (w0, Vo) Yg_. Unfortunately, due to the presence of
the nonlinear term, we cannot obtain a strong exponential decay result. Neither can
we derive a nonlinear version of the "controllability via stabilizability" principle.

THEOREM 3.5. Let w(x, t) be the solution of

(3.18)
w Ow Ow 3

Ot2
+ ’Y1 -- --F ’Y2 - Aw 0, (Y2 small)

with initial conditions

(3.19) w(., 0)= woH2(l’l)fqH(l)),

(3.20)

and boundary condition

(ow )v o) =--if(., o) vo s (n),

w(x, t)lr= O, t_>0;

then them exist constants K, a > O, which are independent of (Wo, Vo), such that

(3.21)

(3.22)

(3.23)

Proof. Again, we use the energy method. Multiplying (3.18) by Ow/(Ot)+ Aw and
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integrating by parts over 1), we obtain

(3.24)
+ Igrad w 12 + A 2 0__w

Ot Ot
w+ wZ)] dx

-I- If{[’)/l(-)2-1-2(0W)4] A[Igrad 12 (Ow) 2 Ow3
+ w-

t! J

We write (3.24)simply as

dP
(3.25) +O =0.

dt

By Poincar6’s inequality, there exists a constant K > 0 such that

w dx<=K Igradw dx.

If we choose 0<A <min (1/2, 1/(9C)), then

1 12 (Ow’:(3.26) I[[gradw +\0t/ ]dx <_-P(t)g Igrad wl2+ dx

(3.27) <_p(t)<=
v(., t) el v(’, t) el

On the other hand, using Young’s inequality,

(3.28) I (Ot) 3 /V2 I (0--) 6 2I 2Ay2 w dx <=- dx +--- w dx,

we obtain

f { (0W) 2 (OW4

[2 (0W)2 /2 2 A2(OW6/O(t) >-- ’1 -- +rEk/ +Algradw -A -w -k/ j
dx

yx} +yz +Algrad w -A K[grad w

so if we choose y2 such that 0< y < 2/K and choose A such that 0<A < yx, we will
have

(3.29) Q(t)8 [grad w]2+ dx- dx,

where 6 min (y A, A (1 (y/)K)).
From (3.25), (3.26) and (3.29) we deduce that

(3.30) dPd+ A,2 I (0W)6 dP
dx 0 o.

By (3.27) and (3.30), we conclude that (3.21) has been proved. We remark here that
OW/Ot L6() because Theorem 3.3 implies Ow/Ot H() and (3.5) applies.
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If we apply Young’s inequality in the following form instead of (3.28), we have

(3.31) hy2 w dx <-hy2 dx +- w dx

Following similar procedures as above, we can obtain

dP 5 ATE I 4 dP
d----t-- dP----4- w <=-d--+O=0.

Thus (3.22)follows immediately.
Since the imbedding

is continuous (indeed, compact), there exists a constant C such that
1/4 1/2

(I W4 dx) C(I [grad wl2 dx)
Thus

I 4 (I )2w dx<-_C4 ]gradwldx <-C4

v(.,

Using this in relation in (3.22), we see that (3.23) is proved. Q.E.D.
Note added in proofi After the present paper was submitted, the author received the

following paper from H. O. Fattorini: The time optimal problem for distributed control
of systems described by the wave equation, Control Theory of Systems Governed by
Partial Differential Equations, Aziz, Wingate, Balas, eds., Academic Press, New York
1977. Fattorini obtains exact controllability by a method using sine and cosine
operators. He does not approach the problem from the stabilizability point of view, as
we do in this paper.
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AN ADAPTIVE PRECISION METHOD FOR NONLINEAR
OPTIMIZATION PROBLEMS*

K. SCHITTKOWSKI’

Abstract. Consider the problera, of minimizing a real-valued Gateaux-differentiable function 0 over
some subset of a normed linear space. The main advantage of the algorithm presented will be that it is
possible to vary the accuracy of the evaluation of o and its derivative. It is allowed to use low precision while
far from a solution and to improve it step by step as a solution is approached. In order to enlarge the
application of the algorithm, these approximations are defined by approximating sets and not by functions.
Constrained problems are transformed into unconstrained ones using a penalty approach, where the
algorithm controls automatically the degree of penalizing the function o. The minimization algorithm
requires a general class of gradient-type search directions, restricted only by the condition that they are
bounded away from orthogonality with the gradient. The steplength procedure is a simple reduction method
as proposed by Armijo (1966). It is possible to derive global convergence results in the sense that starting
with arbitrary initial values a critical point is approximated.

1. Introduction. Consider the general minimization problem

(1) inf q(u), u C,

where q is a real-valUed function defined on a normed linear space E, and C is a
subset of E. It is assumed that

inf {q (u)" u C} > -.
In many applications, however, it is not possible to compute q exactly or a precise

evaluation is extremely expensive. Let us consider some examples:
Example 1.1. Solve the min-max problem

min max f(x, y)
xC yD

with CcR", DcRm. The function q(x):=max{f(x,y):ysD} is (with suitable
assumptions) continuously Gateaux-differentiable, but must be evaluated by a second
maximization procedure, cf. Klessig and Polak [9].

Example 1.2. Consider the problem of finding an x " with

f(x)sK,

where K is a closed, convex subset of !". A solution can be derived from minimizing
the function q(x):= d(f(x), K)2, where d(., K) is the distance function. If K is a
complicated set, the function o can be computed only approximately, cf. [19].

Example 1.3. Let E be the set of all continuous, piecewise continuously
differentiable functions with u(0)= u(1)= 0, C E, and q given by

q(u):= Jo f(t, u(t), a(t)) dr.

For the numerical solution of such variational problems with an adaptive precision
steepest descent method see [21], [22].

* Received by the editors February 28, 1977, and in final revised form March 13, 1978.

" Institut fiJr Angewandte Mathematik und Statistik, Universitht Wiirzburg, Wiirzburg, West
Germany.
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Example 1.4. A similar approach for unconstrained control problems was used
by Klessig and Polak [10], where E L[0, T], C E, and q9 is given by

qg(u):= g(x(T, u)).

x(., u) is the solution of the differential equation

=f(x, u(t), t), x(O, u)= x0.

For some further comments about this example see 2.
Example 1.5. A time-optimal heat diffusion process leads to the problem of

heating a thin rod at one end-point such that a given temperature distribution
k0 L2[0, 1] will be approximated as soon as possible, subject to the L2-norm, with a
given accuracy e, see [23]. Using the bang-bang principle and the assumption that the.
optimal solution has at most k switching times, we get a finite dimensional optimiza-
tion problem of the kind (1)with

o(T, t):= T

for all (T, t) (T, tl, tk )6 k/l and

C:={(T, t): Ily(’, T, u(T, t))-ko(.)[12 <-e, O<-tl <=... <=tk <= T},

where the control u(T, t) is bang-bang with jumps at tl,’" ", tk and the temperature
distribution y (s, T, u) is given by

I0
T

2y(s, T, u):= Y cej cos (/zjs) u(’)exp(-tzj(T-’))d"
/=1

for all s [0, 1], T > 0, u L2[0, T] and with suitable constants
It will be our special aim to overcome the difficulty that the cost function q and its

derivative must be evaluated exactly to guarantee convergence. If the numerical
computation of q is not accurate enough, the convergence of the minimization
algorithm cannot be ensured in general. The main advantage of the subsequent
algorithm will be that it is possible to vary the accuracy of the evaluation of 0 or its
derivative. In particular, it is allowed to use low accuracy while far from a solution and
improve it step-by-step as a solution is approached. Klessig and Polak [9], [10], [16]
developed general algorithms and applied them to the special problems mentioned
above. Now we want to use a different approach.

The minimization procedure is derived from an unconstrained version defined in

’ [19] and in arbitrary normed linear spaces [20], which allows very general
gradient-type search directions restricted only by the condition that they are bounded
away from orthogonality with the gradient. Furthermore the steplength procedure is
the simple reduction method of Armijo [1] leading to short programming codes.

If restrictions appear, i.e. if C E, then they are handled by defining certain
penalty functions 0 n. The degree of penalizing the function q, i.e. the index n, is
controlled by the algorithm. This degree can be low, while far from a solution, but will
be raised infinitely, if a solution is approached.

So we get an algorithm which controls both the accuracy of the approximations
and the degree of penalizing q. It is possible to develop global convergence theorems
in the sense that a critical point is approximated.

In the next section, Example 1.4 is used to motivate the assumptions necessary to
construct the method and to illustrate the fundamental ideas of the algorithm. In 3
all assumptions are gathered to define the penalty functions, the accuracy of the



84 K. SCHITTKOWSKI

approximations, and to present the algorithm. Some preliminary results are
established in 4 in order to achieve (in the following section) a global convergence
theorem for the unconstrained case. Some convergence results for constrained prob-
lems are given in the last section.

2. A motivating example. In order to motivate the subsequent algorithm and its

assumptions about the structure and convergence of the approximations, consider the
following unrestricted optimal control problem" Let E be identical with LOCI0, T], the

space of all essentially bounded measurable functions from [0, T] into [’ subject to

the norm

[[ulloo := ess sup
O<<.t<= T

where u E and []. []2 denotes the Euclidean norm in ". The cost function o is defined
by

0(u) := g(x(T, u)).

x(., u) satisfies the differential equation

=f(x,u(t),t)

with x(0, u):= x0, and continuously differentiable functions g: ["- and f:"’[- ". Let us assume that this trajectory exists and is uniquely determined for
all u E. Leese [12] stated that the well known costate equations define the continu-
ous Fr6chet differential operator Do in the following way"

T

:= Jo p(t, u)r-uf(X(t, u), u(t), t)v(t) dtDo u )v

for all u, v e E. p(., u) is the solution of the differential equation

O
{, =-f(x(, u), u(t),

with end condition p(T, u):= (O/Ox)g(x(T, u)).
A gradient-type descent method for this unrestricted optimal control problem is

the following: Starting from an initial point u0 and a 3’ > 0, the algorithm constructs an
iteration sequence {uk} such that Uk+l= u,-B,s,. For the search direction s we

require that [Isl] 1 and Do(u,)s, _->v[[Dq(u)[[; the steplength /3 has to satisfy at
least the condition q(U+l)< q(uk).

In order to realize this algorithm computationally first we have to approximate
the controls or, more precisely, we have to determine a transformation from E into
the finite dimensional space El := m and back using some interpolation rule.
Various methods are used in practical implementations of methods solving optimal
control problems: Hull [7] proposed polynomials and Chebyshev polynomials,
Johnson [8] preferred cubic splines, Kraft [11] continuous piecewise linear functions.
Furthermore step functions with predetermined mesh points, cf. Klessig and Polak
[10], or with variable switching times, cf. Sargent and Sullivan [18] are frequently
used. But in all cases this process serves to identify special finite dimensional subsets

E’ c E with the space E. For our general purpose wedenote this relationship by a

so-called interpolation operator I’E-E and a so-called restriction operator
R:E El, and require that I, R are linear, bounded and satisfy the condition

IRu u, RJz z for all u E* and z
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Given now any control u E, we have to integrate the state and costate equations
to compute the cost function q and its derivative. For this we need a differential
equation solver of the following more general type" If 2 F(x, t) defines a differential
equation subject to the boundary conditions x(O)eAo, x(T)eAr, where Ao, Arc
"’, F: "’x [--> "’, then we get subsets xI(F, Ao, At) of E"’ x such that for each
e > 0 there is a l with

II ,z (.)- x --<
for all z ,)(l(F Ao, At) and l-> l. Here x(. ) is the exact solution of the differential
equation.

Application to the control problem leads to the definitions

x, p [", 6 [0, T], and

F((x) t), := ( of(x’u(t)’t)
p --xf(X, u(t), t)rp

Ao:={ ()" P 6 "}, AT := 0 X [
g(x

There are various numerical realizations to determine )(l(Fu, Ao, AT) of [2n X []l using
forward and backward integration. The most simple methods are based on one-step
integration functions, for example the Euler-Cauchy method as realized by Klessig
and Polak [10]. One-step and multi-step schemes of higher order are used by Hager
[6] for the discretization of optimal control problems. He also presents the cor-
responding convergence rates. Furthermore extrapolation methods as originally pro-
posed by Bulirsch and Stoer [3] can be used for the practical implementation.

Finally we have to use the integration and restriction operators, and also the
differential equation solver to compute approximations of the cost functions o and its

derivative D. For each XE and lN we determine
0

x(F,x, Ao, AT),

Y, 0 e R x R, and let

:=

and also a matrix q[(X)s El with the columns

0
f(y , x;,

where yj, qj, xi are the jth columns of Y, Q, and X, respectively, and ti is given by the
]th element of the first row of Rle with e(t):= (t,..., t), j 1,..., I.

The subsequent algorithm proceeds from the gradient-type descent method given
in the beginning of this section. The iterates are elements of the finite dimensional
spaces El or, equivalently, are elements of finite dimensional subspaces of E. The cost
function q and its derivative Dq are approximated by an integration rule. But the
index is not fixed, the algorithm raises it whenever advantageous. It is possible to
handle additional constraints via penalty functions.

3. The algorithm. Let L(E, ) be the set of all bounded linear operators from E
into . The norm in E and the corresponding operator norm of its dual space L(E, )
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is denoted by I1" II, Sometimes we need the distance function d(., U) for some subset U
of E, which is defined by

d(v, U):= inf IIv- ull
uU

for each v e E.
The approximations are defined on a family of normed linear spaces El,

No := N Id {0}. To simplify the notations, denote each norm in El by 1[. 1[, too. Suppose
that there is a monotone increasing family of subsets E of E, i.e. E c E’/I c E for
all e No, and that there are two sequences of continuous linear operators Rt:E
It" Et E, No. Let each Rt be bijective on E and its inverse be identical with It,
more precisely

(2) ItRlU u, RtllX x

for all u E* and x El. Rt and It will be called restriction or interpretation operator,
respectively. As a special seminorm we introduce for No and ]" e L(E, )

Ilf[[ := sup{lf(u)l’llull <= 1, u

The subsequent algorithm is based on the idea to penalize the function (, if an
iterate leaves the set C.

DEFINITION 3.1. A sequence of real-valued functions {"},, is called a sequence
of penalty functions for problem (1), if the following statements are valid:

a) Each q" is continuous and continuously Gateaux-differentiable on E; more
precisely, the linear and bounded differential operator Dq"(u)defines a continuous
function Dq": E--> L(E, ).

b) Let L be a closed and bounded subset of E, e > 0, and C be the neighborhood
C := {z eE: d(z, C)_-< e}. Then there isa 8>0, l, n, e N with

(3) IlD" (u)[I, >--
for all n >=n, l>-l, u eL\C.

Let {p"} be a sequence of penalty functions. Now it is possible to state the
assumption about the accuracy of the approximations of ", an important part of
our algorithm.

ASSUMPTION 3.2. For each n e N, e No, and x e Et there are subsets q7(x)c
and "(x)c L(Et, [R) such that the following conditions are valid:

a) The convergence of the approximations of q" and Dq" is uniform on every
closed and bounded subset U of E; that means for all e > 0 there exists a l e N with

(4) ] t (X )-- (4 (IlX )l <’ , ll(.9 "’ (x )- Dq:," (Itx )/,ll -< e

for all -> l, n e N, ( ’ (x) e ’(x), "(x) e cI)"(x), and for all x El with Itx U.
b) There exists positive real numbers R and I with

(5) IIR,II -< R, II1/11--< 1
for all e 0.

It is required that the convergence of the approximations is uniform with respect
to n. That means in practice that the convergence of the approximations depends on
the index n.

The approximations of q" and Do" are defined by subsets and not by functions.
This makes sense for the solution of Example 1.4, as mentioned in the last section, and
for Example 1.1 or 1.2, too. As the lth approximation at a point x e " we would use
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the results of the/th iteration step of an optimization procedure to maximize f(x, y),
y D, or to minimize II (x)-zll, z But such an optimization algorithm is in
general not unique and the iterates depend on a lot of parameters, for example on the
choice of the initial values.

It has been shown by the author [19], [21], [23] that suitable approximations of
the problems mentioned in Examples 1.2, 1.3, and 1.5 fulfill Assumption 3.2. Klessig
and Polak [9], [10] proved the uniform convergence of the approximations subject to
Examples 1.1 and 1.4. But it should be noted that their abstract prototype algorithm
as presented in [10] requires an assumption on the rate of improvement in the
precision of the approximation to the cost function which is not needed in 3.2.

Now we are able to develop an algorithm for solving the general minimization
problem (1). A simpler version for the unconstrained case can be found in [20]. A
point u E shall be called an optimal solution if the norm of the derivative is "small",
more precisely, if [IDq" (u)[[/<= e for an >_- l, n >_- n, and if the distance from the set C,
i.e. d(u, C), is less than e where e, l,, and n, are given by the user.

For the implementation of the procedure select positive real numbers lq, ot with

(6)

for all ] No; furthermore real numbers/zt, at, No, with

(7) /xt>0, lim/xt=0 and at >-at+l>0, limat=0.

The algorithm proceeds as follows:
ALGORITHM 3.3.
0) Initial stage: Choose q(0), n(0)N0, xoE,(o. For k =0, 1, 2,... compute

q(k + 1), n(k + 1), and Xk+l Eq(k+l)as follows:
1) Denote/:= q(k), n := n(k), x := xk.
2) Determine O, := rll0" (x,)[[ for a ’ (x)e ’(x).
3) If p N ,, let n := n + 1, otherwise go to step 4.
4) Calculate

(8) x+l:=Rt+l(IlX)Et+x, setl := /+1.

5) Determine a 7(x)e7(x)and a 7’(x)e’(x). Let p := ll7’(x)ll.
6) Compute a search direction s e E with IIs ll 1 and

(9) ?,

7) Evaluate the smallest nonnegative integer j with

(10) 7(x aips)7(x)
where 7(x aipsk)6O7(x aips) can be chosen arbitrarily.

8) If such a does not exist, go to step 4, otherwise go to 9.
9) Define the new iterate

and let h := f, q(k + 1):= L n (k + 1):= n.
In other words, the algorithm works as follows: Starting from an initial point, 3.3

yields an iteration sequence x E,(), k o, and furthermore two monotone
increasing sequences of positive integers {q(k)} and {n(k)} with lim q(k)= and
(this has to be shown) lim, n(k)= . In each iteration step the accuracy of the
approximations will be raised at least by 1. This might be replaced by a more general
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condition which only requires that the increase of the accuracy, defined by the integer
l, is unbounded.

If we omit all approximations, we see that the algorithm is frequently studied in
mathematical programming theory, see Polak, Sargent, Sebastian [17] and Leese [12]
for example, and in numerical implementations, see Murtagh and Sargent [14, pp.
215-246]. The computation of the search direction s can be characterized as a
gradient-type method. It is a "downhill" direction only restricted by condition (9)
which requires that s is bounded away from orthogonality with the gradient. It is
obvious that (9)can be replaced by a more general condition using the concept of
forcing functions as was done by Ortega and Rheinboldt [15].

The Armijo [1] steplength rule (10) is one of the most simple possibilities from
the computational point of view to guarantee global convergence of the underlying
algorithm. On the other hand, quadratic or cubic interpolation schemes yield better
numerical results. Therefore a combination of the two methods, in the sense that a
condition of the kind (10)or a related version is used as a stopping criterion for an
interpolation routine, is implemented sometimes in existing programming codes, see,
for example, Gill [5] and Biggs [2].

Since the approximations ’ are in general not functions, it is not possible to
guarantee the existence of a implementing inequality (10). Therefore the restriction

"f-< l" is necessary and it will be an important part of the convergence statement to
ensure that the loop from step 4 to step 8 is finite. Each index for which this loop will
be left, defines a new integer q(k + 1).

Note that the idea to transform the iterations from E to Eg and back by bounded
operators is related to a paper of Esser [4, pp. 69-88], who studied the discretization
of extremal problems

inf f(x) lim inf f (x).
xE k-,oo xEk

His results are based on the more general discretization theory of Stummel [24], who
examined the discrete convergence of mappings.

4. Some lreliminary results. In this section some preliminary results are gathered
which will be helpful for proving the subsequent convergence theorem. First note that
for each iterate x of Algorithm 3.3

(11) II+lXlk+1 =IXk or Iq(k+l)Xqk(k+l) Iq(k)Xk.

This follows from the assumption E} cE*+I for all l No. Further, consider an
operator A L(E, N), No. Then we get the estimates

(12) IIARII <-- R [IAI[, ]]Al]-<_ IIIAR]].

Step 7 of Algorithm 3.3 indicates that the mean value theorem is fundamental:
LEMMA 4.1. For each u, v E and A > 0 there exists a A * (0, A with

(" (u Av )- q" (u ) -ADq" (u A * v )v, n N.

As an immediate consequence of Assumption 3.2 we establish now the following
lemma, whose proof is obvious:

LEMMA 4.2. Assumption 3.2a) is equivalent to the [ollowing statement: Let U be a
closed, bounded subset o]’ E, and let e > 0. Then there is an l N with

(13) Ire ’ (Ru)- p" (u )1 <- e, IIq ’ (Ru)R Dq" (u )ll <- e,

[or all 1>-_l, neN, q’(Rtu)e Cb’(Ru), p’’ (RlU) ’’(RlU), and for all u e U f’IE’.
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It is easy to show that the boundedness of Dq implies the boundedness of its
approximations:

LEMMA 4.3. Assume that the function Dcp is bounded on a closed and bounded
subset L of E, n . Then there is an Mn > 0 and an lo with

[or all >- lo, x E with Ix L, and q ’’ (x dp’’(x ).
Proof. From Assumption 3.2 there is an lo with

I[o’’ (x )- Dq" (I,x )I/[I < 1

for all l->_ lo, x E with Ix L, and c" (x) "(x). Dr" is bounded on L, i.e. there
exists an M* > 0 with

(x) ["(x). Thenfor all u L. Now choose an > lo, x El with IlX 6 L, and a

I1 , (x)11 <= x / IID " (t x)1111 <= a / M*.Z =’. M.. Q.E.D

As mentioned in 3, it is an important part of the convergence analysis to show
the finiteness of the loop from step 8 to step 4 of Algorithm 3.3.

TIEOREM 4.4. The loop between step 4 and step 8 of Algorithm 3.3 is finite for
every k with {[Dq"(Iq(k)Xk)ll,(k)>0, where n := n(k), if p’’)>tx,k, n := n(k)+l
otherwise.

Proof. Assume that the loop from step 4 to step 8 is not finite for a k* with
IIz  0 :- q(k*), n* :- n(k*), if Pk* >/.t,,k*), n* :-- n(k*)+l other-
wise. To simplify the notations we omit the index n*. So we get for each l> l* a
p(x ,. ) ,(x ,. ), q(x ,. ) (x,. ), and a s k* E with

and

(14)

for all/’, 0 _-</" -<_ l.

qgl(xlk* Ol.jO k*S k* > C4l(Xlk --Ogj[J k*Vk*[l (X* )ll

Let > l*. For each A > 0 the mean value theorem 4.1 yields a ,* (0, A with

(15) o(it(xl. Apk.S k. ))_ q(Itxl. )= _Ap.Dq(it(xl. A .p k,))ilS

Define e*:=(yo’/(o’*R))llDq(It.xk.)llt.. Dq is continuous, i.e. there is a 6 > 0 with

(16) [[Oo(it(xl._A,pl l.)) Oq(ilxl.)ll<__k*S 81’

if IlI(x. A*pt,,.s,,.)-Izx.ll,z *p k*I . Applying Lemma 4.3 to L:--{II.Xk.} we
get an l>l* and an M>0 with 11 9(x ,.)ll=<M for all l>-ll, since x.=RtIt.Xk..
Choose a A with Ao’*MI < 6. From

h *p ,*I =< ,11o (x ,)11I
<- Ao’*MI < 6

it follows that (16) is valid for all _-> l. Assumption 3.2 with U := {I,xk,} shows there
is an 12 -> la with

Iq (xtk )stk Vq(Itx tk* )Itstk* ]< */8
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for all => 12. Combining this estimate with (16) we get

ID(I,(x* --A *p’k*S* ))I,s* }(X )S*I
llDm(I,(x. a *,.s. ))- D@(I,x. )ll

(17) +lD(Ilx. )IlS* (X. )S.
<e*/4, or

(z, (x. *’ .))I,. *.s =(x )s. e /4.

From Lemma 4.2, an 13 12 can be found with

1 (x. )R, D(,.x.)111 I1; (R, (I,.x.))R, D(I,.x.)l,
lDq,.x.)ll,.

for all 13. This yields, together with (12),

(18) IID q,.x.)ll, IID q,.x.)ll,.
]lD(I,.x.)ll,.

since E E.. Therefore

(19) .11 (x. )11

>3 y
4 llD(I,.x.)ll,.ll;(x.

and

(20)

(21)

Summing up, we get for each h -<_ 8/(tr*MI) and 13 a A* e (0, h with

q,(x. -ao..))-(x.)+ ,(x.)s.
=-xo.o(Ii(x- .s
< -hp.;(x.)s +ho’. *

hllD(I,.x.)ll,.ll;(x .)11

(I,.x.)l],.

Now choose a * e N with aj. <= 8/(o’*MI) and define
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The convergence of the approximations of c is uniform on

S(6, I,.x,.) := {u E’[[u-I,.x,.[l<-a}.

There is an 14 13 with

(22) Iq,(z,)- q (Iz,)[ < e

for all >= 14, ltZl E S(6, II*Xk*), (491(Zl)E lffJl(Zl). Let -> 14. Since

Ilxl* II*Xk* e S(6, II*Xk*) and Ii(xl* . )e S(6, Ii.xk.),ai*p k*S

estimate (22) is valid for these points. Finally we get from (21) and (22)

I,. I,. I,. )+ (x I,.
"< qg(II(X* --Oj*Pk*Slk* ))--qP(IlXlk* )-t’Ogj*Ok*(O(Xk* )Slk +2e

<0,

or qgt(x,, aj*p’ ,*) < (X*s *3’*[[q-ai.p (x.)[[ for all > 14. This contradicts
assumption (14). Q.E.D.

5. Global convergence tor the unconstrained problem. Now consider the uncon-
strained minimization problem (1), i.e. the case C E. This implies q" q for all n. It
is our aim to develop a global convergence theorem in the sense that a critical point of
q is approximated. But we cannot ensure that we get for each e > 0 a k I with
[[Dq(I.()ll<e, since we have no assumption of the kind LIIE}=E. It is only
possible to show the following global convergence result:

THEOREM 5.1. Let {xk} be an infinite sequence constructed by Algorithm 3.3 with
Xk Eq(k) and IIO0(I.(;c)ll.()> 0 for all k. Assume that there is a bounded, closed
subset L ofE with:

a) Iq(k)Xk L for all k.
b) q is bounded below on L.
c) Dp is bounded on L.
d) Dq9 is uniformly continuous on U(L) := {y 6E: d(y,L)<=tr*IM}, where Mis the

bound defined by Lemma 4.3 with respect to L.
Then there exists for each e > 0 a k with

(23)

Proof. Algorithm 3.3 constructs iterates Xk Eq(k) with

q(k+l (k+l

where 0 -< j =< q (k + 1), q (k + 1) > q (k). Since Iq(k + 1)x (k+ 1) Iq(k)Xk L, Lemma 4.3.
guarantees the existence of an M> 0 and a k E [N with

(24) [[q9 ;(k +1)(X(k+ 1))[[ M
for all k >_-kl.

The following assumption will lead to a contradiction: There is an e > 0 such that
for all k hi

(25) IlDo(I()x)llo()> .
A trivial consequence of (25)is [ID(I(x)l[> for all k. Dq is uniformly continuous
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on U(L). There is a 6 > 0 with

(26) IID (x)-Dq (Y)ll <
8 IR

for all x, yeU(L) with Ilx-y[[-<-6. Denote
min (1, 6/(&r*M)). Since Itx Iq(k)Xk eL, we have

(27)

l:=q(k+l) and choose a<-_

for all k >_- kl, 0 < , * < A. Therefore

(28) I,(x-a*O’kSk)e U(L)

Estimate (26) yields

(29)

and IlI (x A*Os)- Itx <- 6.

IID (Ix Dq (It (x A *ps ))11 <
8 IR

for all k kl, 0<A* <A. From Assumption 3.2 we get a k2>=kl with

(30)
8R

for all k >_-k2, := q(k + 1). Furthermore we conclude from Lemma 4.2 that there is a
k3 -> k2 with

(31 ) _-> ][Do (Iq(k)Xk )l]t --][ (X lk )gt Do (Itx k)ll,
>-- 8,

for all k _-> k3, :-- q(k + 1). This implies

/_[[ __[[ 1 __[[ ![111 >3 e
(32)

for all k _-> k3, := q(k + 1). Combining (29) with (30) we get for all k => k3, := q(k +
1), and O<A* <A =<min (1, 6/(Io’*M))

IDq(Ii(xl A *ps ))Itsl q}(X )S
<-_ IIlDq (Ii (x A *p ls )) Do (Ix l )l] + [De (Itx )Its l P (x l )s l

1 ye

4R
or

(33) Dq(It(x-h*ps))Its >-q}(x)s 1 Te
4R

Furthermore

(34) (0} (x,,)s _-> II, (x
3 Te
4R
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For each A _-<min (1, 6/(Icr*M)), k ->k3, := q(k + 1) there is a A* (0, A) such that
the following estimates are valid"

-o

N-IO 5(x)s- see (33)

(35) N-Ap -{ see (34)

Ace2/R= see (32)

<

Now choose a j e N0 with e Nmin (1, 8/(c*IM)) and define
2

Assumption 3.2 shows there is an l,. e N with

(36) [,(Zr)-- @(I,z,)I e *

for all r N 1., z E with Lz U(L), and (z) (z,). Consider a k4 k3 such that
q(k + 1)max (l*, ]) for all k k4. Then

(37)
,(x-os)e (),

-0))1
for all k k4, := q (k + 1). Defining A := e the following estimates are easily verified:

,(

(38)

<0 (see (37) and (35)) or

o li (x )11.
Therefore j is feasible with respect to the j-computation of step 7 of Algorithm 3.3;
more precisely j N j for all k k4. Since i i, we conclude for k k4 and
l:=q(k+l),

9 2%?e=/R see (32)

Applying (36)we get

(z,(+,+,) e,(x+,) + * ,(x)- 8* (z,x)-7*
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or
q (Iq(k+lXk+1) -< q (Iq(kXk ) 7e *

for all k ->_ k4. Therefore we get

lim q (I,(k >Xk ) --00,
koo

but the function q is bounded below on L, leading to a contradiction. Q.E.D.
If L is a ball in E, then the uniform continuity of the Gateaux-differential

operator Dq implies the existence of the Fr6chet-derivative in L; see for example
Ljusternik and Sobolev [13, p. 310].

6. Global convergence for the constrained problem. Consider now the general
problem (1) with restrictions and let {q"} be a sequence of penalty functions. In 4 we
have seen that the loop from step 8 to step 4 is finite. Using the convergence result for
the unconstrained case it is easy to show that limk_,o n(k)= oo:

THEORFM 6.1. Let {xk} be an infinite sequence constructed by Algorithm 3.3 with
Xk Eq(k) and IIDw "(+(z.(>x)ll(> 0 for all k. Assume that there is a bounded,
closed subset L ofE with:

a) I(kyXk L for all k.
b) q" is bounded below on L for each n.
c) Dq" is bounded on L for each n.
d) Dq" is uniformly continuous on U,(L) := {y E: d(y,L)<-r*IM,}, where M, is

the bound defined by Lemma 4.3 with respect to L, n IN.
Then we have

lim n(k)= oo(39)
k-.oo

and there is a subsequence of {xk}, i.e. an infinite subset S of IN with

(40) lim IIDq"(z)x)[I.t 0,
keS

(41) lim d(I(kXk, C)= 0.
kS

Pro@ Assume that there is a k* e IN with

p
for all k=k /:= q(k), n := n(k ). Then A,lgorithm 3.3 is a procedure for the, ,
unconstrained minimization of the function q with initial values q(k ), n(k ), and
Xk*. Since all assumptions of Theorem 5.1 are satisfied, we conclude from the con-
vergence statement that there is a k0->_ k* with

(42) IIDo"*(I.(orXo)ll.(ko < .*/(2*I).

Lemma 4.2 yields a k k* with

11, (RtI,x)R,-D (I,x)[l, < ../(2*I)

for all k N k, := q(k). This implies for each k N k, := q(k)

(see (12))
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Without loss of generality we assume that ko>-kl, since (42) is valid for infinitely
many k. This implies

ko < t-l"n

and leads to a contradiction; we get limk_,n(k)-o. Let e > 0 be chosen arbitrarily.
Step 3 of Algorithm 3.3 and condition (7) ensure that there is a ko with

’ (x)ll < /(2R )(q(k

for infinitely many k.-> k0. From Lemma 4.2 it follows that there is a k => k0 with

[1(0 q(k)n’ (Rq (k)lq(k)Xk )Rq(k) Pq" (Iq(k)Xk )llq(k) < /2

for all k >-kl, n e N. Therefore we get a k ->_ k with

n(k)’ n(k_-< o( (x,)R( Do (Z(;c)ll,
+ g ll, "’’ (x)llq(k)

<e/2+Re/(2R)

This shows statement (40).
In order to show (41), assume that there is an e > 0 and an infinite subset S’ of S

with

d(Iq(k)Xk, C)> e(43)

for all k S’. Let

C := {y E" d(y, C)<_ e}.

Since {"} is a sequence of penalty functions (see Definition 3.1) we know that there is a, > 0 and l, n, e N with

for all l-l, n _->n, and u L\C. Now choose a k S’ with q(k)>=l and n(k)>=n.
From Iq()x L\C we conclude for all k >= k, k S’

but this contradicts (40). Q.E.D.
Since the statement of the last theorem is only concerned with the penalty functions

q, we need some stronger assumptions to get convergence results for minimizing the
original function . Let us first define

C := {u e E" d(u, C) <- e}

for each e > 0.
THEOREM 6.2. Let C be bounded, LJIE E and p be uniformly continuous on C

for some e > 0. Furthermore let {q"} be a sequence of convex penalty functions with
q"(u)>-(u) for all u e C, lim,_,oo q"(u) q(u) uniformly on C and {Xk} an iteration
sequence ofAlgorithm 3.3 both satisfying the assumptions of Theorem 6.1. Then there is
an infinite subset S of N with

,(k) (Xk) inf o (u) =: m.(44) lim (q(k)
kS uC
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If there exists a minimizing point with respect to each qn, then

"((Xk) m.(45) lim minq (u)=m and lim
noo uE

Proof. Consider a sequence Yk E C with

(46) lim ((yk) inf ((u)= m.
k-..oo C

Since UIE E, we are able to choose Yk E E(k) with suitable l(k) N. Let S be an
infinite subset of defined by Theorem 6.1. Because limkesd(iq(k)Xk, C)=0 and
limk-, q (k)= oo, we assume without loss of generality that Iq(k)Xk C and q (k)_-> (k)
for all k S. The convexity of the penalty functions implies

(47) q" (v )- q" (u >- Dp" (u )(v u)

for all u, v E and for all n. Since limks d(Iq(k)Xk, C)= 0, we get for each k a Wk C
with

(48) lim IlI ( )x w ll o,
keS

Therefore we have

m inf ((u)<=lim (Wk)
ueC

(49)

-< lim q (Iqo,)Xk)
k$

<= lim q ,,(k (Iq(k)Xk )
kS

<-lim q"k)(I,k)Xk ).
kS

The third inequality follows from q(U)<--q"(k)(u) for u C and the uniform con-

vergence of {q"} in C. Inequality (47) yields for all k S

q
,(k(I,kk ,k(yk Dk(Iqkk)(Yk Ikk).

Since Yk Ek E, we get

ID"(Iqx)(y -I()1

The boundedness of {Yk} and {Iak)Xk} and statement (40) imply

lim ,k)(Iqkk) lim,k)(yk lim (Yk) m.
kS kS kS

The last estimate results from the fact that Yk C and from the uniform convergence
of {qn} in C. Therefore we conclude, together with (49),

lim p"(k)(Iq(kXk m.
kS

Equation (44) follows then from Assumption 3.2. It is presumed that there are z, E
with

q" (z,,) min q" (z) =: m,,.
zE
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Condition (3) of Definition 3.1 indicates that lim,_ d(z,,, C)= 0. There is a sequence
u, 6 C with lim,,_. ]lu,-z,,I] 0. The convergence of {q"} to q in C gives e,, >0,
6k > 0 with lim,,_oo e, 0, limk_oo 6k 0 such that

m ---->q(yk)--tk ---->q (yk)--e,--tk >-- m,, e,, tk

for all n, k e N. By picking n large and then k large, we conclude that

m ->_ lim m,, ->_ lim m, li_m q"(z,) >- lirn q(z,).

The last inequality follows from the fact that "(z,,)>-q(z,,), if z,, C, and from the
uniform convergence of {q"} in C. From

lim (z,)_-> lirn q(u,,)_-> m

we get

lim mn m.

Therefore it is not possible that there is any accumulation point of {qgn(k)(Iq(k)Xk)}
below m. This shows statement (45) using Assumption 3.2 again. Q.E.D.
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SEARCH GAMES WITH MOBILE AND IMMOBILE HIDER*

SHMUEL GAL

Abstract. We consider search games in which the searcher moves along a continuous trajectory in a set
Q until he captures the hider, where Q is either a network or a two (or more) dimensional region. We
distinguish between two types of games; in the first type which is considered in the first part of the paper, the
hider is immobile while in the second type of games which is considered in the rest of the paper, the hider is
mobile. A complete solution is presented for some of the games, while for others only upper and lower
bounds are given and some open problems associated with those games are presented for further research.

1. Introduction. The work on search problems which are considered in this
paper has been developed in two directions. The first direction was initiated by
Bellman [6], who introduced the following search problem: An immobile hider is
located on the real line according to a known probability distribution. A searcher who
can move in unit velocity wishes to discover the hider in minimal expected time. It is
assumed that the searcher cannot see the hider until he actually reaches the point in
which the hider is located and the time elapsed until this moment is the duration of the
search.

This problem has been considered by Beck in [2] and [3] and by Franck in [9].
They found some properties of the optimal search trajectory, but a complete solution
to the problem as presented in [6] has not yet been found.

In their paper [4], Beck and Newman presented a solution for the search on the
real line considered as a game. In this game the hider can choose his hiding point using
any probability distribution whose first absolute moment is bounded by a known
constant, while the searcher can move along any continuous trajectory. This author
considered in [12], and in [13] together with Chezan, some games of this type played
in other regions, e.g., a set of rays or a plane and proved that the minimax search
trajectories are of the exponential type.

Some other variations of this problem were presented by Beck and Warren [5]
and by Fristedt and Heath [10] who used a different cost function, and by McCabe in
[15] who considered the search for a random walker. All the above-mentioned
problems belonging to the first class consider search in an unbounded region for a
hider who is usually immobile. The cases of a mobile hider presented in [15] and in
4.3 of [13] consider a motion of a very specific type.

The second direction of research was initiated by the search games presented by
Isaacs in his book [14, pp. 345-350] and especially by his Princess and Monster game.
In this search game, both the searcher (the Monster) and the hider (the Princess) can
move in a bounded region Q. Each of the players cannot see the other until the
distance between them is less than r, and at this very moment capture occurs. As a
stepping stone for the case where Q is a general region, Isaacs proposed the simpler
problem where it is the boundary of a circle.

The problem where both the searcher and the hider can move on the boundary of
a circle has been solved by Alpern [1], Foreman [7] and Zelikin [19]. Another version
of this problem has been solved by Foreman in [8]. In [17] Wilson presented a solution
of a discrete version of the problem. Worsham [18] described a numerical algorithm
for solving discrete search problems of this type.

* Received by the editors November 14, 1977, and in revised form May 3, 1978.
t IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 and IBM Israel

Scientific Center, Technion City, Haifa, Israel.
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In the present paper we shall consider search games of the following type: The
search takes place in a bounded set O which will be called the searching set. In some of
the games O will be a two (or higher dimensional) region, while in other cases O will
be a network. The searcher starts moving from a specified point O called the origin,
with maximum velocity 1 (the time unit can be always chosen so as to normalize this
maximal velocity). The maximal velocity of the hider is w. We shall distinguish
between cases where w is equal to zero, i.e., an immobile hider, and cases where
w > 0. The results we obtained are also valid for the case where the hider’s velocity is
unbounded. It is assumed that the searcher and the hider cannot see one another until
their distance is less than or equal to the discovery radius r and at that very moment
capture occurs. In cases where O is a network, r will be taken as zero while for cases
where O has two or more dimensions, it will be assumed that r is very small in
comparison with the "magnitude" of the set Q.

This problem is considered as a two-person zero-sum game with the loss of the
searcher (or the gain of the hider) being the expected time elapsed until capture
occurs. A pure strategy of the searcher is a trajectory inside O starting from the origin
O; a pure strategy of the hider is a point in O if he is immobile and a trajectory inside
O if he is mobile. We shall denote a strategy of the searcher by s and a strategy of the
hider by h. The strategies will usually be mixed which means that the user determines
his strategy according to a probability distribution on a set of pure strategies. Let
v(s, h) be the expected capure time when the searcher uses strategy s and the hider
uses h. The value of strategy s of the searcher is defined as

(1) v(s)=supv(s,h)
h

and the value of the searcher as

(2) 0 inf v (s).

The value of strategy h of the hider is defined as

(3) v(h )= inf v(s, h)

and the value of the hider as

(4) _v =sup v(h) (_v -< 0).
h

Usually we shall have 0 =_v v, and in this case the value of the game is denoted by v.
An optimal (resp. e-optimal)strategy of the searcher is a strategy s* which

satisfies for all h"

(5) v(s*,h)<-v (resp. <= v(1 + e)).

An optimal (resp. e-optimal) strategy of the hider is a strategy h* which satisfies
for all s"

(6) v(s,h*)->_-v (resp. -> v(1- e)).

It should be noted that in order to prove the optimality of s* it is sufficient to
prove (5) only for pure strategies of the hider. A similar statement holds for h*.

In this paper we present the optimal (or e-optimal) strategies and the value for
several search games belonging to the type previously described. The description of
the results will be presented in the next chapter.
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2. Description of the results. In order to describe the results we use some
additional notations:

/., -The Lebesgue measure of the set O. Thus if the players move on a network,/
is the sum of the lengths of all the arcs in O, while if O is a two or three
dimensional region then/ is the area or the volume.

g--The maximal rate of discovery of the searcher, i.e., the maximal measure of
points which can be detected in a time unit. Since the maximal velocity of the
searcher is 1, it follows that for the case where O is a network g 1, for the
case where O is a two dime’nsional region, then the sweep width is 2r so that
the maximal area g of the strip which can be detected in a unit time interval is
2r; by a similar reasoning, g is defined as r2 for three dimensional regions,
etc.

A general description of the results follows:
In 3 we consider the case of an immobile hider. If O is two dimensional then it

has been demonstrated by Isaacs (see [14, pp. 345-346]), that the value of the game is
approximately /./(2g). We shall extend Isaacs’ result to some networks: For an
Eulerian network, the same result is true so that the value is 1/2(i/g) (=1/2/ because
g 1 for the case of a network).

We shall show that 1/2/ is the lower bound for any network. The other extreme
case which represents the upper bound occurs when O is a tree. In this case we prove
that the value is/. An interesting intermediate case when O consists of an uneven
number of nonintersecting paths of the same length between two points is also
considered.

The subsequent chapters are dedicted to search games with a mobile hider. In 4
we solve such a problem for the case where O is a set of k nonintersecting paths of
equal length, connecting two points. We show that the value of this game is I/g (=/).
This result which is an extension of the Princess and Monster game on the circle (see
[1], [7], [17] and [19]) is the first step towards 5 where we consider the case of
searching for a mobile hider in a two (or more) dimensional region. We show there
that if the searching region is convex then the value v of this search game satisfies
v--. I/g and we present e-optimal strategies for both players.

3. The case of an immobile hider.
3A. General description. The search games considered in this section will usu-

ally take place in a network O, where in this paper a network will mean any connected
finite set of arcs. An immobile hider chooses a hiding point in O and the searcher
chooses a searching trajectory s starting from the origin O. It can obviously be
assumed that the searcher will move along s with maximal speed because any pure
search strategy s which does not use the maximal velocity is dominated by the pure
strategy s which uses the maximal velocity along the trajectory visited by s l. The
capture time will be the time elapsed from the beginning of the search until the
moment the searcher reaches the hiding point.

It will be assumed that both the hider and the searcher can use mixed strategies:
A mixed strategy of the hider is a distribution on O, while a mixed strategy of the
searcher is a probability distribution over a set of possible trajectories. Under the
above-mentioned assumptions the search game has a value v. This can be shown as
follows: Let B {xl, x2, , x,, .} be a denumerable set of points which is dense in
O. For all n 1, 2,. consider the search game Gn in which the hider can choose any
point in O while the searcher can choose any trajectory that starts from the origin and
move to a point xil {x, , xn}, then move to another point xi2 {Xl, , x} etc.
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Since the hider is immobile, it is sufficient to take into account only a finite set of pure
search strategies and thus Gn has a value vn. It is obvious that v, is a monotone
decreasing sequence and thus has a limit v. We now show that v is the value of the
original game described in this section: The searcher can guarantee a capture time not
more than v -<_ v + e by using an optimal strategy for G,, where n is large enough. On
the other hand since B is dense in (2), then any e-optimal hiding strategy h,* (e) for G,
where n is large enough, is a 2e-optimal strategy for the original game, because for
any pure search strategy S for the original game, there exists a pure search strategy S
for G,, such that v (S, h ,*(e )) > v (S,,, h (e))- e -> vn 2e _>= v 2e. Thus, for any e > 0
the hider can guarantee an expected capture time which exceeds v- 2e.

3B. An Eulerian network. In our paper, an Eulerian network will mean a
connected set of arcs which can be obtained by drawing a continuous closed curve S
which does not go through any of the arcs more than once (but it may pass through a
vertex several times). Such a curve will be called an Eulerian curve. A necessary and
sufficient condition for a (connected) network (2) to have such a property is that each
of its vertices has an even degree (i.e. an even number of arcs attached to it).

We assume that the searcher has to start from the origin O, which mightbe any
point in C) not necessarily a vertex, and has to move in O until he finds the (immobile)
hider. The solution of the search problem for Eulerian network can be obtained by the
same method used by Isaacs [14, pp. 345-346]. The searcher can assure himself of an
expected capture time not more than 1/2x (x being the sum of the lengths of the arcs) by
using the following strategy: choose any Eulerian curve S*; there are two directions of
encircling S*; choose each of them with probability 1/2.

The hider can assure himself that the expected capture time will be at least 1/2x by
using a uniform distribution on O for the hiding point. A simple proof of the
above-mentioned statements is given in [14]. These statements can be summed up by
the following lemma:

LEMMA 1. The value of the search game with an immobile hider for an Eulerian
network is x/2.

3C. General bounds. In this section we consider the case where O can be any
network which satisfies the assumptions of 3A.

Let S* be a closed curve which passes through all the points of O having a
minimal length (S* may go more than once through some of the arcs). The length of S*
will be denoted by L(S*). The following result holds for any network O:

LEMMA 2. The value v of the search game with immobile hider satisfies

(7) 1/2Ix <= v <- 1/2L(S*).

Proof. The left side of (7)can be proved as follows: the hider can keep the
capture time to be at least 1/2/x by using the strategy hu which chooses the hiding point
uniformly on O. Then for any search trajectory s the rate of coverage of points not
encountered before is at most 1 (the maximal velocity of the searcher) thus v(s, h,) >>-
j (1/x )t dt x/2.

The right side of (7)can be achieved if the searcher chooses the strategy s which
chooses each of the two directions of encircling S* with probability 1/2. Assume that
the hider chooses a point k. Let the distance between the origin O and k alongside S*
be dl for one direction and d2 for the second direction. Then clearly d + d2-<-L(S*);
thus for any k

l)(S1, h) 1/2dl + 1/2d2 <= 1/2L(S*) Q.E.D.
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It can be easily seen that for any network, L(S*)<-_ 2/x; thus Lemma 2 implies that

(8)

It has been shown in 3B that for Eulerian networks the value v is equal to the
leftside of (8). There exist networks such that v is equal to the rightside of (8) namely
x. A network which has such a property is a tree. This result will be established in the
next section.

3D. Searching on a tree. In this section we consider the case when the set O is a
tree. By adding an extra node at the origin O (if it is not a node in the original tree) the
tree can be always represented in such a way that the origin (i.e. the starting point) is
at the root of the tree. We shall establish the following result"

THEOREM 1. Let v be the value of the search game for an immobile hider in a tree
O. Then

(9)

Proof. It follows from the rightside of (8) that v <_-x. We shall establish the fact
that v = Ix by proving the following lemma"

LEMMA 3. Consider two trees 0 and O’ as depicted in Fig. 1. The only difference
between 0 and O’ is that two adjacent terminal branches DA of length a and DA2 Of
length a2, are replaced by one terminal branch DA’ of length al + a2. Let v be the value
of the search game in 0 and let v’ be the value of the search game in (2)’; then v >= v’.

O O

D

Aa A2

D

FIG.

Proof of Lemma 3. Any hiding strategy in a tree is obviously dominated by a
hiding strategy which chooses points only among the terminal nodes of the tree and
thus we can assume that an optimal hiding strategy h’* has this property. Such a hiding
strategy h’* satisfies for any search trajectory s’ in O’:

(10) v(s’, h’*)>=v’ (see (6)).

Let us define a hiding strategy h* in (2) by attaching to each terminal node of (), the
same probability of h’*, except that the probability of choosing the new nodes A1 and
A2, which will be denoted by pl and p2 respectively, is given by

(11) al a2
/31--p’ and Pz=P’

al + a2 al + a2

where p’ is the probability of choosing A’ under h’* and al, a: are depicted in Fig. 1.
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We shall show that v >_- v’ by proving that for any search trajectory s in O

(12) v(s,h*)>-v ’.

In order to prove (12) we proceed as follows: If the hider uses a strategy h* which
chooses its hiding point at terminal nodes only, then it is best for the searcher to use
only search trajectories which have the following characteristics: It starts from the
root O, moves in the shortest route to a terminal node, then moves in the shortest
route to another terminal node and so on until all the terminal nodes have been
visited. Therefore, there exist a one to one correspondence between the relevant
search trajectories and the permutations of the terminal nodes. Bearing that in mind
and assuming (for convenience) that the search strategy s visits the terminal node A1
before visiting A2 (the proof is similar for the case where A2 is visited before A 1) then
s can be represented by the following permutation of terminal nodes:

(13)

Let us denote the distance from the origin O to the terminal node Ak along the
trajectory s, by dk and let h* assign a probability p to the hiding point A; then
inequality (12) is equivalent to

I j L

(14) _, di.,pi., + dip1 + di.,pj., + d2p2 + 2 dl.,Pl., >- v’.
m=l m=l rn=l

(15)

and

In order to prove (14) let us consider two search trajectories in O’:

(16)

It follows from (10) that

(17) v(sl, h’*) >- v’
and

(18) I.)(S 2, h )>=v.

Let us denote the distance from the origin O to the terminal node A along the
trajectory s and s by dl and d2k respectively and the distance to the terminal node
A’ by d] and d. respectively. The following relations hold:

(19) dli,,, d2i= di,.,

(20) d’l d + a2,

(21) d’2 <=d2-al,
(22) di,,. d.. + 2a2,

(23) d2i,. <-- dj.. 2a 1,

(24) dlt,. <= dl=,

(25) dzl,, <= dl,..
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thus

It follows from (17) and (18) that

al a2v(s’l, h’*)+v(s’, h’*)>= v
al+a2 al+a2

al (__ y L )dliPi,,, + d’xp + Y. dli.,p,..+ dll.,Pl.,
al + a2 m=l m=l

a2 (
l J L

+- d2si,,,pi,.,, + Y’. d2i,.Pi,., + d’2p’ + d21,,,Pt >- v’.
al + a2 m=l m=l m=l

Using (19)-(25)we obtain

J L al al
(26) Y. di.pi,. + 2 di.P,. + , dlrPlm+dip’+d2p’>- v’

m=l m=l m=l al + a2 al + a2

and now inequality (14) immediately follows from (11) and (26). Q.E.D.
Using Lemma 3 we can readily establish by induction on the number of terminal

nodes, that the inequality v->x holds for any tree thus completing the proof of
Theorem 1.

It is worth noting that Lemma 3 also presents, as a byproduct, a method for
finding an optimal hiding strategy (an optimal strategy for the searcher is the one
described in the proof of Lemma 2).

3E. The case of k parallel paths. In 3C it has been proved that for any network
O, the value of the search game v satisfies 1/2Ix <- v <= 1/2L(S*) where L(S*) is the minimal
length of a closed curve which passes through every point of O. For an Eulerian
network L(S*)=/x while for a tree L(S*)= 2/x so that Lemma 1 and Theorem 1
establish the fact that for these two cases v 1/2L(S*). It might seem to the reader that
this result holds for all networks but lhis is not true as will be demonstrated by the
examples to be presented in this section.

Each network O considered in this section consists of a set of k nonintersecting
arcs, each of them of equal length a, which join two points O and A. Such networks
will be encountered again in the next section which considers search games with a
mobile hider but here we are concerned with an immobile hider. If the number of arcs
k is even then O is an Eulerian network and the solution to the search game is sim pie,
but if k is an odd number greater than one, then the search game seems to be quite
complicated. We shall not find the complete solution for these games but only
establish the strict inequality

(27) v < 1/2L(S*)
which did not occur in our previous examples (where v is equal to L(S*)).

LEMMA 4. If Q is a set of k nonintersecting arcs of equal length which join 0 and
A, and k is odd, then the value of the search game v, satisfies (27).

Proof. At first we note that any closed curve which visits any point of Q has to

repeat itself on one of the arcs; thus L(S*)= (k + 1)a so that (27) is equivalent to

(k + 1)a
(28) v<.

2

Inequality (28) is established by presenting the following mixed search strategy s’:
In this strategy the searcher starts from O, chooses each of the arcs with equal
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probability (l/k) and moves to A; then he chooses each of the remaining arcs with
equal probability (1/(k- 1)) and moves back to O and so on until all the arcs have
been visited. Let h be any pure strategy (i.e. a point in O) and assume that the distance
of this point from A is d so that the distance from O is a-d. Let Ei, 1,.. , [k/2]
be the event that the hider will be discovered during the time period (2(i- 1)a, 2ia]
and let Et be the event that the hider will be discovered during the time period
((k 1)a, ka ]; then

[k/2l

v(s’,h)= Y p(Ei)" (2(i-1)a+a)+p(Er)" ((k-1)a+a-d)
i=1

t/2 2 1
(29) -;-(2(i-1)a+a)+-7((k-1)a+a-d

i=1

+ a--_<- + a <----a O.E.D.

The case where O consists of an odd number of arcs joining O and A has been
used in order to show that there are cases in which v<1/2L(S*), but this case, is
interesting by itself. It is amazing that the solution of the game is simple for any even k
(and also, as will be demonstrated in the next chapter, for any k, odd or even, if the
hider is mobile) but it may be quite complicated to solve this game for the case where
k is equal only to three. The reasonable symmetric search strategy s’ which was used
in (29) can assure the searcher of losing no more than (k/2 + 1/(2k))a but it can be
shown that the hider cannot achieve (or even e-achieve) this value. Thus, s’ is not an
optimal strategy for an odd number of arcs (in spite of its being optimal for an even
number of arcs). It seems to us that the optimal strategies for the odd number case
may be quite complicated.

4. Mobile hider on k parallel arcs.
4A. General description. In this section we consider the following search game:

The searching set O is a set of k nonintersecting arcs bl," , bk joining two points O
and A as depicted in Fig. 2, the length of each arc being equal to a. The searcher has
to start moving from O with maximal velocity equal to unity. The hider can choose an

FIG. 2

arbitrary starting point and from this point he can move along any continuous
trajectory in O with maximal velocity w. In this section we shall usually assume that
w => 1. The capture time which is the loss of the searcher (or the gain of the hider) is
the time elapsed until the searcher reaches a point which is occupied at the same time
by the hider. For the case k > 2 it will be assumed that the searcher can only pass but
not stay at the points O or A, or alternatively that the hider can pass from any arc bi to
any other arc b. not only through O or A but also in an e distance from them. Such a
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search game is an extension of the Princess and Monster game on the cirole which has
been proposed as an open problem in [14, p. 350] and solved in the papers [1], [7],
[17] and [19]. The game on the circle is a special case, namely k 2, of the game
considered in this chapter. The search on k parallel arcs is interesting in itself and in
addition will be used in order to obtain an approximation for the value of search
games in higher dimensional sets.

4B. Solution of the game. We shall show that the optimal strategies of the
searcher and the hider are both of the type z(X, T)defined as follows

DEFINITION 1. Let X be either the point O or the point A and let 0 <= T < be
any real number; then the (random) trajectory z(X, T) is defined by the following
rules: At time T starting from point X, choose an integer i, 1 <= <= k with each of the
integers {1, 2,. , k} having the same probability of choice (1/k) and move along the
arc b with unit velocity until arriving to the end point of this arc (O or A); then (at
time T+a)choose an integer j again with uniform probability on the integers
1, 2,. , k, independently on i, and move along bi until reaching the other end point
(A or O) and so on. Using Definition 1 we state the following theorem:

THEOREM 2. For the search game presented in 4A: An optimal strategy for the
searcher is z (0, 0). An e-optimal strategy for the hider is to start moving with maximal
speed to the point A, stay there until time a e and then use the strategy z (A, a e ). The
value of the game is ka (which is equal to tx/g as defined in 2; this last form of the
formula will be encountered in the next section).

The theorem will be proved using three lemmas. The following lemma is the
fundamental one and will also be used in the next section.

FUNDAMENTAL LEMMA. Let Q be the set of k parallel arcs joining 0 and A
defined in 4A. Assume that at time 0, k horses leave the point 0 and each of them
rides in unit velocity along a different arc from 0 to A. At the same time 0 a giraffe
starts moving from any point different from 0 along a trajectory h(t) where both the
trajectory and the (not necessarily constant) velocity along this trajectory are arbitrary.
The trajectory h (t) should be continuous so that in passing from any arc b to any arc b
the giraffe has to go through either 0 or A; then:

(a) For any trajectory h (t), the giraffe will meet at least one horse in the time period
O<t<=a.

(b) If the giraffe moves with velocity which does not exceed unity then he will not
meet more than one horse in the time period 0 < < a.

Proof of part (a). Let b(t), 1, , k, 0 -<_ -<_ a, be the point located by the ith
horse at time and let

(30) G(t)={bi(t), i= 1, 2,..., k};

then the set G(t) is the boundary of the set

(31) G+(t)={bi(u)t<u<=a,i 1, 2,... ,k};

G+(0) is the whole set Q except for the point O while G+(a) is empty.
Let h(t) be the location of the giraffe at time t; obviously h(0) G+(0) while

h(a)e! G+(a). The first instant at which the giraffe leaves the set G+(t) is defined by

(32) t0= inf {t: h(t)cg: G+(t)}.
O<t-<a

Since G(t)is the boundary of G/(t)it is obvious that h(to) G(to); thus at time to
the giraffe meets (at least)one of the horses.
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Proof of part (b). Suppose that at time to, 0< to < a the giraffe meets one of the
horses. In order to meet another horse he has to pass to another arc which can be done
only through O or through A, but since the velocity of the giraffe does not exceed
unity (which is the velocity of the horses) then he cannot reach the point A before time
a and if he moves through point O then he would not reach another horse until time
a. O.E.D.

LEMMA 5. I] the searcher uses the strategy z(O, 0) (see Definition 1) then ]:or any
hiding strategy h

(33) v(z(O,O),h)<=ka.

Proof. Strategy z(O, 0) for the searcher means: At time t=0 the searcher
chooses one of the horses of the Fundamental Lemma, each with probability 1/k and
rides on it to A; then at time a he chooses one of k such horses which ride from A
to O, each one again with equal probability (and independent of previous choice) etc.
We may consider the hider as the giraffe and thus, part a of the Fundamental Lemma
implies that if the searcher uses z(O, 0) and if the hider has not been captured until
time (]-1)a then the probability of capture in the period (]-1)a < <-fa is at least
1/k (independent of the previous part of the trajectory). Thus,

(34) Pr (capture after ja) < (k- 1).k

It follows that for any hiding strategy h,

v (z (O, 0), h)_-< Pr (capture at (j 1)a < <= ja). ja
i=1

a Y Pr (capture after t= (j- 1)a)
/=1

(35)
(by (34))

(k,,1)<- a ka O.E.D.
/’=1

LEMMA 6. Let ZA be the strategy o]" the hider described as jollows" Stay at point A
until time a-e and then use z(A, a- e) (see Definition 1); then for any search
trajectory

(36) v(s, ZA >= ka e.

Proof. Using the strategy z(A, a-e) means choosing each of the horses (note
that it is the hider who is now riding the horses) with probability 1/k (and indepen-
dently of previous choices) at time periods a- e, 2a- e,. . Now the searcher takes
the role of the giraffe of the Fundamental Lemma. We shall use the assumptions of
4A and especially the fact that the velocity of the searcher does not exceed the

velocity of the hider and the fact that the searcher cannot wait for the hider at any of
the points O or A. Thus it can be assumed that at any one of the periods 2a- e, 3a-
e,... the probability that the searcher is either at O or at A is zero (this can be
achieved by the searcher by using e as a random variable uniformly distributed in any
small interval). Thus the conditions of part (b)of the Fundamental Lemma are satisfied
so that for any trajectory of the searcher, if the hider has not been captured until =/’a
then the probability of capture in the time period ja-e < <-(j + 1)a-e is equal to
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1/k. Thus the probability that capture will occur at the time period ja-e < t_-<

(/" + 1)a e is equal to

thus

v(s, ZA)> y k-1 i- l

= k - (ja e) ka e Q.E.D.

Theorem 2 is an immediate consequence of Lemmas 5 and 6.
It is interesting to note that the value of the game is equal to ka irrespective of the

maximal speed of the hider w, as long as it is not less than unity. If w is less than unity
then the optimal strategies of the searcher and the hider may be quite complicated.
However, using an argument similar to those which shall be presented in 5C, it seems
to us that if k is large and w is not too small then the value of the game should be
approximately ka, even for the case where 0 < w < 1 because the hider can achieve a
value of ka(1-e) by randomly choosing one of the arcs and moving along it with
speed w from A to O then choosing again each arc with the same probability and
moving along it with maximal speed from O to A and so on. If m 1/w and the
searcher moves with maximal speed (unity), then when the searcher reaches each of
the points O or A, the maximal amount of information which may be available to the
searcher is that at that moment the hider is not located on any of the m last arcs visited
by the searcher. Thus, even if the searcher could rule out rn arcs out of k each time he
reaches O or A then his gain would be to increase the probability of capture for each
period ja < <= (j + 1)a from 1/k to 1/(k m) 1/(k 1 / w) and thus the expected
capture time would decrease at most to (k-1/w)a-e so that if k is large in
comparison with 1/w, the value obtained in Theorem 2 would remain about the same
even for w < 1.

An interesting fact which is worth noting is the following: It has been shown in 3
that for an immobile hider, the value v of the search game on k parallel arcs is equal to
ka/2 for an even k and is approximately equal to ka/2 for an odd k. Thus for an
immobile hider v /x/(2g). For a mobile hider v is doubled and becomes tx/g and this
is due to the fact that contrary to the case of an immobile hider, the searcher cannot
rule out the arcs previously visited by him. We shall have the same phenomenon for
the case of a two (or more) dimensional search set.

4C. Some reflections about general networks. In 3 where search games with an
immobile hider have been considered, we obtained inequality (8)which stated that the
value of the search game lies between 1/2ix and/x where x is the sum of the lengths of
the arcs of the network O. The lower bound is achieved for the case where O is an
Eulerian network while the upper bound is achieved for the case where O is a tree.

It seems to us that analogous results should hold for the case of a mobile hider.
Our conjecture is that in this case the value of the game should be bounded below by
/x and above by 2/x. The case considered in 4B, where O consists of k parallel arcs is
an example in which v x. A case where v 2x could be of the following type:

Let O consist of k rays radiating from the origin O, each ray of equal length a.
For this case it is obvious that v < 2x because if at time 0, 2a, 4a, the searcher
chooses each ray with probability 1/k and then moves along it and returns to the
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origin; then the expected capture time is at most

Y’, (a + 2(j- 1)a) -< 2ka 21.
/’=1

On the other hand, if k is large then the hider can achieve a capture time
exceeding 2ka-e by a strategy which is similar to the one which will be presented in
5B" He uniformly chooses a ray and stays at its terminal point until time Ja where

1<< J<< k; then he chooses again each ray with probability 1/k and moves to its
terminal point with maximal speed, and stays there until time 2Ja, etc. (It should be
assumed as in 4A that the searcher cannot wait at the origin O or alternatively that
the hider can pass from each ray to another by moving "near" the origin without
actually passing through it.)

Thus we conjecture that these two cases which have been discussed represent the
upper and the lower bounds for the value of the search game with mobile hider in a
network. Thus it is still an open problem if the inequality/x _-< v <-2tz always holds for
all networks.

S. Mobile hider in a two (or more) dimensional region.
SA. General description. In this section the domain of search O will be a two (or

more) dimensional region. The searcher can move along any continuous trajectory
which starts from the origin O. The hider can choose his initial location and an
arbitrary continuous trajectory starting from that point. The hider can move along his
trajectory with maximal speed w. In contrast to 4, we shall not require that w _>-. 1 but
we shall assume that w is not too small (the exact formulation of this condition will be
presented in 5C).

The notations that will frequently be used in this section are: /x--the Lebesgue
measure of , R--the diameter of and g--the maximal rate of discovery of the
searcher (which is equal to 2r for two dimensional sets and rr2 for three dimensional
sets, etc.). The radius of capture r will be assumed to be small with relation to the
magnitude of O or specifically

(37)
rR
< e’ << 1.

For the case of an immobile hider it is mentioned in 3 that v, the value of the
search game, satisfies v-- 1/21/g.

For the case of a mobile hider we shall show in 5B that the searcher can
guarantee an expected capture time not exceeding (/z/g)(1 +e). The dual result is
presented in 5C. We show there that if O is convex then the hider can make sure
that the expected capture time will exceed (/x/g)(1-e). Thus we demonstrate that the
value of the Princess and Monster game in a multidimensional convex set satisfies
v---tz/g and we present e-optimal strategies for both players.

SB. Strategy of the searcher, In this section we shall prove that for any bounded
two dimensional region O which satisfies a rather weak requirement, if the detection
radius r is small then the searcher can use a strategy s* which makes sure that the
expected capture time does not exceed (l+e)/(2r), where e is small. We shall
assume that:

O is a simply connected region whose boundary is the union of two single(38) valued continuous functions fl and f2 as depicted in Fig. 3.
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fl

FIG. 3

Actually the proof can be easily extended to a multiply connected region whose
boundary is the union of a finite number of single valued continuou.s functions.
However, in this case we shall have to introduce more details which may complicate
the proof so that for the simplicity of exposition we shall assume that (38) holds.

The search strategy s* to be considered is of the following type: It consists of
covering O by a set of parallel and similar narrow rectangles O, 02,’",
Ore," ", Ot; randomly choosing a rectangle O,,, going into it and moving N times
forward and backward in O,,, along randomly chosen traiectories; then randomly
choosing another set O,, etc. The number N should be large enough in order to
"absorb" the effect of the time spent in going from one rectangle to another, but on
the other hand N must not be too large in order not to stay too long in one rectangle.
Having this idea in mind we proceed as follows:

Referring to assumption (38) and Fig. 3, let Oa O be the set with minimal area
which is a union of the rectangles B1, , Bc where all these rectangles have the same
width a and are parallel to the x-axis as shown in Fig. 4.

FIG. 4

Let be the area of O and/z,, be the area of O, then

(39)

where, by assumption (38)

(40) b+0 asa$0.

For any Zl, Z E Qa let d(Zl, Z2) be the minimal length of a path which connects
and z2 and passes inside Q.. We define the radius R or Qa as

(41) R sup d(zl,
,.2 l
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(42)

We shall give a constructive proof of the following theorem:
THEOREM 3. Let r satisfy

2a

r=e2R
and assume that

1/4(43) 6=ea <<1;

then there exists a searching strategy s* in Qa such that for any evading trajectory h
used by the hider, the expected capture time v (s*, h) satisfies

(44) v(s* h)<(1 +46)= (1 +46)(1 +G)rr.2r

Pro@ Let

(45) c t2a.

Divide each rectangle Bt, 1,..., 2, (see Fig. 4) into "narrow" rectangles so
that all of these rectangles, except possibly one, has a width c while the upper one has
a width =<c, as depicted in Fig. 5. Thus each rectangle Q,,, m 1,. , M, has a width
c ’-< c and the number M of such rectangles satisfies

M= +1 _-< --+L
I=1 /=1 C

R a{IX_C C
tXa/

(46) -< ix-2 1 +
R + a]

ac ac

=tx_y. 1 +62a(R +a) <lxa 1 +
ac Id, ac \

(by (45) and (43)).

c

B!

FIG. 5

c/

(47)

Let N be a positive integer defined by

N= +1.
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Let c’ be a real number. If c’=> 2r then we define a random variable y with the
following density

(48)

2
f(y)= for0-<y=<r,

c’+2r

1
f(y) forr<y<c’-r,

c’+2r

2
f(Y)=c’+2r forc’ r<y<c’,

and f(y)= 0 elsewhere.

If c’< 2r then we define y to be identically c’/2.
The search strategy s* is composed of independent repetitions of the following

step: At time t=0 make a random choice out of the narrow rectangles
O1, 02,’", O,,,’", Ot such that each rectangle O,, has a probability 1/M of
being chosen and also make a random choice of N independent random variables
yx," , yN where N is given by (47) and all the yn, n 1,. , N, have the probability
density given by (48). In order to describe the motion of the searcher within O,, we
shall use a coordinate system with origin at the lower left corner of O,, as depicted in
Fig. 6. At time 0, the searcher starts moving as fast as possible to the point (0, Y 1).
He rests at that point until R and then moves with maximal velocity in a straight
line to the point (a, yl) and reaches it at time R + a; then he moves to the point
(a, y2) and rests there until R + a + c and at that moment he starts moving to (0, y2)
etc. The important feature of the movement of the searcher is that at the time
segments Tn=[R+(n-1)(a+c),R+(n-1)(a+c)+a], n=l,...,N, he moves
along the intervals which join (0, y,,) to (a, y,). We shall show that for this kind of
movement, the following lemma holds:

(0, c’)

(0, Qm (a,y,)

FIG. 6

(a,O) x

LEMMA 7. If the searcher moves in the manner described above, then the prob-
ability p of capture during the time segment 0 < <= R + N(a + c) satisfies

(49) p_-> 1- C+2r
Proof. Consider a specific time segment T, given by

(50) T,={t:R+(n-1)(a+c)<-t<-R+(n-1)(a+c)+a} wherel<=n<=N.

We shall distinguish between two cases" If n is odd then for any e Tn we define
G.(t), m 1, 2,. , M, as the vertical line segment of length c’, which has a distance
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d(t) from the left vertical edge of O, where

(51) d(t): t-[R +(n 1)(a +c)]

so that G,,(t) is given by

(52) G.,(t)={(d(t), y), 0_-< y c’}.

If n is even then G,,(t) is the vertical line segment which has the distance d(t)
given by (51) from the right vertical edge of O,,,, i.e. in this case

(53) G,,,(t) {(a -d(t), y), 0<= y <-c’}.

In both cases we define

M

(54) G(t)= LI G,.(t).
m=l

By an argument similar to the one used in proving the Fundamental Lemma one
can show that the following proposition holds:

Pror,os’ioN. Let h be any trajectory used by the hider; then for any n there exists
at least one time instant t. T. (see (50)) such that the point h (tn) visited by the hider at
time tn satisfies h(t.)e G(t.) (see (54)).

It follows from the proposition that for any n there exists an m such that

(55) h(t,)G,,(t).

Let I,,,(n) 1 if (55) holds and zero otherwise and define

N

(56) I,,, Z I, (n);
n=l

then it follows from the above discussion that

M

(57) 2 I,, _-> N.
m=l

If the searcher chooses the rectangle O,. and if I.(n)= 1 then it follows from the
definition of the random variable y. that the probability of capture during the time
segment T. is greater than or equal to the probability that at the time t,, (see (55)) the
random interval Y. given by

(58) Y. [y. r, y. + r] (’1 [0, c’l
will contain the yth coordinate of h(t.). Now, it follows from (48) that for any point b
in the interval [0, c’] the probability that b e Y. is greater than or equal to 2r/(c’+
2r) 2r/(c + 2r).

Since the random variables yl,.. ", yu are independent, it follows that if O., has
been chosen then the probability of capture during the time segment 0<t <-
R + N(a + c), is greater than or equal to

1 (1 2-2r) (c@2r) r"
(see(56))1-

C

Since each rectangle O,,, m 1,... ,M, is chosen with probability l/M, it
follows that the probability p of capture during the time segment 0< t<=R +N(a +c)
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satisfies

(59) p->_ Y’. 1- =l---
m=l 2r M m=l +2

Since for any nonnegative integers J, K

it follows that

so that

c c(1-(c+2r))( 1-(c+2r)->-0’
( c ), ( c r)K+ <1+,

c

+2r c+2 c+2r

( r) ( )N=*" (:2t’)
vM C C

(60) .--,Y" ’C+2 -<M-l+
c+2r

<-_M-l+ C (by (57)).

Thus, it follows from (59) and (60) that

p>-- 1- c +2r
so that the proof of Lemma 7 is completed.

We now proceed with the proof of Theorem 3. At first we note that (42), (43),
(45) and (47) imply that

2r 2’34a 2

_’32a
c 2R’32a R=N’

thus by (45), the probability p of capture in the time segment O<t<-R +N(a+c)
satisfies

( ( 1’ )
N’

) 1( 8 ) ( 1 ) ’3
> 1- 1 1+’3 M(1 +’3)

(61) p > 1- l+-;/c = (1+ N)N
>

Now, since the search strategy s* is composed of independent repetitions of the
step described for the time segment 0<-_ <-R +N(a +c), then for any hiding tra-
jectory h, the probability ff: of capture after the time instant K(R +N(a + c))
satisfies

(62) pg _--< (l-p)(

Thus the expected capture time v(s*, h) satisfies

v(s*, k)<-(R +N(a +c)) E tc <=R (by (62))
+N(a +c)

K=O p

<---Na 1++ (by (61))
6 Na

’3)1+’3(1 R ) 2)<t*(l+ --+1 a(1=ac\ - ’3-\ a
(by (45), (46) and (47))

1a R(I+)(1 +’3)(1 + - (1 +’3+’32)

< /"l’a (1 +4’3) =/x’ (1 +4,3) (by (42) and (43)) Q.E.D.
=e,(aZ/R) -r
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It should be noted that if the searcher uses the strategy s* presented in the proof,
then a part of his trajectory which is near the boundary of O might be a little outside
of the original searching set O. However, if O is convex then we can make a slight
modification in s* and introduce a search strategy s** which uses trajectories entirely
inside O and still guarantees that the result (44) of Theorem 3 holds. The strategy s**
is defined as follows: If the chosen rectangle Q,. is inside O then the movement is
identical to the one in s*. However if a part of O., is outside Q as depicted in Fig. 7 we
make the following modification:

Xn Xn+l

0

FIG. 7

Assume that in the strategy s* the searcher moves from the point (0, y.) to (a, y.)
in the time segment T. (see (50)) and then moves from the point (a, y.+l) to (0, Y.+I)
in the time segment T.+I. The movement in s** is as follows" The searcher moves
from the point (x., y.) to (x’., y.) (see Fig. 7) in the time segment R + (n 1)(a + c)+
x.<t<R+(n-- 1)(a+c)+x.; then moves with maximal velocity in a straight line
from (x’ t’.,y.) to (x’.+1, y.+1) and stays there until the time instant
R +n(a +c)+a-x’.+l (the searcher can arrive at (x’.+l, y.+l) before t’ because the
length of the segment which joins (x’., y.) to (x’n+l, y.+l) does not exceed 2a +c-x.-

t’x.+l) then moves from (x’n+l, Yn+l) to (Xn+l, Yn+l) in the time segment <-t<_-
R +n(a+c)+a-x. etc.

Using exactly the same method of proving (44) it can be established that for any
hiding strategy h, the expected capture time satisfies

v(s**, h)<-(1 +46)r
so that for a convex Q, the strategy s** guarantees the desired result by moving only
inside O.

The result stated and proved by Theorem 3 for two dimensional regions can be
extended to any number of dimensions. In this case the searcher can use a strategy s*
which guarantees that for any trajectory h used by the hider, the expected capture
time satisfies

v(s*, h)<-_(l +e) Ix
g

where /x is the Lebesgue measure of Q, g is the maximal rate of discovery of the
searcher and e is small.
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For example if Q is a three dimensional region then the construction of s* which
keeps the expected capture time below (1 + e)/z/(’r2) can be made as follows: Cover
Q by a large number M of boxes of dimension c x c x a where c << a, choose randomly
one of the boxes and move along N random horizontal segments which join the two
edges of size c x c etc. The proof of the result can be carried out by the same technique
used in Theorem 3.

5C. Strategy of the hider. The strategy h, of the hider which is considered in this
section is defined as follows:

DEFINITION 2. Choose a point Xl using a uniform probability distribution in Q,
and stay there during the. time period 0 =< < u. At the time u choose a point x2
which is uniformly distributed in Q independent of xl, move towards x2 with velocity
wl--min [w, 1] in a straight line and stay in x2 for a time period of length u, then
choose a point x3 uniformly distributed in Q and independent of Xl and x2, move
towards it, again with velocity Wl- min [w, 1] in a straight line and stay there for a
time period of length u and so on.

The "resting time" u should satisfy two conditions:
1) It should not be too long so that the area covered by the searcher in a time

interval of length u would be small relatively to t; but on the other hand
2) In order to keep the probability of capture during the motion relatively

small, the hider should not move too frequently and thus u should not be too
small.

Assume that the hider uses a strategy h, as described by Definition 2. Let

(63) Ei--The event: capture occurs at point xi, 1, 2,. .
Now if it were possible to neglect the probability of capture during the motion

from xi to ]Ki+ then for any search trajectory s, the expected capture time will
approximately satisfy

(64)
v(s, h.)> 2 u(i- 1) Pr (Ei)

i=1

=u2 2
n=l i=n+l

Pr (Ei >= u ., Pr Ei
n=l i=1

Since each xg is uniformly distributed in Q and since the maximal rate of
discovery is 2r it then follows that for each x, the probability of being discovered at x
is at most 2ru/t. Thus, it follows from the independence of x that

(65) Pr Ei ->_ 1-

Thus it would follow from (64) and (65) that for all s

( ) 1-2ru/x ix(66) v (s, h.) > u F, Pr Ei U
n=l i=1 2ru/lx 2r

u

so that if the parameter u of the hider’s strategy h, would be chosen to be small in
comparison with/x/(2r) we would get the desired result.

We have presented the previous discussion in order to help the reader to under-
stand the motivation behind the definition of the strategy h and the idea of the
(rather complicated) proof of Theorem 4 which follows.
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We have also to require that the maximal velocity of the hider w should not be
too small, because when w reduces to zero we approach the situation of an immobile
hider considered in Chapter 3 and the value of the search game should then be
approximately/x/(2g) (=/x/(4r)). Such a condition which also includes condition (37)
is the following"

mmax --,1 <e’<<l.
/x w

In the next theorem we show for any two dimensional convex set, that if (67)
holds then the hider can make sure that the capture time will exceed (Ix/g)(1-e)
(recall that for two dimensions the discovery rate g is equal to 2r). The theorem is
formulated and proved for two dimensions but it can be easily extended to three or
more dimensions.

THEOREM 4. Let the searching set 0 be any two dimensional convex set, and let
condition (67) be satisfied. Denote

[ (.)]1/4(68) 6= e’.37’max ,1

and assume that 6 << 1.
If the hider uses the strategy h, presented in Definition 2, where

(69) u =6--2rthen for any search strategy s, the expected capture time satisfies

(70)

(71)

v(s, h,)>-rr[1- 361.

Proof. Let xi, 1, 2,. , be the hiding points of Definition 2 and denote"

F/raThe event: Capture occurs while the hider is moving from point xi to
point xi+l, 1, 2,.

--The event: Capture does not occur before the hider leaves point xi.

Then (see (63) and (71))

Pr(F’)=Pr ,U1Ei’ =l-Pr Ei"3
i=1 i=1 i=1

(72) __-->1-Pr (i--a Ei)-Pr (=i F/)
Pr Ei Pr(F/).

i=1 i=1

The first stage of the proof is to establish an upper bound for Pr (F) so as to show
that it is negligible in comparison to the other relevant terms.

Since the hider moves from point xi to point x+a in a straight line with velocity
W min [w, 1] it follows that the time of movement T satisfies

R R(73) T-<=
Wl min [w, 1]"
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Since the probability of capture is monotonically increasing in T, it will be implicitly
assumed that Ti can be replaced by R/w1 whenever necessary.

Let Si be that section of the searcher’s trajectory which corresponds to the time
interval when the hider moves from xi to Xi+l. Divide Si into J arcs $1," , Sj, such
that

wit

and each arc S0 corresponds to an equal time interval which satisfies

T(75) t=i <r.

Let F0. be the event:

(76) F0." At some point of Sii, the distance of the searcher and the hider is less than
or equal to r.

Obviously (see (71))

(77) Pr (F)= Pr (
\

Y. Pr (Fi).
]=1 i=1

Let us denote the middle point of the arc Sij by A0 and the time when the searcher
reaches this point by t0 and let B0 be a circle of radius c around Ai (as depicted in Fig.
8) where c satisfies

Bq

FIG. 8

( 1 w.)(78) c 1++ r.

It follows from (75) that a necessary condition for the validity of the event Fi (see
(76)) is the event M0:

Mij--The event: At the time tq (corresponding to the point Aq) the hider is
(79) inside the circle Bj;

and a necessary condition for the validity of Mi is the event D fqD where

(8O)

and

(81)

Dii--The event: The distance dq of xi from Ai satisfies: (j +1/2)wlr-c <= dj <=
(j + 1/2)w r + c (see (78))

D--The event: Xi+ lies in the region Yi depicted in Fig. 9.
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FIG. 9

It follows from (80) that

(82) Pr (D0) <-- zr(2j + 1)w r. 2c zr(2/+ 1)w1(3 + wl)r2

(by (7 8))

and (81) implies that

(83)
R 2cR (3 + w1)R 2

Pr (D*, D,) --<
Ix (j+ 1/2)wlr-c (/w-3/2)x

(84)

We are now in a position to obtain an upper bound for Pr (Fi) in (82): Let

m= xrJ-1 (see (73));

then

(85)

Pr (F) <= Y Pr (F,) + Y Pr (Fii)
j=l j=m+l

<_- Y Pr (D,j)+ Y Pr (Do.) Pr (D IDii) (see (80) and (81)).
/=1 /=m+l

(86)

Now

7r(2f 1)wl(3 +
E Pr (O,)=< Y’. Wl"r2 (by (82))
j=l i=1 /x

7rWl(3 + w1)r2 ri7rw1(3 + wl)r2(m + 1)2 N (by (84))
/x /x r

<__ 4r
Rr
--<4re’ (by (73) and (67)).
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(87)

In addition, it follows from (74), (82), (83), and (87) that

’ ’ (3 + w )r2 (3 + w )R 2

E Pr (D,i). Pr (D* rr(2j+ 1)Wl
ii [Dii) <- E 2

j=m+l j=m+X /z (jw1--3/2)

16rr ’ 2j+l 2 2<----- R r
tz =,,+lj-3/(2wl)

16rr
Ji< g 1)R2r2 2(m + 1)+ 1

tx m + l 3/(2wl)

16rr R3r 2 + 1/(m + 1)< 2 (by (74)).
tz wl 1- 3/(2w(m + 1))

Since Ti can be replaced by R/w1 it follows that

3 3

2wl(m + 1) 2WlX/R/(Wlr)

Thus,

16

3x/r/(W U
2

(by (73)and (84))

34Rr/(R2wx)<< 1
2

2+1/(m +1)
1-3/(2w1(m+l))

(by (67)).

so that a bound for (87)can be written as

<33

(88)
33rr R3r 33rrR 2

2 <e’ (by (67)).
Wl jlg

Combining (86) and (88) together we obtain

(89) Pr (F/) <- 377re’. max [, 1]=64 (see (68)).

Now, let v(s, h.) be the expected capture time where the "resting" parameter u
of the hider’s strategy hu is chosen to be &z/(2r). If F’,, is defined, as in (71) to be the
event that capture does not occur before the hider leaves the point x., then the same
argument used in (66) leads to the following inequality:

N

v(s, h.)> u Pr (F’,,)>= u Pr (F’,,) (where N is an integer which will be
n=l n=l

determined later)

>= u Pr =CJ E Pr (Fi) (see (72))
n=l i=1

>-u 1 2ru) y (n- 1)64 (by (65)and (89))
n=l --71 n=l

_-> u [(1-(2ru/lx))-(12ru/tx-(2ru/tx))N+l N2641"
Now if we choose N [1/8 2] and use u 6tz/(2r) we obtain

(91) v(s, hu)

(90)
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It can be easily seen that for 0 < 6 < 1 as assumed,

(92) (1-6)l/2=exp --1n(1-6) <exp =6exp -In6- <6

(since 6 In 6 >= -e -1 > 1 so that -In 6 1/6 < 0). Thus it follows from (91) and (92)
that v(s, h,)>-_Ox/(Zr))[1-36]. Q.E.D.

It seems to us that h, can be modified so as to guarantee at least (1-e)lx/g
expected capture time for sets which satisfy a weaker condition like (38). The points
Xl, X2,’", xi,"" should be chosen as before and the only problem is to make the
movement from xi to Xi+l so that the probability of capture during this movement
would still be negligible with respect to the probability of capture at xi. This require-
ment should be achievable if the detection radius is small enough. Thus it is conceiv-
able that v---x/g for all reasonable regions.
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STRONG STRUCTURAL CONTROLLABILITY*

HIROKAZU MAYEDA- AND TAKASHI YAMADA"

Abstract. For linear time-invariant control systems, the system parameters values may vary or be
never known precisely with the exception of fixed zeros determined by the physical structure of the system.
Dividing the system parameters into two categories, indeterminate parameters and fixed zero parameters,
the notion of strong structural controllability is introduced with the following meaning: A system is strongly
structurally controllable if, whatever values (other than zero) the indeterminate parameters of the system
may take, the system is controllable.

The two necessary and sufficient graph theoretic conditions for linear time-invariant control systems to
be strongly structurally controllable are given. The one is fundamental for strong structural controllability
and shows what is the essential set of indeterminate parameters the change of whose values may cause a
system to be uncontrollable. The other is useful because of its very simple and intuitive form in graph theoretic
aspect. For sparse systems, its conditions can be easily examined by inspection.

1. Introduction. Consider a linear time-invariant control system

(1) Ax + bu

where A is n n and b is n 1. For convenience, the control system (1) is denoted
throughout the paper by the system (A, b).

System parameter values may vary or be never known precisely with the excep-
tion of zeros that are fixed by coordination or by the absence of physical connections
between certain parts of a system. Therefore assume that the entries of the matrices A
and b are fixed (zero)or indeterminate (arbitrary). We shall say that the system (A, b)
has the same structure as the system (A, b), of the same dimensions, if for every fixed
(zero) entry of the matrix [A b], the corresponding entry of the matrix [A b] is fixed
(zero) and, at the same time, for every fixed (zero) entry of the matrix [A b], the
corresponding entry of the matrix [A b] is also fixed (zero).

Lin [7] has defined a system (A, b) to be structurally controllable if there exists a
completely controllable system (A, b) which has the same structure as the system
(A, b), and by the graph-theoretic approach he developed necessary and sufficient
conditions for a system (A, b) to be structurally controllable. Recently, Shields and
Pearson [9] and Glover and Silverman [5] extended Lin’s results on single-input
systems to multi-input systems by the purely algebraic approach.

Although all the uncontrollable systems which have the same structure as a
structurally controllable system are atypical (see [7], [9]), in many cases, the existence
of such uncontrollable systems are not allowed. For example, when it is required that a
nonlinear system with fixed zero parameters be regulated at various set points which
vary in some domain, we adopt a set of same structure linear systems which are
obtained by linearizing the nonlinear system at every set point and require that all the
systems in the set are controllable. In this case, even if the systems are structurally
controllable and almost all systems are controllable, there remain the set points whose
corresponding systems are uncontrollable. And if there exists such a set point, all the
systems whose corresponding set points are in the neighborhood of this set point are
physically uncontrollable since it may require an unreasonably vast amplitude of the
inputs to regulate the systems. We cannot neglect the existence of such a neighbor-
hood. Therefore there arises the problem that under what condition a controllable
system remains controllable for any changes in its indeterminate parameters.

* Received by the editors April 29, 1977, and in revised form March 21, 1978.

" Department of Control Engineering, Faculty of Engineering Science, Osaka University, Toyonaka,
Osaka, Japan.
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From this point of view, the notion of strong structural controllability is introduced
as follows: The system (A, b) is strongly structurally controllable if any system (A, b)
which has the same structure as the system (A, b) is completely controllable as long as
every indeterminate entry of the matrix [A b] is not zero. It immediately follows that
every strongly structurally controllable system is also structurally controllable. If the
value of an indeterminate parameter is zero, this means the corresponding connection
in the system is cut off. So this case is excluded.

Our approach is graph theoretic. In 2 we define the graph of a system (A, b) and
the related terms. In 3 we develop the two necessary and sufficient graph theoretic
conditions (Theorem 1 and Theorem 2) for systems to be strongly structurally
controllable. Theorem 1 shows what is the essential set of indeterminate parameters
the change of whose values may cause a system to be uncontrollable. This problem is
not only fundamental for strong structural controllability but also may give some
insight to structural controllability of systems with dependent indeterminate
parameters. Theorem 2 is given in a very simple and intuitive form in graph theoretic
aspect. Its conditions can be examined by inspection and.are easier to examine than
those of Theorem 1 for sparse systems. Theorem 2 is also useful to investigate the
strong structural controllability when some subsystems are added to or deleted from a
system.

2. The graph of a system (A, b). The graph of a system (A, b), which will be
denoted by G(A,b) hereinafter, is a graph that contains exactly n/l nodes,
1, 2,.’., n / 1, and all of whose edges are obtained as follows: For every indeter-
minate entry cij of the n (n + 1) matrix [A b], the graph contains the oriented edge
(j, i) (an arrow going from the node j to the node i). The node n + 1, which cor-
responds to the n + 1st column of [A b], will be called the origin of G(A, b). The set
with all the nodes in G(A, b) except the origin will be denoted by Z. For any oriented
edge (/’, i) in G(A, b), the node j (node i) will be called the initial (final) node of the
edge (j, i).

A graph, which consists of a subset of the set of all the edges in G(A, b) and all
the initial or final nodes of the edges in the subset, will be called a subgraph of
G(A, b). For any subgraph H of G(A, b), V(H) (E(H)) denotes the set of all the
nodes (edges) in H and the subgraph H will be said to span the graph G(A, b) if
V(H)= V(G(A, b)) is satisfied. For any two subgraphs HI, H2, HI U/-/2 denotes the
subgraph which consists of E(H1)U E(H2) and V(Hx)kJ V(H2).

Consider a subgraph H of G(A, b)which consists of a sequence of edges,
(il, i2), (i2, i3)," "’, (ik-X, ik), and nodes ix, i2,’" ", ik. The subgraph H will be called a
path for k _-> 2 if no pair of nodes in H are coincident. The node ix (node ik) will be
called the initial (final) node of the path. Further, the path is said to reach the node ik
from the node ix. The subgraph H will be called a cycle for k >_-1 if only the pair of
nodes ix and ik are coincident. Moreover, the subgraph H will be called a bud for
k ->_ 2 if only the pair of nodes i2 and ik are coincident. In the bud, the node ix or the
edge (il, i2) will be called the origin or the distinguished edge of the bud respectively.
The subgraph obtained by removing the distinguished edge and the origin from a bud
B will be called the cycle part of the bud B and will be denoted by B*. In certain cases,
a path whose initial node is the origin of G(A, b) will be called a stem. See Fig. 1.

For a path and a cycle C (set of cycles), we shall say that the path reaches the
cycle C (set c of cycles) from node if the node is the initial node of the path and
only the final node of the path belongs at the same time to the path and the cycle C
(some cycle in the set ).
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of

(i)

013 ik-2

i
(ii)

FIG. 1. (i) Path. (ii) Cycle. (iii) Bud.

The graph G(A, b) is defined to be accessible if for any node in Z, there exists at
least one path whose initial node is the origin of G(A, b) and whose final node is the
node i. For any set N of nodes, INI denotes the number of distinct nodes in N and
T(N) denotes the set containing all the nodes with the property that there is an edge
in G(A, b) going from the node to some node in N. The graph G(A, b) is said to
contain a dilation if there exists a subset N of Z which satisfies [T(N)I < IN[.

Given a stem B0 and p buds, B1, B2, Bp, the subgraph Bo (_J B1 LI B2
Bp will be called a cactus if for every 1, 2,..., p, the origin of B. is not the final
node of Bo and is the only node which belongs at the same time to B. and Bo B1 (3

B2 [,.J (.J Bi-1. Moreover the bud Bj will be called the/’th bud of the cactus for
1 <-/" -< p. In the above definition of a cactus, if the origin of B1 belongs to Bo and the
origin of B. belongs to B_I for 2-<]-<p, then the subgraph S=
Bo (,J B1 (,J B2 (-J (.J Bp will be called a serial buds cactus and abbreviated to s.b.c.
Here let us define a subgraph S* of S as S*= BoL BI* [J B2* 1.3 B*. Then, for
any subset N of V(S*), Ts.(N) denotes the set containing all the node with the
property that there is an edge in E(S*) going from the node to some node in N.

Suppose G(A, b) is spanned by an s.b.c. Bo(_J B1 (3 B2 [,.J (-J Bp where B0 is the
stem and Bi is the ]th bud for 1 _<-/’_<-p; then all the nodes of G(A, b) are labeled
associated with this s.b.c, as follows: Starting from the initial node of Bo, assign labels,
l(Bo),2(Bo),...,do(Bo),...,mo(Bo), to the nodes in Bo in order, where mo
V(Bo)] and the node labeled do(Bo) is the origin of B1. And for every ] 1, 2,..., p,
starting from the final node of the distinguished edge of B., assign labels,
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I(Bi), 2(Bi),’’’, di(Bi),’", mi(Bi), to the nodes in the cycle part of Bi in order,
where mi [V(Bi)[-1 and the node labeled di(Bi) is the origin of Bi+l. This will be
called the labeling associated with the s.b.c. See Fig. 2.

mo(Bo)

m l(Bo)

2(B) /

jA mp(B)

d l(B2) /

2(B)

I(B) ,
m2(B/)

d- I(B) /
/, d(B)

d + I(B)

\ o 2(B)

I(B) O\ O
do+ l(Bo) o / m,(Bt)

2(Bo)

l(Bo)

FIG. 2. Labeling associated with an s.b.c.

3. Strong structural controllability. In this section, the two necessary and
sufficient conditions for a system (A, b) to be strongly structurally controllable will be
given. Before stating our results, we should show some results of Lin concerning
structural controllability.

In the case of/’ p, the label di(Bi) is not defined. And in certain cases, i(Bi) denotes the node labeled

i(Bi) for convenience.
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LEMMA 1 (Lin [7]). The system (A, b) is structurally controllable if and only if the
graph G(A, b) satisfies either of the following properties:

(a l) The graph G(A, b) is accessible and contains no dilation.
(a2) The graph G(A, b) is spanned by a cactus.
Our first results are as follows:
THEOREM 1. The system (A, b) is strongly structurally controllable if and only if the

graph G(A, b) satisfies the following three properties:
(b 1) The graph G(A, b) is accessible.
(b2) For any subset N of Z, there exists at least one node in T(N) such that the

number of the edges going from the node to some nodes in N is one.
(b3) For any subset N ofZ which satisfies T(N) = N, there exists at least one node

in T(N)-N such that the number of the edges going from the node to some
nodes in N is one.

First, we will show the following two lemmas:
LEMMA 2. If the graph G(A, b) is assumed accessible, then the property (b3) of

Theorem 1 is satisfied if and only if whatever nonzero real value each indeterminate
entry of the matrix [A b] may take, there exist no complex number ce(O) and n-vector
q(O) with complex entries which satisfy qr[A b] a[q T 0].

Proof. Define cii as the (i,/’) entry of [A b] and qi as the ith entry of the vector q.
Since G(A, b) is accessible, T(N)-N is not empty for any subset N of Z.
Sufficiency. Suppose that there exists a subset N of Z such that T(N)N and

each node in T(N)-N has more than one edge going from the node to some nodes
in N. By a permutation of the coordinates, it can be assumed without loss of generality
that the first k rows (columns) of [A b] correspond to the nodes in N. (Here k INI.)

Now choose an a and a vector q so that a 1, ql= q2 q 1 and
qt+l qn =0. Since T(N)=N, each/’th column in the first k columns of [A b],
which corresponds to some node in N, contains at least one indeterminate entry in its
first k entries from the definition of T(N). So, if the indeterminate entries in the first k
entries of the fth column take suitable nonzero’real values,

(2) qicq cii= l=aqi
i=1 i=1

can be satisfied for 1 <=/" <= k. Moreover, since each node in T(N)-N has more than
one edge going from the node to some nodes in N and there is no edge going from any
node in V(G(A, b))-T(N) to any node in N, any rth column in the last n + 1- k
columns of [A b] contains more than one or no indeterminate entry in its first k
entries. Therefore if the indeterminate entries in the last n + 1-k columns take
suitable nonzero real values, the equation

k

(3) ., qiCir Cir--0
i=1 i=l

can be satisfied for k + 1 <-r-< n + 1. From (2) and (3), it can be concluded that if each
indeterminate entry of [A b] takes a suitable nonzero real value, there exist a complex
number a(0) and a vector q(0) which satisfy qT[A b] a[q T 0].

Necessity. Suppose that each indeterminate entry of [A b] takes a certain nonzero
real value and there exist a complex number a(0) anda vector q(-0) which satisfy
qT[A b]=a[q T 0]. By a permutation of the coordinates, it can be assumed without
loss of generality that all the nonzero entries of the vector q are located in its first k
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entries. Then

(4) qicii= , qicii=aqi
i=1 i=1

is satisfied for 1 <-j =< k, and

(5) qgc Y qc =0
i=1 i=1

is satisfied for k + 1 =< r -< n + 1.
Let us choose N as the set which contains all the nodes corresponding to the first

k rows (columns) of [Ab]; then since qi 0 for 1 =< j k in (4), any jth column in the
first k columns of [A b] contains at least one indeterminate entry in its first k entries.
So T(N)N can be concluded. Since, in (5), qi is a nonzero complex number and cir is
a real number for 1 -< <- k and k + 1 <_- r -< n + 1, the first k entries of any rth column in
the last n + 1-k columns of [A b] contain more than one indeterminate (nonzero)
entry in its first k entries or are all fixed (zero) entries. So any node s in T(N)-N
which corresponds to some column in the last n + 1- k columns of [A b] has more
than one edge going from the node s to some nodes in N. Therefore the existence of
the set N contradicts the property (b3) of Theorem 1. Q.E.D.

LEMMA 3. Assuming that the graph G(A, b) is accessible, the property (b2) of
Theorem 1 is satisfied if and only if whatever nonzero real value each indeterminate
entry of the matrix [A b] may take, there exists no n-vector q( O) with complex entries
which satisfies q’[A b]= 0.

Lemma 3 is easily proved in the way similar to the way Lemma 2 is proved.
Proof of Theorem 1. Since the fact the system (A, b) is strongly structurally

controllable implies that the system (A, b) is structurally controllable, the necessity of
property (bl) of Theorem 1 is apparent from Lemma 1. Recall that the system (A, b)
is completely controllable (in the usual sense) if and only if the relation q T"A aq T

implies qTb 0 where a is a complex number and q -0 is an n-vector with complex
entries (see V. M. Popov [8] for reference). Thus Theorem 1 is proved immediately
from Lemmas 2 and 3. Q.E.D.

From Theorem 1 and its proof, we can identify the essential sets of indeterminate
entries, the change of whose values may cause the system to be uncontrollable even if
the system is structurally controllable. That is, if N is a subset of Z which does not
satisfy property (b2) or (b3) of Theorem 1, only the indeterminate entries which
correspond to the edges whose final nodes are in N can take certain values such that
the system is uncontrollable, and the values of other indeterminate entries have no
concern with it.

Next, we shall show our second result which is useful because of its simple and
intuitive form in graph theoretic aspect.

THEOrEM 2. The system (A, b) is strongly structurally controllable ifand only if the
graph G(A, b) satisfies the following two properties"

(c l) The graph G(A, b) is spanned by a unique s.b.c.
(c2) The graph G(A, b) contains no set of cycles which is reached from the origin of

G(A, b) by more than one path.
For sparse systems, Theorem 2 can be examined by inspection and is easier to test

than Theorem 1. The simple instructions to check the uniqueness of the s.b.c, which
spans G(A, b) will be given in the Remarks. Moreover Theorem 2 is very useful to
investigate the strong structural controllability when some edges or subsystems are
added to or deleted from a system.
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We shall show the following lemmas. They are also interesting in themselves.
LEMMA 4. If the graph G(A, b) is assumed accessible, then the property (b3) of

Theorem 1 is equivalent to the property (c2) o" Theorem 2.
Proof. (b3) =), (c2): Suppose that the property (c2) is not satisfied, that is, G(A, b)

contains a set c of cycles which is reached from the origin of G(A, b) by exactly h
distinct paths, P1, P2,"" ,Ph (h->_2). The initial node, of every path Pj (/’=
1, 2,..., h) is the origin of G(A, b), so there exists a positive integer " such that
starting from the origin of G(A, b), the first " node sequences of all the paths
P1, P2,’’’, Ph are the same node sequence, il, i2,""", if, and all the f+ 1st nodes of
the paths are not coincident. Let F be the set of nodes, il, i2,’’’, if, and Q=
V(U_-I Pi)-F. Moreover, define the set R of nodes as follows: For every node in R,
there exists a path which contains no node in F and reaches some node in Q from the
node i.

Now let us choose the set N as

(6) N Q (_J R;

then it is obvious that

(7) T(N)= T(O)k3 T(R).

Since there do not exist more than h distinct paths each of which reaches the set c
from the origin of G(A, b), there exists no edge going from some node in F-{node if}
to some node in O or R. So, both T(O) and T(R) are included in R O {node if}
from the definition of O and R. Thus

(8) r(x)_ N {node if}

is satisfied from (6) and (7).
Consider an arbitrary node in R; then the node has an edge going from the

node to some node in R or O from the definition of R. So,

(9) R
_
T(R (.J r(o) r(x)

is satisfied.
Consider an arbitrary node in O. If the node is not the final node of any path

among P1, P2, , Ph, it is obvious that the node is contained in T(O). If the node
is the final node of some path among P1, P2, Ph, the node is contained in a cycle
C in c which contains no node in F. So it can be easily obtained that the node is
contained in T(O) CJ T(R). Thus

(10) 0
___
T(O) CI T(R)= T(N)

can be concluded.
It is obvious that the node i is contained in T(O) ( T(N)), so

(11) T(N)NU{node i}

is obtained from (6), (9) and (10). Thus T(N)--N 1.3 {node if} is satisfied from (8) and
(11). Moreover T(N)-N- {node if} is satisfied since the node i is contained neither
in O nor in R. Therefore the existence of the set N contradicts the property (b3)since
the node if has more than one edge going from the node if to some nodes in O(c N).

(c2) :ff (b3): Suppose that the property (b3) is not satisfied, that is, there exists a
subset N of Z such that T(N)N and each node in T(N)-N has more than one
edge going from the node to some nodes in N. For any node il in N, there exists an
edge going from the node il to some node i2 in N since the node i is contained in
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T(N), and since the node i2 is also contained in T(N), there exists an edge going from
the node i2 to some node i3 in N. Continuing this procedure, since INI is finite, we can
obtain a sequence of distinct nodes, il, i2,""", ik in N such that there exist an edge
going from the node ij to the node i./x for 1 <= j <-k- 1 and an edge going from the
node ik to some node among the nodes, il, i2,..., i. Therefore each node il in N is
contained in some cycle in N or has a path which is contained in N and reaches some
node in some cycle contained in N from the node i,..

From N Z, the origin of G(A, b) is contained in V(G(A, b))- T(N) or T(N)-
N. If the origin of G(A, b) is contained in T(N)-N, the origin of G(A, b) has more
than one edge going from the origin of G(A, b) to some node in N. If the origin of
G(A, b) is contained in V(G(A, b))-T(N), since G(A, b)is accessible and every
path which reaches some node in N from the origin of G(A, b) contains some nodes in
T(N)-N, there exists a path which reaches some node in T(N)-N from the origin
of G(A, b) and contains no node in N. The node in T(N)-N also has more than one
edge going from the node to some nodes in N.

Thus, in both cases,’we can easily find a set of cycles which is reached from the
origin of G(A,b) by more than one path. This fact contradicts the property
(c2). Q.E.D.

LZMMA 5. If the graph G(A, b) satisfies property (c2) of Theorem 2 and is spanned
by an s.b.c. Bo Ba Bp where Bo is the stem and Bj is the f-th bud for 1 <- <= p,
then the graph G(A, b) satisfies the following properties when all the nodes of G(A, b)
are labeled associated with the s.b.c.:

(d 1) If 1 <= < -[- 2 <= i2 <-- d is satisfied for some j (0 <= j <- p 1), there does not
exist an edge (i(Bi), i2(Bi)) in G(A, b).

(d2) If di + 1 <= i <- i2 <= mj is satisfied for some j (0 <-_ j <-_ p 1), there does not exist
an edge (i2(Bi), ia(Bi)) in G(A, b).

(d3) For 0 <- f <- p 1, there does not exist an edge going from any node in B to any
node in V(B+I ) J V(B+2 J .J W(Bp other than the edge
(d(B.), 1(B.+1)).

(d4) If 1 <= il < il + 2 <= i3 <= i4 <= m and il + 1 <= iz <= i4 are satisfied for some j (0 <=.
j <_--p), there do not exist an edge (il(B), i3(B)) and an edge (i4(Bi), i2(Bi)) at
the same time. (See Fig. 3.)

It is easy to prove Lemma 5 since G(A, b) satisfies property (c2).
LZMMA 6. Assume that the graph G(A, b) satisfies property (c2) of Theorem 2 and

is spanned by an s.b.c. S. Then the graph G(A, b) does not satisfy property (b2) of
Theorem 1, if there exists a subset N ofZ such that each node in Ts.(N) has more than
one edge in E(G(A, b)) going from that node to some nodes in N.

Proof. Let the s.b.c. S which spans G(A, b) be $ BoLl B1 [..J [,-J Bp, where B0
is the stem and Bi is the jth bud for 1-</’-<p, and label all the nodes of G(A, b)
associating with the s.b.c. $.

If T(N)= Ts.(N), G(A, b) does not satisfy the property (b2). So suppose that
T(N)-Ts.(N) is not empty. In this case, mo(Bo): T(N) is shown as follows: If
mo(Bo) T(N), there exists at least one edge by E(G(A, b)) going from the node
mo(Bo) to some node in Nfq{nodek(Bo)12<=k<-do} by properties (d2) and (d3).
Next, define i,,, as i,, min {i Inode i(Bo) N, 2 <= <= do}. Then it follows that i,,
l(Bo) Ts.(N). From the assumption concerning N, there exists another edge than
(i,,- l(Bo), i,,(Bo)) in E(G(A, b)) such that the initial node is i,,,- l(B0) and the final
node is contained in N. But, whatever node is chosen as the final node, the existence of
such an edge contradicts the definition of i,, or property (d3) or (d4).
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O
I(Bj)

(dl)

0---*0 0
il(Bj) i2(Bj)

d(Bj)

-’ I(Bj+)

0
l(B)

d(Bi)
0----0

l(B;+) (d2)

il(Bj) i2(B;)

i3(Bj)

0 ms(B)

(d4)

ia(B)

i2(Bj)

0 il(Bj)

0 l(Bs)

FIG. 3. Illustrations for (dl)--(d4).

Since mo(Bo) T(N), we can choose the subset Nx of Z which satisfies Ts*(N1)-"
T(N)-Ts,(N). Then it is evident that each node in Ts,(N (.J N1) has more than one
edge in E(G(A, b)) going from the node to some nodes in N IJ N1.

If T(N(.JN1) Ts,(NLJN1), G(A,b) does not satisfy property (b2). If T(NU
Nx)-Ts,(N U Nx) is not empty, repeating the above procedure, we can construct a
subset of Z which does not satisfy property (b2)since ]Z] is finite. Q.E.D.

LEMMA 7. If the graph G(A, b) is spanned by an s.b.c, and satisfies properties (c2)
of Theorem 2 and (b2) of Theorem 1, then the s.b.c, which spans G(A, b) is unique.

Proof. Induction on the dimension n of the state space is used for the proof.
Lemma 7 is evidently true when n 1. Assume that Lemma 7 is true when n k and
that there exist more than one s.b.c, which spans G(A, b)when n k + 1. Then we can
derive contradictions as follows: When n=k+l, choose two s.b.c.’s $=

B0 LI B1 LJ [.J Bo and S Bo 1,3 Bx 13 (3 B0 both of which span G(A, b), where
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Bo (/o) is the stem of S (g) and Bj (B) is the ]th bud of S (g) for 1 _-< ] <_- p (1 -<_ ] <_-/5).
Let us label all the nodes of G(A, b) associated with S and at the same time.2

In the case that S and are not stems, we define positive integers h and/ as
follows:

min{jldj# m, l_-<j<_-p-1}

if p=l,
ifp>l anddi=mi, j=l,2,...,p-1,
otherwise.

/ is defined in the same way as (12) replacing h, p, di, m with/,/5, d’., n3i.

Deleting the node rno(Bo) and the edge (mo- l(Bo), mo(Bo)) from S when 5’ is a
stem or S is not a stem and too> do+ 1, or deleting the node mo(Bo) and the edges
(mo- 1 (Bo), mo(Bo)) and (mi(Bi), 1 (Bi)) for 1 <- j <= h from S when 5’ is not a stem and
mo= do + 1, we can obtain an s.b.c., which will be denoted by 5". From the s.b.c. S, we
can obtain an s.b.c, in the same way as 5". This will be denoted by S’. Moreover, define
the graph G’ as the graph obtained by deleting from G(A, b) the node mo(Bo) and all
the edges whose initial nodes or final nodes are mo(Bo). Then G’ is spanned by the
s.b.c. 5" from the definition of 5". And it is easily shown from Lemma 6 that G’
satisfies properties (b2)and (c2).

From the above, the following can be assumed without loss of generality (see
Appendix A).

(13)

(14)

(15)

p >= 1, that is, S is not a stem;

mo(Bo) o(Bo);

mo(Bo) do + 1 (Bo).

G’ is also spanned by the s.b.c. S’ from (14) and the definition of S’. Since the
s.b.c, which spans G’ is unique from the assumption of the induction, S’-S’ is
concluded.

Contradictions will be derived in the following two cases"

(i) S is a stem or S is not a stem and n3o > do + 1.
(ii) S is not a stem and to do + 1.
In case (i), the final node of the stem of S’ or S’ is the node mh (Bh) or n3o-- 1 (Bo)

respectively. Since S’- S’, it follows that mh (Bh)-- n3o-- 1 (Bo). Therefore there exists
the edge (mh(Bh), do+ l(Bo)) in E(S) from (14) and (15). Choose the subset N1 of Z
as NI= {do+ l(Bo)} CI {l(Bi)]l -<-/" <-h} "3, then it is easily shown from the definition of h
that each node in Ts.(N1) has more than one edge in E(G(A, b)) going from that node
to some nodes in N1. This contradicts the property (b2) from Lemma 6.

In case (ii), the final node of the stem S’ or S’ is the node mh(Bh)or rr(B;). Since
S’-g’, mh(Bh)-- n37(/7) is satisfied and we can assume that d-o(o)
V(B kJ B2 (_J kJ Bh) without loss of generality from the definitions of S’ and S’. If
do(Bo) mr(Br) for some 1 -<_ r <= h, contradiction is derived in the same way as case (i).

If do(Bo)# mr(B,) for all 1 -<_ r-<_ h, define a positive integer as

(16) t=min{i[ffti(:,)=rn(Bj) and 1(/i): I(B) for some l<-j<-h, 1-<i<-/}.4

When all the nodes of G(A, b) are labeled associated with g, ffZo or i (1 <-j =<p) is equal to V(/o)
or v()l- respectively, and the origin of Bj+ is denoted by a(/j)for 0<_-/’<-/7 1.

h p is satisfied if g is a stem, since g’ is a stem and h < p means that S’ is not a stem.
4 fftfi(Jfi) mh (Bh) is satisfied. If ao(/o) # do(Bo) and aTo(/o) # m,(B,) for all _-< <_- h, (/a) # (Bi) for

all <_-j <_-h, and if d-o(/o) do(Bo), there exists at least one edge (rfii(/i), 1(/1)) (1 <-i-_/) which differs
from (mi(Bi), I(Bi)) for all -<_/’_-< h since differs from S. Thus the definition of makes sense.
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Then, from the definitions of S’ and S’, the edges (rh/(B/), I(B/)), 1-</’-<t in S are
represented by the labeling associated with S as follows"

(17) (m/,(Bh), it(B/,)), (it- I(B/,), it_l(B/,_a)),... (i2- 1(B/2), il(B/1))

(if i 1 (2 k t), i I(Bi) should be exchanged for mik_l(Bi_l)) where
mi,(Bi,), I(B) i(Bi ) for 1 k t, _a(B_) i I(Bi) (mik_(Bi_x) if i 1) for
2k t, do(Bo) il- l(Bia) (mia-1(Bia-1) if il 1). Moreover f_f and if f_l=,
i-1N i 1. s Here define the subset N2 Of Z as N2
{do+ l(Bo)} U {I(B)I 1 N/N/,} U {i(B)I 1 Nk Nt}.

In the case that do(Bo) do(Bo)and do(Bo) m(B)for all 1 N r N h, do(Bo)
i1-1(Bi) is satisfied6 and there exists the edge (il-l(Bi), do+ l(Bo))which is the
edge (do(Bo), do + 1 (Bo)) in $. Taking account of the edge (il- l(Bi), do + l(Bo)) and
the edges in (17), it is evident that each node in Ts,(N2) has more than one edge ir
E(G(A, b)) going from that node to some nodes in N. This contradicts the propert?
(b2) from Lemma 6. See Fig. 4.

" m (B) m,(B)

It
t,,

il(Bjl)--l(l)’)
il- I(Bj,) o(Bo) ,if/

,,-=0--..O’--r-0-"-=-=-0
do + l(Bo) do(Bo) lBoI
o +
F. 4. An illustration [or the proooLemma 7.

The case [_ ]k and ik never occurs.

i since o(o) m(B) for all 1NrNh.

edge in E(S)

edge in E(S)

edge in EIS)[ EIS)

node in N
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In the case of do(B0) do(Bo), il(Bh)= I(B1) is satisfied. Taking account of the
edges in (17), the contradiction is also derived in the same way as in the above
case. Q.E.D.

LEMMA 8. If the graph G(A, b) satisfies properties (cl) and (c2) of Theorem 2, it

satisfies property (b2) of Theorem 1.
Proof. In the following, the contradiction will be derived by assuming that there

exists a subset N of Z such that each node in T(N) has more than one edge going
from the node to some nodes in N. Since G(A, b) is spanned by a unique s.b.c. S, let
us represent the s.b.c. S by Bo U B1 U U Bp where Bo is a stem and B1, B2, B,
are buds, and label all the nodes in G(A, b) associatingwith S.

Now let us define a nonnegative integer s as

0 if V(Bo)f"IN ,
(18) s

min{jlV(B)N#,l<-j<=p} ifV(Bo)N=fg,

and positive integers i,, and iM as

(19) i,, min {i Inode i(Bs)eN, l<=i<=ms},

(20) it max {i Inode i(Bs)e N, 1 <= <= ms}.
Then we can show (Appendix B) the following:

(21)

(22)

(23)

(24)

(25)

node l(Bs) N,

s < p (i.e. Bs+l exists.),

N{nodek(Bs)lds+2<=k<=m}= ifms>-ds+2,

ms => ds + 1 and node d + 1 (Bs) e N fq V(B* ),

node l(Bs+)e N (this implies node ms+l(Bs+l)e T(N).).

If node I(Bj) N and node mi(Bi)6 T(N)are satisfied for some j (s+ 1 <-j<=p-
1), there exists, in addition to the edge (mi(Bi), 1 (B.)), at least one edge going from the
node mi(Bi) to some node in N (V(B*)U V(B*+I)U U V(B)) or di mi and
node I(Bj/I) t N are satisfied from the assumption concerning N, the property (d3)
and (18). By the iterative use of above fact, since the number of buds in $ is finite and
(25) is satisfied, it can be shown that there exists a positive integer such that

m+. d+ is satisfied for 1 _-< j _-< t- 1 if >_- 2, node l(Bs+i) N is satisfied for 1 _-< j _<-

and there exists at least one edge going from the node m+t(B+,) to some node il(Bh) in
N i"’l (V(Bs*) U W(B*s+l )U U V(B*s+l ))- {node l(Bs+t)}.

In the above, if the node il(Bh) is contained in N {node k(Bs)li,, <=k <=d},
since the node il-l(Bs) is contained in T(N),7 using (23), (24) and properties (dl)
and (d3), we can show that there exists an edge (il- l(Bs), i2(Bs)) such that i2 -< il- 1
or i2=ds+ 1 is satisfied and the node i2(Bs) is contained in N. If i2<-il 1 (i.e.
i2 ds + 1) is satisfied, there exists an edge (i2-- 1 (Bs), i3(Bs)) such that i3 N i2-- 1 or

i3 ds + 1 is satisfied and the node i3(Bs) is contained in N from the same reason.
Repeating this procedure, we can conclude that there exist edges, (m,+t(Bs+t), i(Bs)),
(il-- l(Bs), i2(Bs)),"’, (if-I- l(Bs), ir(Bs)), (if- l(Bs), ds + I(B,)) which satisfy ds ->-
il > i2 > > if >_- i,,,. In this case and in the case that the node ix(Bh) coincides with
the node ds + l(Bs) or some node in {node l(Bs+i)[ 1 <_-/" <_- t- 1}, we can find another

l- -> is satisfied from (21).
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s.b.c, than S which spans G(A, b), and this contradicts the uniqueness of S. Thus it is
shown from the above and (23)that

(26) node il(Bh)G N f’) 3 (V(B*+i)- {node I(B+i)}).
i=1

Since the node il- l(Bi is contained in T(N)f’) V(Bf from (26), there exists an
edge going from the node ia- I(Bi) to some node i2(Biz in N
(v(*)u v(*s+l)U U V(B p* )) {node il(Bfi)} from (18). Moreover i1-1
is satisfied for s + 1 <- ja -< s + 1 from (26) and m+. d+i for 1 -< j <= t- 1; besides
even if/’1 s + and s + _<- p 1 are satisfied, il- 1 < d/, can be obtained from (d2).
Thus the node i2(Bi2) is not contained in {nodek(B.l)lil-<k<=mix}U
(V(B}x/a)U V(B/2)U.." U V(B*p))from properties (dl), (d3)and (d4). And by
the same argument as in the proof of (26), it can be shown that

(27)

node i2(B.) N f3 (V(B*+j)- {node l(B+i)})U{nodek(Bi,)12<-k<-il-1}

where {node k (Bi) 12 =< k ix 1} in the case of il 2.
Since lUg= s+i)[ is finite, by the iterative use of the same argument which

derived (27) from (26), we can finally obtain a node iq(Bjq) in N such that the node
iq-l(Bjq)( T(N)) has no edge going from the node io-l(Bi,) to some node in N
other than the edge (i,- I(B.,), i(Biq)). This contradicts the assumption concerning
N. Q.E.D.

Proof of Theorem 2. Necessity. If the system (A, b) is strongly structurally
controllable, properties (bl), (b2) and (b3) are satisfied from Theorem 1. By the use of
Lemma 4, property (c2) is derived from properties (bl) and (b3). Since a strongly
structurally controllable system (A, b) is also structurally controllable, G(A, b) is
spanned by a cactus from (a2) of Lemma 1. This cactus should be an s.b.c, since
G(A, b) satisfies property (c2). Thus using Lemma 7, we can derive property (cl) from
properties (b2)and (c2).

Sufficiency. Property (b l) is derived immediately from property (c 1). And pro-
perty (b3) is derived from properties (bl) and (c2) by Lemma 4. Moreover property
(b2) is derived from properties (cl) and (c2) by the use of Lemma 8. So by Theorem 1,
we can conclude that the system (A, b) is strongly structurally controllable. Q.E.D.

Remarks. If the graph G(A, b) satisfies property (c2) of Theorem 2 and is
spanned by two different s.b.c.’s $1 and $2, then the relation between S and Sz is
reduced to the two cases, the typical examples of which are illustrated in Fig. 5. From
this, we can examine the uniqueness of the s.b.c, which spans G(A, b). That is, if an
s.b.c. S which spans G(A, b) is given, regarding S as S or $2, check the existence of $2
or $1 which satisfies the relation, respectively. For sparse systems, this procedure also
will be performed easily by inspection. Although we give no proof here, we can guess
the relation between S and $2 from the proof of Lemma 7.

Conclusions. The two necessary and sufficient graph theoretic conditions for
single-input linear control systems to be strongly structurally controllable have been
developed.

Theorem 1 shows the fundamental conditions for strong structural controllability
and the essential sets of indeterminate entries, the change of whose values may cause a
system to be uncontrollable. These results may give some insight to structural control-
lability of systems with dependent indeterminate parameters, which is left as a further
research problem. Theorem 1 can be extended to the multi-input case directly.
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!/

edge in E(S)
---, edge in E()
._--z-. edge in EIS)

FIG. 5. The typical examples in which two different s.b.c.’s span the graph G(A, b) at the same time.

Theorem 2 is useful because of its simple and intuitive form in graph a theoretic
aspect. For sparse systems, the conditions of Theorem 2 can be easily examined by
inspection. The complete and efficient computer algorithms to test the strong struc-
tural controllability in general case are currently under investigation.

Appendix A. We shall verify (13)-(15). First, let us assume that both S and S are
stems. From the definition of a stem, it is satisfied that l(Bo)= l(Bo)= the origin of
G(A,b). If 2(Bo):2(/o), the edge (1(/o),2(/o)) is represented as the edge
(l(Bo), ro(Bo)) (3-< to=< too). Since S is a stem, there exists the edge represented as
(rl(Bo), rz(Bo)) (2 <- r2 < ro <= rl <- too) which is contained in S,. but this contradicts
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property (d4). Hence 2(Bo) 2(Bo). By the use of the same arguments, we can show
that S S, but this contradicts the assumption that S S.

Next, if mo(Bo) rfio(Bo), there exists at least one edge contained in S whose
initial node is mo(Bo). And we may assume from (13) and properties (d2) and (d3) that
there exists the edge in $ represented as (mo(Bo), so(Bo))where 2 =< So_-< do. Then it is
easily shown from (dl)-(d4) that the stem Bo of S does not contain the edge
(mo(Bo), so(Bo)). Now, if rfio(Bo) {2(Bo), 3(Bo), , so(Bo)}, then it follows from the
above that there exists a path Bo from l(Bo) (= l(Bo)) to rfio(Bo) which does not
contain the node so(Bo), but the presence of such a path contradicts the properties
(dl)-(d4). So the node rho(Bo) is contained in {2(Bo), 3(Bo), , So- l(Bo)}. Since the
node rfio(Bo) is the final node of Bo, from the definition of an s.b.c., there exists the
path in S from the node l(Bo)to the node so(Bo)which does not contain the node
rho(Bo), but it contradicts property (d3)or (d4).

Last, assume that mo> do+ 1. S’ also spans G’ from (14) and the definition of S’.
Since the s.b.c, which spans G’ is unique, S’= $’ is satisfied. If S is a stem, S’ is also a
stem. But S’ is not a stem from mo > do + 1. Therefore S is not a stem. If rho > do + 1 is
satisfied, S $ is derived from S’= S’ and the definitions of S and S. This contradicts
the assumption S S. Therefore we conclude mo do+ 1 or trio do+ 1. So, mo
do + 1 can be assumed without loss of generality.

Appendix B. We shall verify (21)-(25). If 1 <=s<=p, node l(Bs) N implies node
ds-l(Bs-1)6 T(N). But the edge (d_(B_), I(B)) is the only edge going from the
node ds-(Bs-1) to some node in N because of property (d3) and (18). This contradicts
the assumption concerning the set N. Moreover N does not contain the node 1(/3o)
(= the origin of G(A, b)). Thus we can obtain (21), that is,

(B.1) node I(B) N.

If s =p is satisfied, node it-I(B,) T(N) is satisfied from (20) and (B.1). So
there exists an edge going from the node it- 1 (Bp) to some node l(Bp) in N {node
k(B,)lim <= k <= iM- 1} from (18), (20)and the assumption concerning the set N. It can
be shown similarly as above that there exists an edge going from the node il- 1 (B) to
some node i2(Bo) in N fq{node k(Bp)li,,, <=k <=izvt, k il}. If i2 it is satisfied,
another s.b.c, than $ which spans G(A, b) can be easily constructed. This contradicts
the uniqueness of S. If the node i2(B,) is contained in {node k(B,)] il + 1 <= k <- it 1};
property (d4) is contradicted since i-1 < i < i2 -< iM-1 is satisfied. Thus the node
i2(Bp) should be contained in N f3 {node k(B,)[ i,,, =< k -< i 1}. Continuing this pro-
cedure, we can show that the node i,-I(Bo) is contained in T(N) and the edge
(i,,, I(B,), i,(B,)) is the only edge going from the node i,,, I(B) to some node in N.
This contradicts the assumption concerning the set N. So we can derive (22), that is,

(B.2) s < p (i.e. Bs+l exists.).

Suppose N{node k(B)lds+2<-k<=m}; then node izvt-l(/3s)T(N).
and it 1 -> ds + 1 are satisfied. The node it 1 (B) has an edge going from the node

iM 1 (B) to some node (B) in {node k (B)[i,, _-< k -< iM 1 } from (18), and property
(d3) and the assumption concerning the set N. Moreover the node il(B) is not
contained in {node k(Bs)ld + l <---- k <---- iM --1} from (B.2)and property (d2). So the
node i(B) should be contained in {node k(B)l i,,, <= k <= d}. Here applying the similar
argument in the proof of (B:2) and property (d3), we can derive the contradiction.
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Thus if m => d + 2 is satisfied, (23), that is,

(B.3) N CI {node k (B)I d + 2 _-< k _-< m}

can be proved.
If node d + I(B)N or d(B) m(B) is satisfied, N

{node k(B)[i,,, <=k <=d} # ( is derived from (19)and (B.3). Since the node i,,,(B)is
contained in N and i,,->2 is satisfied from (B.1), the node i,,-I(B) exists in
V(B*)(3 T(N). So there exists an edge going from the node i,,- I(B) to some node
in {node k(B)l i,, + 1 <= k <= d} from the assumption concerning N, property (d3) and
(18). This contradicts property (dl) from (B.2). Thus we can obtain (24), that is,

(B.4) m->d+ 1 and node d+ I(B)Nf3 V(B*).
The node d(B) is contained in T(N) from (B.4). If the node 1(B+1) is not

contained in N, a contradiction is derived from property (d3) and the use of the same
procedure in the proof of (B.2). So we can derive (25), that is,

(B.5) node l(Bs+l) N.

Acknowledgment. The authors wish to express their gratitude to Prof. T. Fujis-
awa, Prof. N. Suda and Assoc. Prof. Y. Yasuda of Osaka University for their helpful
suggestions and encouragement.

REFERENCES

[1] W. K. CHEN, Applied Graph Theory, North-Holland, Amsterdam, 1976.
[2] J. P. CONFMAT AND A. S. MORSE, Structurally controllable and structurally canonical systems, IEEE

Trans. Automatic Control, AC-21 (1976), pp. 129-131.
[3] E. J. DAVISON, Connectability and structural controllability of composite systems, Automatica, 13

(1977), pp. 109-123.
[4] F. R. GANTMACHER, The Theory of Matrices, Chelsea, New York, 1960.
[5] K. GLOVER AND L. M. SILVERMAN, Characterization of structural controllability, IEEE Trans.

Automatic Control, AC-21 (1976), pp. 534-537.
[6] E. B. LEE AND L. MARKUS, Foundations of Optimal Control Theory, Wiley, New York, 1967.
[7] C.-T. LIN, Structural Controllability, IEEE Trans. Automatic Control, AC-19 (1974), pp. 201-208.
[8] V. M. PoPov, Hyperstability of Control Systems, Springer-Verlag, New York, 1973.
[9] R. W. SHIELDS AND J. B. PEARSON, Structural controllability ofmultiinput linear systems, IEEE Trans.

Automatic Control, AC-21 (1976), pp. 203-212.
[10] L. A. ZADEH AND C. A. DESOER, Linear System Theory, McGraw-Hill, New York, 1963.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 17, No. 1, 1979

1979 Society for Industrial and Applied Mathematics
0036-0129/79/1701-0011 $01.00/0

ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS,
h FINITE-TIME PROBLEMS*

EDUARDO D. SONTAG?

Abstract. Different notions of observability are compared for systems defined by polynomial
difference equations. The main result states t.hat, for systems having the standard property of (multiple-
experiment initial-state) observability, the response to a generic input sequence is sufficient for final-state
determination. Some remarks are made on results for nonpolynomial and/or continuous-time systems. An
identifiability result is derived from the above.

Introduction. This paper deals with observability problems for (deterministic)
control systems defined by simultaneous polynomial difference equations, and for
other related classes of systems. These problems are natural from a (mathematical)
system-theoretic viewpoint, and a strong motivation for their study is also provided by
the goal of obtaining explicit solutions to filtering and regulation problems for rather
general, yet tractable, classes of nonlinear systems.

Roughly, questions of observability deal with determining the internal state of a
(known) dynamical system on the basis of available input/output data. "Obser-
vability" is a fundamental system property, due, among others, to the following
reasons:

(a) The modern "state-variable" approach to regulator construction is based
upon the possibility of feeding back a function of (good estimates of) the state, which
must be obtained via "observers" operating on input/output data (in the linear case,
"Luenberger observers").

(b) In the stochastic version of the above, the only known effective solution of the
optimal nonlinear filtering problem, the Kalman filter, consists precisely of an
effective observer construction (for a deterministic system), with parameters opti-
mized on the basis of the available statistical data. This view of Kalman filtering as
"deterministic system theory plus elementary theory of Gaussian processes" strongly
suggests that a solution in the nonlinear case may be conditional upon a better
understanding of nonlinear observers. Moreover, for the known cases, estimation is
feasible (in the sense that the error covariance can be made small) only when the
system has suitable observability characteristics, as is known for finite-dimensional
linear systems (see, e.g., Kwakernaak and Sivan (1972, 4.4)) and as recently found
for infinite-dimensional linear systems (Vinter (1977)).

(c) Observability is one of the main concepts in realization theory, where it
appears, under various technical variants, as a characterizing property of canonical
systems.

(d) Even in problems not explicitly involving outputs, observability may appear
as an important question. To insure the stability of the optimal state regulator, the
unstable states must be "observed" by the performance index, as explained intui-
tively-and proved rigorously in the linear case--in Anderson and Moore (1971,

3.2).
(e) Problems of identification, i.e., the possibility of determining the input/out-

put behavior of an unknown system on the basis of a limited number of experiments,
are closely related to observability questions, as further discussed below.

* Received by the editors April 24, 1977, and in revised form January 31, 1978. This research was

supported in part by U.S. Army Grant DA-ARO-D-31-124-72-Gl14 and by U.S. Air Force Grant
72-2268 through the Center for Mathematical System Theory, University of Florida.

" Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.
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The above rough description of observability as a specific property of systems is
highly ambiguous, even at an intuitive, nontechnical, level. This ambiguity arises
mainly in the following senses: it is not clear whether the state to be determined is that
which existed before or after experimentation, nor whether simple or multiple
experimentation is allowed, nor whether the steps in the experiments can be modified
according to partial information (open- vs. closed-loop observation). Finally, other,
rather different, interpretations are possible; for instance, state determination may be
only "asymptotic" in that an infinite procedure permits obtaining progressively better
estimates of the internal state, as opposed to the above "finite-time" interpretation,
where states are precisely determined after experimentation.

As an example of the different possibilities, the canonical realization of any given
input/output behavior is multiple-experiment initial-state observable, while an
observer is a device solving a single-experiment final-state problem. Thus, for
instance, regulator synthesis via the design philosophy "obtain a canonical realiza-
tion/build an observer/feed-back ’observed’ variables" presupposes a positive answer
to the question" "is a canonical realization necessarily final-state observable ("recon-
structible")?"

Possible observability notions. The main variations on" the notions of obser-
vability to be studied and compared are, at an intuitive level"

(a) Observability: this terminology is reserved for the standard multiple-experi-
ment initial-state notion. A system is observable when any two states can be dis-
tinguished by some input/output experiment. Since the experiment (i.e., the input to
be applied) depends on the pair of states to be distinguished, practical determination
of an initial state assumes the possibility of somehow resetting the system to this
(unknown) state after experimentation, or alternatively having a number of copies of
the original system, all in the same initial state. This notion of observability appears
naturally in realization theory, since "canonical" or "minimal" realizations usually
exhibit technical variants of this property (e.g., "algebraic observability," when each
coordinate of the initial state can be obtained by algebraic manipulationswadditions
and multiplicationsmof input data; this property characterizes "canonical" poly-
nomial systems, as discussed in Sontag and Rouchaleau (1975), Sontag (1976a)).

(b) Single-experiment observability: there exists a single input (over some finite
time interval) which by itself permits the determination, through measurement of
ensuing outputs, of the initial state. Clearly this is a much more desirable property
than (a); it turns out to be, however, rather restrictive for discrete-time systems. (This
is not surprising; already Moore (1956) showed that (a) and (b) are far from
equivalent, at least for finite automata. For linear systems (a) is equivalent to (b), and
in fact any long-enough input distinguishes any pair of states, as discussed for instance
in Kalman (1968)or Wonham (1974).)

(c) Final-state determinability: there is an input sequence w which permits
determination of the state of the system resulting after w is applied. (In other words, if
two states produce the same output sequence under input w, then these two states are
necessarily sent into the same state under the action of w.) This property is of interest
from a control viewpoint, since control actions can be taken after the state of the
system is determined, independently of the state before experimentation. Of course,
(b) implies (c). What is not clear is what are the relations, if any, between (a) and (c),
since in the former case multiple experimentation is required. It is known that, for
finite automata, (a) (called in automata theory a "diagnosing" problem) implies (c)
("homing" problem). This was proved by Moore (1956); expositions are given by Gill
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(1962) and Conway (1971); applications to regulation are given by Gatto and Guar-
dabassi (1976). The same result holds for certain types of finite-dimensional systemsm
e.g., Theorem 4.8 below--; proofs are in fact totally analogous to the finite automata
case, with a new type of finiteness (algebraic, linear, or analytic) replacing a set-
theoretic finiteness.

(d) Generic final-state determinability: while (c)concerns the existence of an
input such that final states can be determined by testing the system with this input, (d)
concerns the much more desirable case when no "experimentation" is needed, but,
strictly speaking, "observation" of the input/output behavior is enough. The extreme
case of (d) would correspond to that case in which any (long-enough) input permits
final-state determination. This extreme case is easily seen to be too restrictive, but it
may be weakened to only requiring that "almost any" (i.e., a "generic") long-enough
input permits this determination. (The rigorous definition of "generic" is a purely
technical question, to be discussed later.) In other words, real-time observation of a
system, not influencing it in any way (or even, observation of data from past behavior)
should be enough for final-state determination. This property is totally different from
(c), except in the very special case of linear systems, where (c)= (d). In the automata-
theoretic case, "genericity" cannot be even defined in a satisfactory way, so this is a
genuinely new system-theoretic concept.

The main result of this paper states that (a) implies (d) for polynomial systems.
Thus, for instance, final states can be determined for canonical realizations of poly-
nomial systems, just observing the "generic" input/output behavior. The proof of the
main result uses some elementary notions from algebraic geometry. Since all results
remain true when system parameters are not necessarily real or complex but belong to
an arbitrary field, everything is stated for arbitrary infinite fields (the finite field case
belongs properly to finite automata theory; infinite fields permit identifying poly-
nomials and polynomial functions). Some technical variants of the above observability
properties are also discussed and relations between all such notions are clarified.

The last section deals with (i) the particular case of state-affine systems, (ii)
generalizations to related classes of systems, in particular state-analytic and continu-
ous-time analytic, and (iii) a restatement of the main result as a system identification
problem.

This paper does not treat questions of closed-loop and/or asymptotic obser-
vability (closely related to problems of stability), nor the effective construction of
"observers." Another interesting set of problems left open is that of finding numerical
values for smallest lengths of observability experiments; except for the state-affine
case, only qualitative results are given (even for the case of finite automata many of
these problems are still unresolved; see Conway (1971)).

The results of this paper strongly suggest that the proper definition of "observer"
in the nonlinear context may be that of a dynamical system which determines the state
of the "observed" system on the basis of a generic set of data.

1. Definitions and characterizations. Let k be an arbitrary but fixed infinite field,
and m, n, p arbitrary positive integers. Recall that an algebraic subset S of the affine
space k q, q _-> 0, is a set defined by polynomial equations S {Q/(xl, , xq)= 0}. An
irreducible algebraic set is one which cannot be expressed as the union of two proper
algebraic subsets. In this context, a subset R of an irreducible algebraic set S is generic
when its complement is contained in a proper algebraic subset of S. (These definitions
are justified by the fact that for k or C, a proper algebraic set is "thin" in most
possible senses, including Baire category and measure-theoretic.)
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DEFINITION 1.1. A (discrete-time) polynomial system 2, is given by a set of
equations

x(t + 1)= P(x(t), u(t)), y(t)= h(x(t)), t= O, 1, 2,’.’,

where inputs u(t), states x(t) and outputs y(t) belong to algebraic subsets U of k’, X
of k n, and Y of k p respectively, U is irreducible, and P: X x U X and h: X Y are
polynomial maps.

Allowing proper algebraic subsets, rather than insisting on finite dimensional
spaces, for U, X, Y, permits increasing the generality of the results to include input or
state constraints of a polynomial type. The irreducibility assumption on U is made
purely for technical convenience. For instance, the unit real circle U-
{x2+ y2_ 1 0}, as well as any space k m, are admissible input sets. Nonpolynomial
systems will be considered later.

Some extra notation will be useful. The extension of P to input sequences is also
denoted by P:X x U* -X (for the empty sequence e, P(x, e)= x). Applying an input
sequence w Ul Ur to a system in state x produces an output sequence

HW(x) (h(x), h(P(x, ul)), h(P(x, w)))

in yr+l.
In what follows, 2, is a fixed polynomial system. The input sequence w distin-

guishes between the states x and z iff HW(x)HW(z). The following are several
possible definitions of "observability":

(A) Single-experiment observability: there exists an input sequence w which
distinguishes every pair of states.

(B) Single-experiment observability with a generic input: there are a positive
integer r and a generic subset R of U such that any w in R distinguishes every pair of
states.

(C) Observability: each pair of states can be distinguished by some input
sequencel

(D) Finite observability: there are a positive integer r and input sequences
w1," ’, ws of length r such that each pair of states x, z is distinguished by some wi.

(E) (Finite) observability with generic inputs: there are integers r, s and a proper
generic subset R of U such that (D) holds for any set wl,. , w of inputs of length r
for which (Wl, , w) is in R.

(F) Algebraic observability" for each polynomial function 4" X k there are input
sequences wa,..., w and a polynomial function q" Y-->k such that 4(x)=
q (h (P(x, w)),. ., h (P(x, ws))) for all x in X.

(G) Final-state determinability: there is an input sequence w such that for each
pair of states x, z either H (x) H (z) or P(x, w)= P(z, w ).

(H) Final-state determinability with generic inputs: there are a positive integer r

and a generic subset R of U such that (G) holds for all w in R.
The characterizations below are useful in checking observability. They are stated

in terms of the polynomial functions hij defined as follows by induction on/’. First, an

(infinite) basis B is chosen for the vector space of all polynomial functions on U.
(If U k", the natural choice is the set of all m-variable monomials; if U is a proper
algebraic set one may choose a linearly independent subset of such monomials.) The
polynomial map h :X--> Y c_ k p gives rise to p polynomial functions

hol, hop

by composing with the coordinate projections. If the hij have been defined for some
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and/" 1,..., qi, one may express

(1.2) hir(P(x, u))= ars (x )gs (u ), r 1,..., qi

for some finite subset gl, of B. The h+la are then given by the as, r 1, , qi, all
s, listed in any order except that an a is dropped if it is redundant, i.e., if ar is in the
algebra generated by the previous hq’s.

LEMMA 1.3. (a) E is observable iff the map

(1.4) x - (hx(x), hE(X),’"’, hEl(X),"" ")

is one-to-one.
(b) E is algebraically observable iff each coordinate function xi:X- k, i=

1,..., n, is a polynomial combination of the hii(x).
Proof. Observability clearly implies that (1.4) is one-to-one, since the functions

x-h(P(x, w)) are combinations of the h.. Conversely, from Sontag (1976a, "Main
lemma" (10.7)), the hii(’) are linear combinations of the functions h(P(., w)); it
follows that if x, z are indistinguishable then hij(x)= hij(z) for all i,/’. The proof of (b)
is similar.

The above result permits checking observability without having to consider, for
each pair of states, if there is an input sequence separating them. The result can be
tightened considerably, in that it is theoretically possible to specify an integer s (which
depends only on the degrees of the polynomials defining E) such that it is enough to
check, in order to determine (algebraic) observability, if the map

(1.5) X Y’rs:x (hll(x), hs(x))

is one-to-one (or if each coordinate function is a combination of the hj’s); this follows
from the decidability theory in commutative algebra, as remarked in Sontag and
Rouchaleau (1975). The problem of checking if (1.5), or a general polynomial map, is
one-to-one is very difficult, and it appears also in trying to determine if a system is
observable with respect to a fixed input w U u, since one must then check

x -- (h (x ), h (P(x, u )), h (P(x, w)));

in that context, sufficient conditions for one-to-oneness (with k reals) were surveyed
by Fitts (1972).

As a very simple illustration of Lemma 1.3, take the polynomial system Ea with equa-
tions

Xl(t -t- 1)= Xz(t), xz(t + 1)= x(t), x3(t + 1)= x3(t),

x4(t + 1)= Xl(t)u21(t)"l"x2(t)lg(t)’t-x3(t),

where U kZ, X k4, y k. Then ho the coordinate function x4. From the fourth
equation, and noting that u2, u2z, 1 are linearly independent functions, one has xl, x2,

x3 for the hi. Thus Y_. is algebraically observable, and in particular observable.
If, instead, now U is the circle u + u 2z 1, then u 1- u21 as functions on U, so

+

so hl x2+x3, h12 xl-x2. Now, in obtaining the h2., x-x2 yields xz-x (from the

first two equations), which is -(Xl- x2) and hence belongs to the algebra generated by
previous hi’s. On the other hand, x2+x3 yields x+x3, which is equal to (x-x;)+
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(X2 d’-X3), hence in the algebra generated by previous hij’s. Thus no hij are added for
2, 3,. . The system is therefore not observable, since

(x, x, x3, x4) (x4, Xl-x, x +x)

is not one-to-one. In fact, the indistinguishable pairs of states are those in the lines
parallel to {x4 0, x x2 0, x2 + x3 0}.

When k reals or complexes, observability can be checked using only inputs of
arbitrarily small amplitude; this is easily derived from the above characterization using
Sontag (1976a, Lemma (2.11)).

2. Implications among observability notions.
THEOREM 2.1. With the notations in the previous section, the only implications are

those indicated by the following diagram:

F
(2.2)

B -> A--> C D E--> H--> G.

Proof. The following implications are immediate from the definitions" E --> D --> C,
B--> A--> C, H--> G, and F--> C. That C-> D is proved in Sontag and Rouchaleau (1975,
Prop. 7.2). Proofs are given below for D-->E (2.4) and C->H (Theorem 3.5). To
complete the proof of 2.1, counterexamples must be given to B--> F, A-> B, F--> A,
G --> H and H --> C. For the latter it is sufficient to consider the trivial system with both
transition and output maps equal to zero: after one step, the state is known (zero), no
matter which input was "applied", but the initial state cannot be determined. The
remaining counterexamples are given by"

B -> F: let k R, X Y k, U arbitrary, P(x, u)= 0 for all x, u, and h (x)= x 3.
A --> B: let U Y k, X k 2, and ,E2 given by

x(t+ 1)=0, x2(+ 1)=x()+x()u(), y() x().

An input w U ur distinguishes initial states if and only if u 0. But the set of all
such inputs is not generic in Ur, for any r.

F--> A: let U Y k, X k 2, and ,E3 given by

xl(t + 1)-0, xz(t + 1)- xl(t)u(t)-xZ1(t), y(t)- xz(t).

Algebraic observability follows from criterion 1.3" recursively, one generates x2 and
then xl (and Xl2, which is redundant). But no single sequence w serves to distinguish
every pair of states: let w uw’, with u in U; if u 0 then (1 0)’ and (-1 0)’ are not
distinguished by w, while if u 0 then (u 0)’ is indistinguishable from (0 0)’.

G--> H: let U X k and

x( + 1)= x()u(), u()= 0.

Then w U u determines the final state if and only if some ui 0. The set of all
such w is not generic.

It will be now proved that finite observability (D) implies, for polynomial systems,
generic finite observability (E). This is somewhat surprising because the corresponding
implication for single-experiment observability (A--> B) is false. (,E3 above is, however,
generically finitely observable: any two length-one inputs u, v permit observing
x + x2 u, x + x2 v, hence also

Xl [(Xl + X21U)I) --(Xx + XD)ul(v U)-1

is known. Thus the generic set R of all (u, v) in U2 k 2 with u v 0 satisfies definition
E.)
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The following algebraic result is needed; its proof is essentially the same as that in
Sontag (1976a, Lemma (10.6))"

LEMMA 2.3. Let V, W be algebraic sets, W irreducible, and f’. V W--> k a

polynomial function. There exists then an integer s and a nonzero polynomial function
d" W --> k such that, for each w, Wl, Ws in W there are a , , as in k with

d(wl," ", ws)f(v, w)= E ai[(v, wi).

One can now give the
(2.4) Proof of D--> E. Assume that Y_, is finitely observable, and let if l, , if, be

such that x z implies h(P(x, ’i)) h(P(z, ffi)) for some i. For each i, let fi
h p. x Ur’ --> k. Applying 2.3 with V X, W Ur’, f fi, a di" Us’r’ --> k is obtained

for each i. Let q:=largest of the si. In the definition of generic observability, take

r:=largest of the ri and s:=t.q. An element of U can be written as

(Wll, Wtl, W12, Wt2,’’’, Wtq),

with each w0 in U. Define the proper algebraic subset F of U by the equations

di(Wil," Wis,)--O, i-" 1,’’’, t.

Then generic observability holds with R complement of F.

3. Proof of the main result.
LEMMA 3.1. For any polynomial system E there exists an integer r >= 0 and a proper

algebraic subsetFof Ursuch that, ]:or every w (Ul," , ur) not in F, and]or any x, z in

x,
H(x)=H’(z)

implies that
P(x, w) is indistinguishable from P(z, w).

Proof. Since Y
_
kv for some integer/9 and since a union of proper algebraic

subsets of U is again a proper algebraic subset, it is sufficient to prove the lemma with

Y k. The general case can be reduced to this by considering the p projections Y--> k.
Let s => 0 be such that any pair of distinguishable states is already distinguished by

inputs of length =<s (Sontag and Rouchaleau (1975, Cot. 7.3)).
For any algebraic set Z, let A(Z) denote the algebra of polynomial functions on

Z. Irreducibility of U means that A(U) is an integral domain for all t. Let D be the

direct limit of the sequence of k-algebras

A U)-> -> A U’) --> A U’* ) ->
where

A(ut) A(Ut+I) A(Ut)(R)A(U): f f(R) 1.

Let K be the quotient field of D (which is an integral domain, being a direct limit of

integral domains); K contains all A (Ut).
Since Y=k, a polynomial map XX U’-> Y is an element of A(X

X)@A(Ut); in particular the functions ht defined by

ht(x, z, u,..., ut): h(P(x, Ul,’", ut))-h(P(z, Ul,’", ut))

are in A(X X)(R) K. The latter is a finitely generated algebra over the field K, hence

Noetherian. Thus there is some integer r such that all ht are in the ideal of A(X
X)(R)K generated by h0," , hr. In particular, there are therefore equations

(3.2) chr+i aith,, ]= 1,. s,
t=0
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with all ajt in A(X x X)(R)D and c a nonzero element of D. Since D is the union of the
A(Ut), there is some integer q such that all a. are in A(X x X)@A(Uq) and c is in
A(Uq). Without loss of generality, we shall assume that q _-> r + s.

Define the proper algebraic set

F:={(ul,. ur) in U such that C(Ul,. u,. uq)= 0 for all (u+l,. Uq)}.

Claim" F satisfies the requirements of the lemma. Indeed, assume that _w
(Ul,’",ur) is not in F. Take x, z in X such that h(P(X, Ul,...,u))=
h(P(z, u,’", u)) for all t= 0,..., r, i.e.,

(3.3) h,(x, z, u,. , u,)= 0, 0,. , r.

Denote _x := P(x, _w), _z := P(z, w_ ). It must be proved that _x, _z are indistinguishable.
Assume that _x, _z are distinguished by an input sequence v, which can be taken of

length j, 0-</" <= s, by definition of s. let

F := {w in U such that h+i(x, z, w_, w)= 0};

this is an algebraic set, proper because v is not in F1. Let

F2 := {w in U such that c(_w, w, w’)= 0 for all w’ in Uq--i};

this is also an algebraic set, and it is proper because _w was taken not in F.
It follows that F1 U F2 is also a proper algebraic set. Let then w be in neither F1

nor F2. Then c(_w, w, w’) 0 for some w’, so

(3.4) c(w_, w, w’)hr+i(x,z, w_, w)O.

But (3.2), (3.3) and (3.4) taken together are contradictory.
THEOREM 3.5. Observability implies, ]’or polynomial systems, final-state deter-

minability with generic inputs.
Proof. Immediate from the lemma.
Remark 3.6. As shown in Sontag (1976), canonical realizations Zf of polynomial

response maps are not, in general, polynomial systems. So the Theorem above is not

applicable directly (A(Xf) is not Noetherian). However, if f admits a polynomial
realization Z, then the reachable states of Zf form a set which is a quotient of the
reachable set of E. Then Lemma 3.1 can be applied to Y_., implying that the reachable
part of Ef does satisfy Theorem 3.5. Another generalization regards the case in which X
is a nonaffine variety: taking an affine cover of X, equations as in (3.2) result on each
piece of the corresponding decomposition of X x X, and Lemma 3.1 is again true. This
generalization is of interest in identifiability questions, with nonaffine parameter spaces.

4. Particular cases, applications, generalizations.
(Polynomial) State-afline systems. For this class of systems, whose realization

theory was studied in Sontag (1976b), most of the implications among observability
properties are easy generalizations of the linear case.

DF.FINITION 4.1. A polynomial system Y_. is state-affine iff X kn, U k", P is
affine (linear + translation) in states, and h is linear.

Fixing a basis in X, the equations for a state-affine system have the form

x(t + 1)= F(u(t))x(t)+ G(u(t)),

y(t)= nx(t),

where F(. is a (polynomial) matrix function of u, G(. ) is a vector function of u, and H
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is a constant matrix. A particular case is that of internally-bilinear systems (see, e.g.,
Brockett (1972), D’Alessandro, Isidori and Ruberti (1974), Fliess (1973)), when F
and G are themselves linear or affine in u.

For state-affine systems the table of implications given in 2 collapses to

A=BC=D=E=F-HG.

It must be proved that C F and A- B. That C F is clear from (1.3), since the hii are
linear functions of x, observability thus meaning that the coordinates xi are linear
combinations of the h0. (An explicit matrix criterion for observability is described in
Sontag (1976b, Lemma 1.32).) That A B follows from the following characterization,
which can be also generalized to the case U proper algebraic set by considering a
basis of functions U k instead of all monomials u’:

PROPOSITION 4.2. The state-affine system E is single-experiment observable iff
H
HF(U,)

(4.3) rank n

Lhf(gn-1) F(U1)

over the field K k (UI,. , U,_I) Of rational functions in rn (n 1) variables.
Moreover, if (4.3) holds, then any w Ul u,_ such that the rank in (4.3) remains n

after specializing UI u, , U,-I u, solves the single-experiment observation pro-
blem. (The set of all such w is generic.)

For example, consider the three-dimensional state-affine system Y-a:
Xl(t+ 1)=xl(t)ul(t)+X2(t)u2(t)+x3(t)U3(t) X2(t+ 1)=0, x3(t+ 1)=0,

y(t)=Xl(t).

This system is observable, but (with U1 =[Ull, U21, U31], U2 [U12, U22, U32]) the
matrix in (b) is

gll g21 g31

LU12 Ull U12 U21 U12U3
which has rank two, so the system is not single-experiment observable.

Proof of Proposition 4.2. Single-experiment observability with an input w
U u, is equivalent to the map x -H (x) being one-to-one. Since

H (x)= (Hx," , HF(u,). F(ul)x)+ translation,

H is one-to-one if and only if the rank of

H
HF(u 1)

HF(u,) F(Ul)

is n. Being full rank means that some n n minor is nonzero, so the same minor is
nonzero as a polynomial in u Ux,. , u U (variables) over K. Thus the rank of
this matrix is also n. Consider the chain of subspaces V, of K" defined by

Vr := span over K of F’(U1). F’(Ui)H, < r, j 1,. p,
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where I-/. is the flh column of H. It is easy to see that if Vr Wr-1 for some r then
Vr- V/I Thus V,, V,/I Vt. This proves that the rank in (4.3) is n.
The rest of the statement is clear from the proof.

The proof of Lemma 3.1 can be rederived for the state-affine case, using only
linear-algebraic methods (over rational function fields). A constructive proof is thus
obtained, with the precise value r n.

Parametric identification. The result in 3 can be applied to the following
identification problem: a family of polynomial systems is given, parametricized by
polynomial functions. It follows that, if the output is known for a generic input, then
the future input/output behavior of the system is completely determined. Specifically,
considering a family (or "structure"--see Bellman and Astr6m (1970)):

(4.4) E’{ x(t+l)=P(h’x(t)’u(t))=P(x(t)’u(t))"
y(t)= h(h, x(t)) h (x(t)),

where P" A x X x U x and h’A x X - y are polynomial maps and A, X, U, Y are
algebraic subsets of k q, k n, k m, k ’ respectively, U irreducible. The input/output map
of 2,. for initial state x is

fx,x" w --H (x ).

THEOREM 4.5. There is a positive integer r and a generic subset R of U such that,
for each input sequence w u u in R,

f,x(W)=f.,z(W)

implies that

B,x(WV)= f,,z(wv) for all input sequences v.

Proof. Let , be the polynomial system with := AxX, = U, I= Y and
equations

a(t+ 1) =, (/), x(t+ 1)=P(a(t),x(t), u(t)),

y(t)= h(A (t), x(t)).

Then Lemma 3.1 applied to gives an r and an R such that /-)w(A, x)=fx.x(w)
determines the final state (, x(r)) up to indistinguishability, i.e., all future outputs
coincide.

For instance, the future input/output behavior of the system Y--5 (with U Y
k,X=k3):

Xl(t+ 1)=X3(/), Xe(t+ 1)=hxl(t)+Xe(t), x3(t+ 1)=xe(t)u(t)+xe(t),

y(t)=x3(t)

is uniquely determined once that the output corresponding to a w U lU2U3, ui --1 is
known, since x3(0), x2(0), hxl(0), and hx3(0) are successively obtained. (Note that the
parameter A itself is in general not determinable, for instance if x3(0) is zero; an
additional "parameter-identifiability" condition is needed on the given family in order
to determine .)

The above definition of family of systems includes the case in which the
identification is desired of a system of which one only has a bound on dimension and a
bound on the degree of the polynomials in its defining equations: it is then obviously
enough to add one parameter for each unknown coefficient and one for each coor-
dinate of the (unknown) initial state. (Such a parametrization is of course highly
redundant; realization theory may give lower order ones; see Remark 3.6.).



ON THE OBSERVABILITY OF POLYNOMIAL SYSTEMS 149

Nonpolynomial systems. Many of the remarks and results of previous sections
apply to more general finite-dimensional systems than polynomial systems, i.e.,
systems

(4.6) x(t + 1)= P(x(t), u(t)), y(t)= h(x(t))

where, say, U, X, Y are subsets of R’, R", [P (or corresponding complex spaces) and
P, h are analytic, infinitely differentiable, or just continuous, either in both x and u, or
only in x. The "generic" conditions, defined in terms of algebraic sets, should of
course, be redefined according to the category to be worked on (analytic sets, nowhere
dense sets, etc.). We conjecture, but have not yet proved, that Theorem 3.5 is true in
the analytic case. (In certain cases this is trivially true, e.g. for "analytic state-affine
systems," when P, G are analytic in u and linear in x.) The weaker result CG:
observability implies final-state determinability, holds for the following kind of system
(analogous definitions for the complex case):

DEFINITION 4.7. A state-analytic system Y_. has equations (4.6)with X an open
subset of n, y a subset of P, and both P and h analytic in x.

(U, and the dependence of P on inputs u, are completely arbitrary.)
THEOREM 4.8. Let the state-analytic system E be observable. Let K be any

compact subset of X. Then there exists an input sequence w such that, for each pair of
states x, z in K, either H (x H (z ) or P(x, w)= P(x, z ).

Proof. For each input sequence w, let

Kw := {(x, z) in K KIHw (x)-- H (z)}.

Each Kw is a subset of the compact set K x K, defined by analytic equations in X x X.
It can be proved, using compactness and applying the generalized form of the Weir-
strass preparation theorem given by Herv6 [1963, Thm. 2.7, Cor. 3], that sets defined
by analytic equations satisfy a descending chain condition on compact sets. Thus,
there is a minimal Kw.

Then w satisfies the conclusion of the theorem. Indeed, assume that, on the
contrary, there is a pair (x, z)in K x K with H (x)= H (z) but P(x, w) P(z, w). By
observability of E, there is an input sequence v such that

HWV(x) HW(p(x, v)) HW(p(z, v))= HWV(z).

So K is properly contained in K, contradicting minimality of the latter.
Except for our use of the result from analytic functions, the above is essentially

the standard proof of C- G for automata (all sets finite, so there is again a minimal
Kw) and for internally-bilinear systems (all sets are linear subspaces), in particular as
given by Muchnik (1973) and independently (strictly speaking, for continuous-time)
by Grasselli and Isidori (1977).

The compactness assumption cannot be dropped: the one-dimensional state-
anaiytic system ,--,6 with equations

x(t+ 1) 1/2x(t), y(t)=sinx(t)

is observable but is not final-state determinable with any (finite length) input.
Similarly, infinite differentiability (instead of analyticity)will not be sufficient:
consider the one-dimensional system 7 with X := (-1, 1) and

x(t + 1)= a(x(t)), y(t)= b(x(t)),

where a, b are infinitely differentiable with a(x)= 2x on [-1/4, 1/4] (arbitrary otherwise),
and b(x)= 0 on [-1/4, 1/4] and bijective in the complement. Then Y-,7 is observable, but



150 EDUARDO D. SONTAG

pairs of states in K [-1/4, 1/4] do not satisfy the conclusion of Theorem 4.8. (It is
interesting to remark that in both these examples there is an "asymptotic" final-state
determinability; infinite-time conditions are more appropriate for nonpolynomial
systems.)

Continuous-time. Many of the previous results can be generalized to continuous-
time finite-dimensional systems

(4.9) 2(t)= P(x(t), u(t)), y(t) h(x(t)),

where appropriate restrictions are placed on the state-space, input set, spaces of input
functions, and P, h. The continuous case is simpler than the discrete one, due to the
time-reversibility of (finite dimensional)differential equations. This implies that no
information is lost when an experiment is performed on such a system, i.e., the maps

(*) x- P(x, w)

are homeomorphisms for all w (P(x, w)= solution of (4.9) at time T with x(0)= x and
input w(. on [0, T]). It follows that final-state-determination is equivalent to single-
experiment observability. If P is analytic in both x, u and h is analytic in x (so that the
maps (.) are analytic), and under suitable technical assumptions insuring existence and
uniqueness of solutions of (4.9) for admissible input functions w, it follows by essen-
tially the same argument as in Theorem 4.8 that observability implies single-experiment
observability. (The internally-bilinear case of this result was proved via linear-alge-
braic techniques by Grasselli and Isidori (1977).) When P, h are polynomial in x, the
methods in Sontag and Rouchaleau (1975) can be applied to jets of outputs cor-
responding to smooth inputs, resulting in finiteness results for the continuous case.
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DYNAMIC PROGRAMMING APPROACH TO STOCHASTIC EVOLUTION
EQUATIONS*

AKIRA ICHIKAWA

Abstract. In this paper stochastic regulator problems and optimal stationary control as well as stability
are studied for infinite dimensional systems with state and control dependent noise. The stochastic model is
described by a semigroup and Wiener processes in Hilbert space and Wonham’s approach using differential
generators and dynamic programming is extended to infinite dimensions.

Introduction. The theory of differential equations, both deterministic and sto-
chastic, optimal control, and filtering has been extended by many authors to infinite
dimensions [1]-[7], [10], [11], [14], [15], [16]. This is partly because a wide class of
partial differential equations and delay differential equations can be described by
differential equations in infinite dimensions using semigroups or evolution operators
[51.

In [13] Wonham has developed an extensive study of stochastic processes in
control theory including stability, regulator problems, optimal stationary control,
invariant measures of a Markov process, filtering and separation principle. He exploits
the theory of differential generator and dynamic programming to solve these prob-
lems.

In infinite dimensions Wonham’s approach does not seem promising, since in
general stochastic evolution equations have only so-called mild solutions and hence
stochastic differentials do not exist for such systems [1], [3]. In other words we cannot
apply Ito’s formula to them, which is essential to dynamic programming approach. In
[9] we have solved stochastic regulator problems both on finite and infinite horizons.
But because of the reason mentioned above we needed an indirect approach and had
to restrict ourselves to linear feedback controls. And yet we can formally consider
differential generators and Bellman’s equations associated with infinite dimensional
systems. The aim of this article is to see whether they have any consequences to
stability or optimality. In fact we shall show in 3 that stochastic stability in mean
square sense is equivalent to the existence of a solution to a Lyapunov equation as
well as to exponential stability of second moments [7], [17]. This is an extension of
Datko’s results in [6] to stochastic systems. Then we shall show that invariant
measures exist for stable processes (in the sense defined in 3). In 4 we solve
regulator problems and optimal stationary control problems considered by Wonham
[13], [14] using dynamic programming. We shall show that the solution of a Bellman
equation yields an optimal feedback control and the minimum cost. We introduce
approximating systems which have stochastic differentials and apply dynamic pro-
gramming arguments to them. This is an extension of our previous work [11] to
stochastic control.

1. Preliminaries. We summarize results on stability and perturbation of semi-
groups and stochastic integrals in Hilbert space, which we need in subsequent sections.
Let X, Y, U, and H be real Hilbert spaces. We write (., for inner products and l"
for norms of elements and operators. We denote by (. and (.,. spaces of
bounded linear operators, for example, (X), (X, Y).
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? Control Theory Centre, University of Warwick, Coventry, England. Now at Faculty of Engineering,

Shizuoka University, Hamamatsu 432, Japan.
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1.1. Stability and perturbation of semigroups. Let T(t), >=0, be a strongly
continuous semigroup on X with infinitesimal generator A [8]. The domain of A is
written (A).

DEFINITION 1.1. T(t) (or A)is stable if IT(t)l<-a e- for some positive numbers
a ->- 1 and a.

THEOREM 1.1 (Datko [6]). The following statements are equivalent"
(i) T(t) is stable,
(ii) j-o iT(t)xl 2 dt < oo for each x X,
(iii) there exists a self-adfoint nonnegative operator P (P>= 0 for short) in (X)

such that

(1.1) 2(Ax, Px)= -(x, x) for each x @(A).

Take B 6 (U, X), C ’(X, Y) and recall the definitions:
DEFINITION 1.2.
(i) (A, B) is stabilizable if there exists K e (X, U) such that A BK is stable.
(ii) (C, A) is detectable if there exists J e(Y, X) such that A-JC is stable.
Take the control system

(1.2) , (t) Ax(t)+ u(t)
and the observation

(1.3) y(t)= Cx(t);

then detectability implies stabilizability of (1.2) by a linear feedback law on the
observation (1.3). The following results due to Zabczyk [16] are useful in quadratic
control and filtering.

LEMMA 1.1. Take K e.g(X, U), O<-Q eL(X), and 0<N6(U) with bounded
inverse N-I L(U). Suppose that (C, A) is detectable and

(1.4) 2((A-BK)x, Ox)+(Cx, Cx)+(NKx, Kx)<=O foreachxe@(A).

Then A-BK is stable.
THeOrZM 1.2. If (A, B) is stabilizable, then the algebraic Riccati equation

(1.5) 2(Ax, Ox)+(Cx, Cx)-(QBN-1B*Qx, x)= 0, x 6 @(A)

has a solution Q >= O. If (C, A) is detectable, then (1.5) has at most one solution and if
the solution exists, A-BN-1B*Q is stable.

The following results on perturbed semigroups are useful in the sequel. Let
(0, tl; 5(X)), 0 < tl <, be the space of strongly measurable essentially bounded
(X)-valued functions. Consider the integral equation

(1.6) x(t)= r(t-s)+ r(t-r)K(r)x(r)dr, s<=t<=tl,

where : e X, 0 =< s < tx, and K e oo(0, tl, =’(X)). By a standard method one can show
that there exists a unique solution, denoted by x(t; s, ), which is strongly continuous
in and depends continuously on the initial condition (s,:). Define U(t,s)=
x(t; s, ), then we have"

PROPOSITION 1.1. U(t, s)e L(X) and

(i) U(s, s)= I, the identity operator, for each 0 <- s <- tl,

(1.7) (ii) U(t, r)U(r, s)= U(t, s) for 0 <= s <= r <= <- t,

(iii) U(t, s) is strongly continuous in [s, tx] and s [0, t].
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COROLLARY 1.1. U(t, s) is the unique solution of the operator integral equation

(1.8) U(t,s)= T(t-s)+ T(t-r)K(r)U(r,s)dr

satisfying (1.7).
DEFINITION 1.3. The operator U(t, s) is called the perturbation of T(t) by K(t).
COROLLARY 1.2. U(t, s) is the unique solution of the integral equation

(1.9) U(t, s)sc= T(t-s)+ U(t, r)K(r)T(r-s)dr

with property (1.7).
Proof. Let U(t, s) be the solution of (1.8) and set

(1.10) (t, s) T(t-s)+ U(t,r)K(r)T(r-s)Cdr.

Substitution of (1.8) in (1.10) and Fubini’s theorem yield O(t,s)= U(t,s). The
uniqueness follows from linearity of (1.9)or by reversing the above process.

The next proposition follows from Corollaries 1.1, 1.2.
PROPOSITION 1.2. U(t, s) satisfies the following:

(1.11) U(t,s)x-x= U(t,r)[A+K(r)]xdr,

or equivalently,

(1.12) O--U(t, s)x -U(t, s)[A + K(s)lx, x @(A)
Os

x (A)

]’or almost all s [0, t].

0
(1.13) (U(t,s), y)=(U(t,s),A*y+K*(t)y}, X, y(A*)

]’or almost all [s, tx], where A* is the adfoint of A.
The equation (1.6) is the integrated version of the differential equation

2(t)= Ax(t)+ K(t)x(t),
(1.14)

x(s)= ’,

but the solution of (1.6)does not necessarily satisfy (1.14).
DFFINITION 1.4. U(t, s) is called the mild solution of (1.14).
We may regard U(t, s) as the weak solution of (1.14) in the sense

d
(1.15) -(x(t), y} (x(t), A*y + K*(t)y), y @(A*) for almost all [s, tl].

We refer the reader to [5] for details and perturbation theory for evolution
operators.

1.2. Stohastie calculus in Hilbert space. We introduce Wiener processes and
stochastic integrals in Hilbert space [2], [3]. Let (fl, E, r) be a complete probability
space.

DZFINrrIo 1.5. An H-valued stochastic process w(t) on (f, E, o’) is a Wiener
process if

w(t)= Y’. i(t)ei
i=1
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where fli(t) are mutually independent real Wiener processes with

E{fl(t)}=Ait and A,<
i=1

and {ei} is an orthonormal set of vectors in H. The nonnegative trace class operator
W 6 (H) with We ie, trace W Y=I Zi is called the (incremental) covariance
operator of w(t).

It is known that

(1.16)

E{w(t)}=O,

E{(w(t)- w(s))o (w(t)- w(s))} W(t- s),

E{lw(t)- w(s)[2} trace W(t- s),

E{Iw(t)- w(s)l4} -< 3(trace W)2(t- s)2,

where denotes the tensor product, i.e., (g h)k a_ g(h, k) for any g, h, k H.
Let F, o-,{w(. )}, the minimum o’-algebra generated by w(s), 0-<_s-<_ t. Take

[0, tl] fl- (H, X) a strongly measurable function adapted to Ft with

t’
E[(I)(t)[2 dt < .

DEFINITION 1.6. The stochastic integral with respect to w(t) is

tl

iff(t) dw(t) - E " cO(t) ei dflg(t)
i=1

where the convergence is in mean square sense.
Results given below are found in [2].
PROPOSITION 1.3. (r)dw(r), 0<= <= tl, is a martingale relative to F, and has

continuous sample paths. Moreover,

(1.17)

(i) E{I0/1 (t) dw(t)} O,

tl
trace E I cb(t) WcP*(t) dt}(ii) E{ ]Io (t) dw(t)]2} "

<_- trace W El(t)l2 dr,

(iii) /f l(t)l4 dt < oe, then

E (t) dw(t) N Ctl(trace W)2 El(t)l4 dt, c > O.

THEOREM 1.3 (Ito’s lemma). Suppose that g(t, x): [0, tl] x X R is a continuous
map and x(t) is an X-valued stochastic process with stochastic differential
(1.8) dx(t)= 6(t) dt +4(t) dw(t)
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such that

(1.19)

with

(i) g,(t, x) is continuous on [0, tl] X,

(ii) g(t, ) is twice Frchet differentiable on Xfor each [0, tl],

(iii) gx(t, x), gx(t, x) are continuous in (t, x) [0, tl] X,

(iv) 4(t) is an X-valued process adapted to Ft and is integrable on [0, tl],

(v) (t) is an .(H, X)-valued strongly measurable function adapted to Ft

Then z(t)= g(t, x(t)) has the stochastic differential

(1.20)

dz(t)= {g,(t, x(t))+(gx(t, x(t)), c(t))

+1/2 trace (t)W*(t)g(t, x (t))} dt

+(gx(t, x(t)), (t) dw(t)).

2. Stochastic evolution equations with state dependent noise. Let X, H, 1, 2,
be real Hilbert spaces. Consider the stochastic differential equation in X

(2.1)
dx(t) Ax(t) dt + D(x(t)) dw(t)+Fdw2(t),

x (0)= Xo X,

where A is the infinitesimal generator of a strongly continuous semigroup T(t) on X,
wi(t) is a Wiener process in Hi with covariance operator Wi, i= 1,2, De
(X, (H1, X)), F (H2, X) and Wi(t), 1, 2, are mutually independent.

2.1. Mild solutions. To establish a solution of (2.1) we need very restrictive
assumptions. See Remark 2.2 below. So we shall mainly be concerned with the
integral equation associated with (2.1):

io i0(2.2) x(t)= T(t)Xo+ T(t-r)D(x(r))dwl(r)+ r(t-r)Fdw;(r).

PROPOSITION 2.1. There exists a unique solution of (2.2) which is continuous in
mean square and adapted to trt{wi(" ), i= 1, 2}. The fourth moment is also finite and
continuous.

One can establish a proof similar to that of Theorem 2.1 [2] with slight
modification.

DEFINITION 2.1. The unique solution of (2.2) is called the mild solution of (2.1).
Remark 2.1. The operator D can be nonlinear in x. If D satisfies, for example,

(2.3)
ID(x)hl c(1 + Ixl)[h

ID (x)h D (y)hl c Ix y llhl (0 < c: generic constant)

for any h H1, x, y 6 X, then Theorem 2.1 remains true. For some class of T(t)’s we
may take D unbounded in the sense D (V, (Ha, X)), V c X [10].

Remark 2.2. If Xo @(A) and D, F satisfy

]T(t)AD(x)hal2<-fl(t)]x[2lhl2, x X, hl H1,
(2.4)

IT(t)aFh2[2 <- fz(t)lh212, h2 H2,
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for some locally integrable function 11, 2, then the mild solution in fact satisfies (2.1).
This follows from a stochastic Fubini theorem [3].

Remark 2.3. The initial value Xo can be random.
More general stochastic evolution equations with martingale noise can be found

in [1].

2.2. Stochastic perturbation of semigroups. Consider the stochastic version of the
integral equation (1.8):

(2.5) S(t, s) T(t- s) + T(t- r)D(S(r, s)) dWl(r), X.

This is an operator integral equation corresponding to (2.2) with F 0.
PROPOSITION 2.2. There exists a unique solution o] (2.5) in (X) such that

(i) S(t, s) is adapted to Ft.s o’{wl(r), s <- r <= t} ]:or each X

(ii) S(s,s)=/, s->0,

(iii) S(t, r)S(r, s)= S(t, s), 0 <- s <- r <- t,

(2.6) (iv) E{S(t,s)}= T(t-s), X, O<-s<=t,

(v) {s(t. s)[F.} r(t- r)S(r, s). 0 <- s <- r <- t.

(vi) S(t, s) is mean square continuous in and s, O<- s <= t,

(vii) S(t, s) is the unique solution of

(2.7) x(t)= T(t- s) + T(t- r)D(x(r)) dwl(r).

Pro@ This is an immediate consequence of Proposition 2.1.
Example 2.1. Consider the stochastic heat equation

dx (t, l)= -x (t, l) dt + 6x (t, l) d (t), 6 > O,

(2.8)
x (t, O) x (t, 1) O, x (0, l) Xo(1)

where/3(t) is a real Brownian motion. In this case X Lz(0, 1), T(t) is generated by

d2 dx d2x }A =-5, (A)= x(. )6L2(0, 1)" -,--L2(0, 1),x(0)=x(1)=0

and D(x) 6x. Then

S(t, s) e-2/z)’-s)+t’)-t))T(t s)c.
The mild solution is given by

(2.9) x(t)= e-(2/z)’+(’)T(t)Xo
which has continuous sample paths. If x0 @(A), then (2.9) is the solution of

dx(t) ax(t) dt + 6x(t) d(t),

x(O) xo.

2.3. Ito’s lemma and its application. Since the stochastic differential equation
(2.1) involves an unbounded operator A, assumption (1.19)(i) turns out to be too
strong. So we present a modified Ito’s lemma which is appropriate for (2.1).
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THEOREM 2.1. Suppose that the mild solution x (t) satisfies the stochastic differential
equation (2.1) and that g(t, x): [0, tx] X -’) R is a continuous map satisfying

(i) g(t,x) is differentiable in for each x (A) and the derivative gt(t,x) is
continuous in with estimate

I&(t, x)[ =< c(1 + Ix 1)(1 + [xl / lAx I), c > 0

and (1.19)(ii), (iii). Then x(t)= g(t, x(t)) has the stochastic differential
dz(t) {g,(t, x(t))+ (gx(t, x(t)), Ax(t))

+ 1/2 trace O(x(t))W1O*(x(t))gxx(t, x(t))
(2.10)

+ 1/2 trace FW2F*g,(t, x (t))} dt

+ (gx (t, x (t)), D (x (t)) awl(t) +Fdw2(t)).

Proof. The new assumption (i) guarantees the integrability of g,(t, x(t)) and the
proof [2] of Theorem 1.3 goes through.

Using this theorem we shall calctilate

(2.11) fotl E(Mx(t), x(t)) dt + E(GX(tl), x(tx))

where 0 =< M, 0-< G (X). For this purpose consider the linear operator differential
equation

d(p(t)x,x)+2(Ax, P(t)x)+([M+A(P(tl)]x,x)=O, x @(A),
dt

(2.12)
P(tl)=G

or its integrated version,

(2.13)

P(t)x T*(r- t)[M + A(P(r))]T(r- t)x dr

+ T*(tl- t)GT(tl- t)x, x X,

where (A(R)x, y)= trace D*(y)RD(x)WI, X, y 6X, R e.g(X).
PROPOSITION 2.3. There exists a unique solution satisfying (2.12), (2.13) in the

class of linear self-adfoint nonnegative strongly continuous operators on X.
Proof. The existence and uniqueness of a solution to (2.13) is shown in [9]. To

show the equivalence of (2.12) and (2.13), suppose first that P(t) satisfies (2.13). Then
differentiating (P(t)x,x), x @(A) yields (2.12). Conversely, suppose P(t) satisfies
(2.12). Let x (A), > s >=0. Then (P(t)T(t-s)x, T(t-s)x) is differentiable in and

d
----(P(t)T(t- s)x, T(t- s)x) -2(AT(t- s)x, P(t)T(t- s)x)
dt

-([M + AP(t)IT(t s)x, T(t- s)x)

+2(P(t)T(t- s)x, A T(t- s)x)

-([M + AP(t)]T(t- s)x, T(t- s)x).



STOCHASTIC EVOLUTION EQUATIONS 159

Integrating this from s to we obtain

(P(s)x,x)=(GT(tl-S)x, T(tl-S)X, T(I1-s)x)

+ ([M + A(P(t))IT(t- s)x, T(t- s)x) dt.

Since (A) is dense in X, (2.13) follows easily.
PROPOSITION 2.4. Suppose that the mild solution x(t) of (2.1) has the stochastic

differential (2.1). Then

it, E(Mx(t), x(t)) + E(GX(tl),dt

(2.14)
E(P(s)x(s), x(s))+ trace F*P(t)FW dr.

Pro@ Take g(t, x)= {P(t)x, x}; then g(t, x)satisfies the assumptions in Theorem
2.1. So Ito’s lemma yields

d(P(t)x (t), x (t)} {-(Mx (t), x (t)) + trace F*P(t)FW} dt

+(2P(t)x(t), D(x(t)) dWl(t)+ Fdw2(t)).

Integrating from s to tl and taking expectations we obtain (2.14).
To calculate (2.11)we only need to solve (2.12). Note that both sides of (2.14)are

well-defined for the mild solution. Thus the assumptions that the mild solution x(t)
satisfies (2.1)seems unnecessary. In fact this is the case and we shall establish (2.14)
for the mild solution. Let 0<A p(A), the resolvent set of A and R(A,A) the
resolvent of A. Introduce the approximation of (2.1):

dx(t) Ax(t) dt + AR (, A)[D(x(t))dWl(t)+ Fdw2(t)],
(2.15)

x(0) xo.

Take Xo @(A). Since AAR (A, A) A A 2R (A, A) is bounded, the assumptions in
Remark 2.2 are satisfied. So there exists a unique solution of (2.15) and we denote it

by x(t,A). It is also the mild solution. Then applying Ito’s lemma to

(P(t)x(t, A ), x(t, A )) we obtain

(2.16)
E(Mx(t, A ), x(t, )) dt + E(x(t, ), X(tl,/ ))

E(P(s)x(s, ), x(s, A ))+ It’
trace (AR (, A)F)*P(t)AR (A, A)FW2 dt.

The next lemma allows us to pass to the limit A +.
LEMMA 2.1. x(t, A )- x(t) in mean square uniformly on [0, tl] as A - +, where

x(t, A ), x(t) are the mild solutions of (2.15), (2.1) respectively.
Proof. Form the difference

x(t,A)-x(t)= T(t-r)[AR(A,A)D(x(r,A))-D(x(r))] dw,(r)

+ Io T(t r)[AR (h, A)- I]Fdw2(r).
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So

where c > 0 and

e(t, A) 3E T(t-r)[AR(A,A)-I]D(x(r))dWl(r)

+ 3E T(t r)[AR (, A)- I]F dw.(r)

By Gronwall’s inequality we obtain

Elx(t,A)-x(t)]z<--e(t,A)+c e(t-e (r, A dr.

Butwe know [8] that limx_,+ooAR(A,A)x x for any x X. So e(t, A)0 uniformly on
[0, tl] as A +oe, which proves the lemma.

THEOREM 2.2. Let x(t) be the mild solution of (2.1); then (2.14) holds:

E(Mx(t), x(t)) dt + E(GX(tl), x (tl))

E(P(s)x(s), x(s))+ Is’1
trace F*P(t)FW2 dt.

Proof. If Xoe(A), then we can pass to the limit A -oo in (2.16)to obtain (2.14).
But since @(A) is dense in X and x(t) depends continuously on Xo (2.14) holds for any
xoeX.

3. Stochastic stability and invariant measures. Our basic system is

x(t)= T(t)Xo + T(t- r)D(x(r)) dWl(r)-t- T(t- r)Fdw2(r).

3.1. Stochastic stability. We first prove a stochastic version of Datko’s result
Theorem 1.1. Set F -0 and consider

(3.2) x(t)= T(t)Xo+ T(t-r)D(x(r))dWl(r).

DEFINITION 3.1. The system (3.2) (or (A, D)) is stable if the solution x(t) satisfies

Io ElX(t)l dt < for each Xo X.
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THEOREM 3.1. The following statements are equivalent"

(i) (A, D) is stable,

(ii) there exists 0 <- P (X) such that

(3.3) 2(Ax, Px)+(A(P)x,x)=-(x,x) for any x 6D(A),

(iii) there exists positive numbers a >- 1, a > 0 such that

E]S (t, s)l 2 <_- a e

or equivalently

Elx(t)l2 <= a e-’lXol2

where S(t, s) is the stochastic perturbation of T(t) given in 2.2.
Proof. The equivalence of (i) and (ii) is shown in [17] (see also [9]). Suppose (i)

holds and let ell(t) be the solution of

(3.4)

d
(P(t)x, x)+ 2(Ax, P(t)x)+ ([I + A(P(t))]x, x)= 0

dt

P(tl)-- O.

x 6 @(A),

Then specializing Theorem 2.2 and (2.13) we obtain

tl ’1
JT(t)Xo[ 2 dt <= (P,l(O)xo, Xo) [x (t)[ 2 dt < lx(t)]2 dt < c.

By Theorem 1.1 T(t) is stable, ell(0 is clearly monotone increasing in tl and uni-
formly bounded (Banach-Steinhaus theorem). Thus there exists a limit e => o. Then in
view of (3.4) we can conclude that P satisfies (3.3). So (i) implies (ii). Suppose (ii)
holds. With the aid of Ito’s lemma for g(x)= (Px, x) we can establish (see Theorem
2.2)

(3.5) (Pxo, xo)=E(Px(t),x(t))+ E[x(r)l2 dr, t>0.

Hence

oo > <Pxo, xo> Io Elx(t)12 dt Io IT(t)x]2 dt,

which implies (i) as well as the stability of T(t). Then (iii) follows [7]. In fact from (3.5)
we obtain

-E(Px(t), x(t))= -E[x(t)l2 <=-IPl-E(ex(t), x (t)),

from which follows

E(Px(t), x(t)) <-_ e-t(Pxo, Xo),
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Since T(t) is stable, IT(t)[-<_ be -or for some b >_-1,/3 >0. Now from (3.2) follows the
estimate

EIx(t)lZ=lT(t)Xol-+trace E{T(t-r)D(x(r))WaD*(x(r))T*(t-r)} dr

<- b 2 e-2t,lXo[2 + c e -2o(’-)E[x(r)l2 dr (c >0)

b2 e-2O, lxol2_ c e -2t-r)-rE(Px(t), x(r)) dr

b 2 e-Z,lXo]Z_ cE(Px(t), x(t))+ c e-ZO’(Pxo, Xo)

-zt3-r)E(Px(r), x(r)) dr

=< b 2 e-2ttlXol2 + c e-2t’(Pxo, Xo) + ---c Io e-2/3(t-r) e-r(Pxo, Xo) dr

c 1
b 2 e-Ztt[Xo[ + c e-Zt’(Pxo, Xo) + --(e-pt- e-ZOt)(Pxo, Xo) (p 2)

2 2-p

b2 e-2t3,lXo[2 + c e -2t3’(Px0, Xo) +
2/3(2/3 -p)

e-P’(Pxo, Xo) (p 2).

If p 2/3, the last term above is replaced by (c/(2))t e-2O’(Pxo, Xo). This implies (iii)
i.e.,

E]x(t)l2 <= a e-’tlXol 2 for some a => 1, a > 0.

But obviously (iii)implies (i).
COROLLARY 3.1. The equation (3.3) has at most one solution.
Proof. If there exists a solution P_-> 0, then (3.5) yields

(Pxo, Xo)= Io EIx(t)[2 dt.

If (A, D) is stable, then the average of second moments of the solution x(t) of
(3.1) is finite. In fact we have:

COROLLARY 3.2. Let x(t) be the solution of (3.1). If (A, D) is stable, then

lim
1 Io EIx(r)l dr trace F*PFW2

where P is the solution of (3.3).
Proof. Let PI(" be the solution of (3.4); then in view of Theorem 2.2

Elx(t)l2 dt (P,l(O)xo, Xo) + trace F*P,I(t)FW2 dt.

But we know by Theorem 3.1 that P,l(t) converges monotonically to P as tl
Hence the assertion follows.
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3.2. Invariant measures. We examine invariant measures of the Markov process
x(t) associated with (3.1):

x(t) T(t)Xo+ fo T(t-r)D(x(r))dw(r)+ Io T(t-r)Fdw2(r).

We need the transition function of the process x(t) defined by

P,(, 0))= Probability {x(t) 0Ix(0) :}

where 0 is an arbitrary Borel set of H and x (t) is the solution of (3.1) with x (0) . Let
be a probability measure on X.
DEFINITION 3.2. is an invariant measure of P(.,. if P(I," )= (" ), where

P,(, Ix u (d)P,(, ).
The next theorem is our main result in this subsection.
THEOREM 3.2. Suppose that (A,D) is stable; then there exists an invariant

measure I of P(. and

fiX ]12/d, (d:)= trace F’PEW2

where P is the unique solution of (3.3).
The following series of lemmas will establish the theorem.
LEMMA 3.1. Iff is a bounded weakly continuous function on X, then so is

f)& Ixf(n)P,(, dn) Ef(x(t, ))P, (:,

where x(t, ) is the solution of (3.1) with x(O)=
Proof. Let , rt X, then by Proposition 2.2

x(t, )-x(t, r/)= S(t, 0)(- r/).

Hence if : r/ weakly, x(t, )- x(t, 7) weakly with probability one. Since f is weakly
continuous, so is P,(f, f).

COROLLARY 3.3. If V,, v are probability measures on X such that v, v weakly
[12] as n-oo with respect to the weak topology of X (we shall always take weak

topology of X as the underlying topology), then Pt(v,," )- Pt(v," weakly as n

Proof. Let f be an arbitrary real bounded weakly continuous function; then

IxP(v, d)f(/)= Ix.f(x(t, ))v(d)

Ix P’(’ f)v. (de)

IxP,(, f)v(d)= fxP,(, d)f(l)
since Pt(, f) is a real bounded weakly continuous function.

LEMMA 3.2. (1//)P,(,") dr is weakly convergent to some probability
measure

Proof. Since (i/t)E]x(t, :)12 dr is finite for any and t, we can show as in [15]
that (I/t) P(,. )dr is uniformly tight [12]. So we can extract a subsequence
such that

1 fo
t"
P(,. ) dr I- weakly

t
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for some #. Note that if g:[O, oo)R is bounded measurable function, then
(l/t) ]’{ g(r)dr is convergent as t- c. Hence

lim P(j, d’q )f(rl) dr f(*l )u(d*l),

which completes the proof.
LEMMA 3.3. is an invariant measure of P(. and

x[n {2(dn trace F*PFW2

where P is the unique solution of (3.3).
Proof. Take f a bounded weakly continuous real function. Then

xP(, d)f()= x(d) jxf()P,(, d)
=lim

s
dr

=lim -sl 0 x x()P(’ d()P((, d)dr

=limlox-s
lim

1 + x()(, r

where we have used the Chapman-Kolmogorov equation. Then e is an invariant
measure of P(., ). Now consider

; lx(, 1 r

x(d() trace F*PFW trace F*PFW.

As for the uniqueness of an invariant measure we have the following.
Pooso 3.1. Ior any XoX the solution x(t) o (3.2) converges to zero with

probability one as , then P(. ,. has at most one invariant measure.

Pro@ The proof is similar to that of Proposition 4.1 [15].
Example 3.1. Consider again Example 2.1. Recall the solution

x(t)= e-(/’*O(r(t)xo S(t, O)xo.
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We have an estimate [T(t)[ <_-e -’2’ and the direct calculation yields

E[S (t, o)1 <-_ e-’/’.

Hence (2.8) is stable if 161 < 4r. It is known that

Probability {)i 3(t)= 0} 1.

So x(t)->O with probability one as t--> +c and the assumption in Proposition 3.1 is
satisfied.

4. Regulator problems. Consider the control system

i0 i0x(t)= T(t)Xo+ r(t-r)D(x(r))dw(r)+ r(t-r)Fdwa(r)

(4.1)

io io+ T(-r)Bu(r)dr+ r(t-r)C(u(r))dw3(r), xoX,

where w(t) is a Weiner process in a real Hilbert space H3 with covariance operator
W, u(t) is a control with values in a real Hilbert space U, B (U,X), C
(U, (H, X)) and we assume that w3(t) is independent of w(t), 1, 2.

The stochastic differential equation corresponding to (4.1) is

x (tl (ax () +u(t+ (x (tll w()+(+C(u(tll(,(4.
x(0) Xo.

We have solved regulator problems for (4.1) in [9], but admissible controls are of
linear feedback type. Here we employ the dynamic programming method which
enables us to take feedback controls of Lipschitz type. Using results in 3 we can also
formulate an optimal stationary control problem involving invariant measures.

4.1. Ofi! erl er ie r. Consider (4.1) on a finite interval
[0, t]. For admissible controls we take u(t)’s which are adapted ,{w(. ), i= 1, 2, 3}
and satisfy I Nlu (t)l dt < . The cost functional to be minimized is

(4.3) (u)= E{Gx(t), x(t)} + E{{Mx(t), x(t)}+{Nu(t), u(t)}} dt

where ONG, ONM(X)and 0<Ne(U)with N- (U). Note that feedback
controls of the form

u g(t, x)

where K(t, x)" [0, t] x X U is measurable and

are admissible. In fact for such a feedback control (4.1) has a unique solution x(t)
adapted to {wi( ), 1, 2, 3} with continuous second moments and u(t)= K(t, x(t))
is admissible.

Now define F(. and the dierential generator L, of (4.1):

(4.4) {F(S)u, v)=trace C*(v)SC(u)W3, Se(U), u, ve U,

GV(x) (G (x), ax +u
(4.5

+ {(F(V(x))u, u)+((V(x))x, x)+ trace F*V(x)FW}
for each x (A), u U and twice Frchet differentiable real function V(x) on X.
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The next lemma gives sufficient conditions for optimality.
LEMMA 4.1 (Optimality lemma). Suppose there exist a feedback control a K (t, x)

and a real function V(t, x)" [0, tl] X R with properties

(i) V(t,x) is twice Frdchet differentiable in x for each E[0, tl] and
V(t, x), V,,(t, x), Vxx(t, x) are continuous;

(ii) V(t, x) is differentiable in for each x (A) and

[V,(t,x)l<-c(l/txl)(l/lxl/lAx[), x@(A), c>0;

(iii) Iw(t,x)l/lxllW(t,x)l/lxl=lw(t,x)l<-c(l /lxl), x X,
(4.6)

(iv) V(tx, x) (Gx, x), x X;

(v) 0= Vt(t,x)+LaV(t,x)+(Mx, x)+(Na, a)

<= Vt(t,x)+LuV(t,x)+(Mx, x)+(Nu, u)

for each x (A) and u U;

(vi) Ig(t,x)l<-_c(1 +lxl), Ig(t,x)-g(t, y)l<-_clx-y[,

then ff K(t, x) is optimal and the minimum cost is c(a) V(0, x0).
Proof. Let i(t) be the solution of (4.1) with a K(t, x).

c>0, x, yEX;

Introducing an approximation of the form (2.15) to (4.1) and applying Ito’s
lemma to V(t, x), we can show as Theorem 2.2

Hence

LV(tl, $(t))- V(O, Xo) E{(MY.(t), (t))+(Na(t), ti(t))} dt.

0
V(O, xo)=E(G(tl),Y(tl))+ E{(M(t),(t))+(Na(t), ti(t))} dt=

Repeating the same procedure for the solution x(t) of (4.1) with arbitrary admissible
control u(t), we obtain

V(O, Xo)<=E(Gx(tl), X(tl)) + E{(Mx(t), x(t))+(Nu(t), u (t))} dt C(u).

Here the inequality is due to the one in (4.6)(v).
In order to solve the regulator problem (4.1), (4.3) we seek a function V(t, x) of

the form

V(t, x)= (Q(t)x, x)+ q(t), O(t) .(X).

Then (4.8)(v)yields the following Riccati equation"

d
a-S (O(t)x, x)+ 2(Ax, O(t)x)+(Mx, x)+(A(O(t))x, x)

(4.7) -(O(t)B[N + F(O(t))]-IB * O(t)x, x) O,

O(tl)=G,
tl

Q(r)FW2 dr(4.8) q(t)= trace F*

x(A),
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and the feedback control:

(4.9) t7 -IN + F(Q(t))]-IB * Q(t)x.

So all we need is to establish a solution of the Riqcati equation (4.7).
THEOREM 4.1. The Riccati equation (4.7) has a unique solution in the class of

sel[-adoint nonnegative strongly continuous (X)-valued functions. The control law
(4.9) is optimal and the minimum cost is

’ Q(t)FW2 dt.(4.10) () (Q(0)Xo, Xo) + trace F*

Proof. In a manner parallel to the finite dimensional case, take the sequence of
linear differential equations:

d
d--(Qo(t)x,x)+2(Ax, Qo(t)x)+([M+A(Oo(t))]x,x)=O, x6(A),

(4.a)

(4.12)

Oo(tx G

d
d-S(O.(t)x, x)+ 2([A-Bgn-l(t)]x, Q(t)x)+([M + A(Q.(t))]x, x)

+ (K.*-I (t)[N + F(Q.(t))]K._(t)x, x)= O, x (A),

Q.(t)=G;

K.(/) [N + F(Q.(t))]-IB*Q.(t).

(4.15) O.(t)x i
’1

U*. (r, t){M + A(O,, (r))

+K*
_

(r)[N + F(O-(r))]K._x(r)}U.(r, t)x dr

+ U*,, (tx, t)GUn(ta, t)x, x X,

where Un(t, s)is the perturbation of T(t) by -BKn_I(t). As in Theorem 3.2 we can
show

O,, )FW2(u.) (Q.(O)xo, Xo)+ trace F* dt

where u. is the control law

u, -K,(t)x, n l, 2, uo= O.

Next we shall prove Q._l(t)>=Q.(t)>-O, n= 1,2,... (see [9], [11]). Set R,,(t)=
Q._l(t)-Q.(t); then it satisfies

d
-.t. (R.(t)x, x) + 2([A BK._I(t)]x, R.(t)x) + (A(R.(t))x, x)

(4 16) + (K*._ (t)[N + F(Q._l(t))]K._(t)x, x) 0, x @(A),

R,,(tx)= 0;

(4.13)

They have a unique solution [9]. Moreover, they are equivalent to the integral
equations

(4.14) Qo(t)x T(r- t)[M + A(Qo(r))lT(r- t)x dr + T*(tl- t)GT(tx- t)x,
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(4.17) R(t)x U* (r, ){A(Rn (r))+ K*__ (r)[N + F(O_(r))]K_l(r)}U(r- t)x dr,

x 6 (A).
But (4.17) has a unique solution R,(t)>-O, thus necessarily O,_(t)>=O,(t). Since
O,,(t), n 0, 1, 2,..., is the sequence of monotone decreasing nonnegative opera-
tors, there exists a limit O(t). Passing to the limit n--> c in the integrated version of
(4.12) and then differentiating it, we can show that Q(t) satisfies (4.7). Letting n -> eo
in (4.15) yields

O(t)x= U*(r,t){M+A(O(r))+K*(r)[N+F(O(r))]K(r)}U(r,t)xdr

(4.18) + U*(tt, t)GU(t, t)x,

K(t)= IN + F(Q(t))]-B*Q(t),
where U(t, s) is the perturbation of T(t) by -BK(t) and we have used the strong
convergence of U,(t, s) [5]. The uniqueness of a solution of (4.7) (and hence (4.18))
and the rest of the theorem follows from Lemma 4.2.

4.2. Optimal control over an infinite horizon. Take F 0 in (4.1):

T(t)Xo + [. T(t- r)D(x(r)) dwx(r)

(4.19)

io io+ T(t-r)Bu(r) dr+ r(t-r)C(u(r)) dw3(r)

and the cost functional

]o E{(Mx(t), x(t))+(gu(t), u(t))} dt.(4.20) (u)=

For admissible controls we take the class of feedback controls u K(t, x) such that

(i) K (t, x): [0, ] X - U is measurable and

Ig(t,x)lc(1 + Ixl), [g(t,x)-g(t, y)l clx-y[, x, r X,

(ii) EIx(t)12 0 as , where x(t) is the solution of (4.19) with u K(t, x).
We extend Definition 1.2(i) to the stochastic case.
DEFINITION 4.1. The system (4.19) (or (A, B; C, D)) is stabilizable if there exists

K1 (X, U)such that the feedback law u =-KIX yields a stable solution x(t), i.e.

o lx(t)2 dt < .
In this case we say that (A- BK1, C, D) is stable.

If (A,B; C, D) is stabilizable, then the control problem (4.19), (4.20) is a
meaningful one.

With slight modification in Theorem 3.1 we obtain:
LZMMA 4.2. (A, B C, D) is stabilizable iff there exists K1 (X, U) and 0 P1

(x) such that

(4.21) 2((A-BKx)x, PlX)+([KF(Px)KI+a(P1)]x,x)=-(x,x), x 6(A).

LZMMA 4.3. I[ (A-BK, C, D) is stable, then there exists O O(X) such that

2((A -n)x, 0, x)+((M+N)x, x)
(4.22)
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Proof. Let QI (t) be the unique solution of

d
d--(Q(t), x, x)+((A -BK1)x, Q(t)x)+((M +K*I NK1)x, x)

(4.23) + ([A(Q(t))+ K*I F(Q(t))K1]x, x)= O,

Q(t)= 0.

Then from a variation of Theorem 2.2 we have

x 6(A)

(0,11 (0)Xo, Xo) E{(Mx(t), x(t))+(NKlx(t), Klx(t))} dt

where x(t) is the solution of (4.1) with u =-Klx. Since (A-BK1, C, D) is stable,
1(0) is monotone increasing and non-1(0) is uniformly bounded in tl. But O,1

negative. So there exists a limit O1 --> 0 and it satisfies (4.22).
Denote by L the differential generator (4.5) with F 0.
LEMMA 4.4 (Optimality lemma). Suppose that there exists an admissible control
-K(x), and a real-valued]unction V(x)on X such that

(i) V(x) is twice Frdchet differentiable and V(x), V,(x), Vxx(x) are continuous,

(ii) IV(x)l/txllVx(xOl/lxl21v(x)l<clx[, x x, c >0,

(4.24) 0= LaV(x)+(Mx, x) + (Na, t)
(iii)

<=L,V(x)+(Mx, x)+(Nu, u) for any x @(A) and u U,

(iv) ]/ (x)-/((y)] _-< c ]x y ], x, y X, c > 0.

Then a =-K(x) is optimal and (7) V(xo)
Proof. As’in Lemma 4.1 one can show

EV(Y(t))- V(xo) -Jo E{(MY(r), Y(r))+(Na(r), a(r))} dr

where Y (t)is the solution of (4.19)with u a. Note that V(x)-<_ c Ix [2 and E]7 (t)12 - 0 as
t +oo. So

V(Xo)= Jo E{(MX(t), X(t))+(Na(t), a(t))} dt (a).

Similarly for any admissible control u we obtain

Jo E{(Mx(t), x(t))+(Nu(t), u(t))} dt (u).V(xo)<=

Now we seek a function V(x)of the form

V(x)= (Ox, x), o 0 (x).

Then (4.24)(iii) yields an algebraic Riccati equation

(4.25) 2(Ax, Ox)+({M+A(O)-OB[N+F(O)]-B*O}x,x)=O, x (A)

and the control law

(4.26) u -Kx, K IX + F(O)]-IB*Q.
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Hence to solve the regulator problem (4.19), (4.20) we need only establish conditions
which guarantee the existence of a solution to (4.25) and the admissibility of a -Kx.

LEMMA 4.5. If there exist operators K1 (X, U), 0 <-_ 01 (X) satisfying (4.22),
then the Riccati equation (4.25) has a solution O >-_ O.

Proof [9]. Let O,l(t), Ot(t) be the solution of (4.23) and of (4.7) with G =0
respectively. Then

O Ot (t) Otl(t) 01.

Q,O (t) is monotone increasing in tl and thus there exists a limit of Q,I (t) as tl "-’> +oO

which is independent of and satisfies (4.25).
The next lemma gives a sufficient condition for (A- BK, C, D) to be stable. It is

an extension of Lemma 1.1 to the stochastic case.
LEMMA 4.6. Let K (X, U). Suppose that them exist J (X) and 0 <- Q

(X) such that

(i) A-JM1/2 generates a stable semigroup (t) with I(t)l d e

2d2 trace Wl
(4.27) c < 1, d IDI the norm of D(. ),

and

(ii) 2((A BK)x, Ox)+ ((M + K*NK)x, x) + ([A(O) + K*F(O)K]x, x) <-_ O,

x @(A).

Then (A BK, C, D) is stable.
Proof. Take x(t) the solution of (4.19) with u -Kx and write (4.19) in the form

x(t) (t)Xo + Io (t- r)(JM 1/2 -BK)x(r) dr

+ Io (t- r)D(x(r)) dWl(r)+ (t- r)C(Kx(r)) dw3(r).

From this follows

(4.28)

EIx(t)l2 <= 2E ’(t- r)D(x(r)) dwl(r) +6E[’(t)Xol2

BK)x (r) dr] 2

+6E (t-r)C(Kx(r))dw3(r)

-< 2i2d2 trace W1 e-2a-r)Elx(r)l2 dr +6/2 e-2’lxol=

+ 6d2c Io e -2a-r)E{(Mx(r), x(r)) + (Kx(r), Kx(r))} dr

+6ff2c trace W3 e-2a-r)E(Kx(r), Kx(r)) dr

where c max {1112; IBI2, IClZ}.
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Now recall the following result for real functions: Let f, g, k be real nonnegative
continuous functions such that f, k LI(0, oo)IlkllL,(O.oo)__< 1 and

g(t)<-f(t)+ k(t-r)g(r)dr.

Then

g L (O, and

Applying this to the inequality (4.21) we obtain

EIx(t)[2
6 LI(0,

which completes the proof.
Now we can state the main result in this subsection.
THEOREM 4.2. Suppose that there exist Klan(X, U), 0 <- 0165E(X), and J

(X) satisfying (4.22) and (4.27)(i) respectively. Then there exists a unique solution
0 >-0 ]’or the Ricati equation (4.25). Moreover, the optimal control ]:or (4.19), (4.20) is
the feedback law (4.26) and (ti) (Ox0, Xo).

Proof. The existence of a solution to (4.25) and the stability of (A-BK, C, D)
follow from Lemma 4.5, 4.6 respectively. Since (OXo, x0) is the minimum cost, O is
unique.

4.3. Optimal stationary control. We consider the control system (4.1)

x(t) T(t)Xo + T(t- r)D(x(r)) dwx(r)+ T(t- r)Fdwz(r)

+ T(t-r)Bu(r)dr+ T(t-r)C(u(r))dw3(r)

together with the class of feedback controls K (x): X - U with

(4.29) [K(x)-K(y)l<-c[x-yl, c>O, x,yX.

Following Wonham [13], [14] we say that the feedback control u =-K(x) is admis-
sible if it satisfies (4.29) and the Markov process given by (4.1) with u -K(x) has an
invariant measure : such that

(4.30) Ix
Our control problem is to minimize

(u)= Ix{(Mx, x + (NK(x ), K (x ))}txz (dx

over all admissible controls. Clearly the cost Cg(u) is independent of the initial
value Xo.

Generalizing Theorem 3.2 slightly we can show that u =-Klx is admissible if
(A- BKI, C, D) is stable. So stabilizability of (A, B; C, D) is sufficient for the exis-
tence of an admissible control.
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LEMMA 4.7 (Optimality lemma). Suppose that there exist an admissible control
a -K(x), a number y and a real-valued]unction V(x)on Xsuch that

(i) V(x) is twice FrYchet differentiable and V(x), Vx (x), Vx (x) are
continuous,

(4.31) (ii) [V(x)l/txllV(x)l/lxlZIVx(x)l<-c(a/lxl2), xX, c

(iii)
<-LuV(x)+(Mx, x)+(Nu, u)

for any x @(A), u U, where Lu is the differential generator given by (4.5).
Then
Proof. Let Y(t,
As in Lemma 4.1 we can derive

(4.32) EV((t, :))- V(sC) {y-E[(MY(r, )2(r, ))+(Ng((r, )), g((r, :)))]} dr.

Now let 2 be an invariant measure of Y(t) and Pt(’," the transition function. Then

Ix EV((t’ ))tZ (d)= fx [ Ix VOq )Pt(, dn )]lff,(d) Ix V()tT, (:)

when we have used the fact Pt(tT,, )=/7,(. ). Take expectations of (4.32) with respect
to/2 then

0 y [{M, } + {NK (), g()}] (d) dr.

Hence

3’ [(Mx, x)+(NK(x), K(x))]lY(dx) (a).

Similarly for any admissible control u --K(x) we have

v_<- ’(u).
Remark 4.1. Wonham [14] proved the optimality lemma through

xLaV(x)tY(dx)=O. But in infinite dimensions LaV(x) is defined only for x @(A)
and xLaV(x) (dx) does not make sense in general.

Again we seek a function V(x)of the form

V(x)=(Ox, x).

Then (4.31)(iii)yields the Riccati equation (4.25)

2(ax, Qx)+({M + A(Q)-QB[N + F(Q)]-IB*Q}x, x)= O,

the control law (4.26)
a -Kx, R=[N+F(O)]-IB*O

and
(4.33) , trace F*QFW2

x (A),

By virtue of Lemmas 4.5, 4.6 we can prove:
THEOREM 4.3. Suppose that there exist K1 ,(X, U), 0_-<O1 fi(X) and J

LP(X) satisfying (4.22) and (4.27)(i) respectively. Then the optimal control is the
feedback law (4.26) and the minimum cost is c(tT)= trace F*QFW2, where O<-Q is
the unique solution of the Riccati equation (4.25).
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Remark 4.2. Assuming the existence of K1, Ol satisfying (4.22) is weaker than
the stabilizability of (A, B;C, D). But (4.27)(i) is stronger than the detectability of
(M1/2 A)

Note that d 2 trace W1 Ioi2 trace W1 indicates the size of the state dependent
noise. So (4.27)(i) is always satisfied if we assume that the noise is sufficiently small.
Stabilizability and detectability are the two conditions used in Wonham [14] and [9].

Remark 4.3. The infinite horizon problem with average cost considered in [9] is a
variant of the optimal stationary control problems.

5. Final remarks. In [4] we have shown that the separation principle holds for
quadratic problems with Gaussian noise disturbance. After reducing the problems to
those with complete observation [4] we can use the results in 4 and obtain an optimal
feedback control law on filters. The filtering part can be solved as a dual problem of
deterministic regulator problem [11]. Hence quadratic problems with incomplete
observation may be solved using our approach here. An extension to time varying
systems of some of our results is also possible as far as we can approximate them by
more regular systems so that we are able to use dynamic programming arguments.

In [7] and [9] the case of an unbounded operator D has been considered under
additional assumptions either on A or on T(t). This is more interesting and probably
more important. But most of the results here can be extended to such a case as well. It
would be interesting to find a class of permissible D’s.

Acknowledgment. would like to thank the referees for many valuable comments
and suggestions and J. Zabczyk for helpful discussions.
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PERTURBATION OF CONTROLLABLE SYSTEMS*

R. E. O’BRIEN

Abstract. Let a semi-dynamical system, (A, B):

(A, B) 2 Ax + Bu

x(0)=0

be given on a Hilbert space X. When A is self-adjoint and semi-bounded with spectral measure E(. it is
shown that controllability of the system (A, B) is equivalent to that of (f(A), B) where f(.) is any
semi-bounded, Borel measurable E(. )-surjective function on -co < < +co. In particular (A, B) is control-
lable if and only if (A,,, B) is controllable, A,, -(-A)’. These results are then extended to the case where A
generates a uniformly bounded Co-semigroup on X and are applied to a system whose dynamics are governed
by the singular integral operator generating the Poisson integral semigroup.

Introduction. Establishing the controllability (in the sense of Fattorini [3])of a
given semi-dynamical system on a Hilbert space X is often a difficult task. Few
techniques other than direct verification of the basic definition or Kalman’s condition
([1] or [3]) are readily available. These remarks point out several cases in which the
controllability of the semi-dynamical system, (A, B):

(A, B) 2 Ax + Bu

x(0)=0

is dependent upon (or equivalent to) that of an auxiliary system (g(A), B) for some
appropriate function g.

Here A generates a C0-semigroup, T(t), >-O, on the Hilbert space X (with inner
product , )). B is a bounded operator from a Hilbert space Y to X, and the control
function u is any Y-valued, strongly measurable, locally L2 function defined on
(-oo, +o).

These results are then applied to characterize those operators, B, 2-controlling a
system whose dynamics are given by a certain singular operator generating the Poisson
integral semigroup.

Notation and basic definitions are those of Yosida [8].

Definitions. The system (A, B) defined above is said to be controllable if the span of
the trajectories of its mild solutions is dense in X, [1]. If in addition Y is finite
dimensional, (A, B) is said to be finitely controllable. In either case, controllability is
equivalent to the condition"

B*T(t)*x 0 for => 0 implies x 0

(see for example [1] or [3]).
As Fattorini has noted, for A self-adjoint and semi-bounded above (i.e., for some

real number a, (Ax, x) <= allxll2 for all x in D(A)) with Borel spectral measure E(. ), A
generates a C0-semigroup and the above condition becomes [3]

(F) B*E()x 0 for all Borel sets 6 implies x 0.

* Received by the editors October 27, 1977, and in revised form May 15, 1978.
/" Aerospace Systems Section, Computer Science Corporation, Falls Church, Virginia 22041.
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Let f be any real-valued Borel function defined on (-, +oo), then _+ f(s)E(ds)
exists and defines a self-adjoint operator, f(A), with domain

The spectral measure of f(A), F(. ), satisfies F()- E(f-()) for all Borel sets [2].
We shall call ]’(A) a semi-boundedperturbation ofA if there is a real numberM such

that

(s)<-M E(.)a.e.

on -oo < s < +oo. In this case f(A) is clearly semi-bounded above.

Rel. Consider the perturbed system, (f(A), B):

(f(A ), B) f(A )x + Bu

x(0)=0.

THEOREM 1. Let A be self-adfoint and semi-bounded above and suppose f(A ) is a
semi-bounded perturbation of A. If the system (f(A), B) is controllable then the system
(A, B) is controllable.

Proof. Let E(. ), F(. be the spectral measures defined by A and f(A) respectively
and assume (f(A), B) is controllable. If for some x in X

B*E(8)x =0

for all Borel sets then (since f is assumed Borel measurable)

B*F(5)x B*E(f-l(8))x O.

A double application of Fattorini’s condition (F) establishes the controllability of the
system (A, B). Q.E.D.

For any Borel measure, m, a Borel function f is said to be m-sur]ective if for each
Borel set 8 there is a Borel set r/such that f-(r/) 8 except for a set of m-measure 0.

THEOREM 2. Let A be self-adfoint and semi-bounded above with spectral measure
E(. ). If f is E(. )-surfective and f(A ) is a semi-bounded perturbation of A then the
system (f(A ), B) is controllable if and only if the system (A, B) is controllable.

Proof. By Theorem 1, we need only show necessity. Let F(.) be the spectral
measure of f(A), assume that (A, B) is controllable, that f is E(. )-surjective, and that
for some x in X

B*F(8)x =0

for all Borel sets . Then for any Borel set 8, since 8 =fiX(r/) E(.) a.e. for some
Borel set n,

B*E(8)x B*E(f-x(I ))x B*F(r )x O.

Another double application of Fattorini’s condition (F) shows that (f(A),B) is
controllable. Q.E.D.

COROLLARY. LetA be self-ad]oint and dissipative (i.e. (Ax, x) <-_ 0 for all x in D(A ))
with spectral measureE(.). Forany a, 0 < a < +oo, defineA -(-A). Then the system
(A,, B) is controllable if and only if the system (A, B) is controllable.

Proof. Note that the function defined on (-oo, +oo) by

’, t_>0,
f(t)=

_(_t) < O
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is invertible, bicontinuous, and E(. )-surjective. Moreover, since the spectrum of A is
contained in (-c, 0],

f(t)<-<_ O, E(. ) a.e.,

therefore A =f(A) is an E(.)-surjective, dissipative perturbation of A. Applying
Theorem 2 we are finished.

When the Hilbert space X is separable, the result of Theorem 2 is to be expected.
For if f is E(. )-surjective then it is easy to see that A and f(A) have the same ordered
spectral representations and hence are unitarily equivalent. Ordered spectral
representations are discussed in [2].

If A is not necessarily self-adjoint but is known to generate a uniformly bounded
C0-semigroup, T(t), >= O, on X, we may still define a "fractional power" of A, A,, for
0 < a < 1. (See for example [6, p. 259]). A is given by

A,x =_sin (aTr__._.__) h-l(hI-A)-l(Ax)dh for x eD(A)

and A, generates the semigroup T,,(t), >= O, defined by

T,(t)x= ft.(A)T(A)xdA.

(The kernel f,.,(A is defined by

1 f
o’+ic

exp (zA tz’) dz,ft, (A "i .,o._io

A>O

and f,,,,(0) 0, for 0<r, 0<a < 1, =>0 [6]).
THEOREM 3. Let A generate a uniformly bounded Co-semigroup T(t), >-O, on X

and take 0 < a < 1. If the system (A,, B) is controllable then for each 6, a < 6 < 1, the
system (A, B) is controllable. Moreover, the system (A, B) will be controllable.

Proof. Suppose 0 < a < 1, a < 6 < 1 and (A,, B) is controllable. If for some x e X,
B*T (t)x 0 for ->_ 0 then

B*T* (t)x L,,,/s(s)B*T’ (s)x ds 0

for =>0. But since (A,, B) is controllable x must be 0. Similarly B*T*(t)x 0 for =>0
implies B* T* (t)x 0 for => 0, and hence in both cases the controllability of (A,, B)
implies that of (An, B) (respectively (A, B)). Q.E.D.

Given a C0-semigroup T(t), t>=O, on X, the function o(t)= log [IT(t)ll is lower
semi-continuous on [0, ], subadditive, while o (0) 0 and lim,0 w(t)< +. Let S(w)
be the Banach algebra (under convolution)of all complex Borel measures, m on
0 <= <+ such that

(1) IIT(t)l] ]dm(t)l < +.

S(w) can be identified with the Banach algebra of functions of bounded variation,
continuous on the left and satisfying condition (1) [4, 4.16]. Let re(t,. ), -<_ 0, form a
semigroup of functions in S(w) whose Laplace transforms rfi(t, .), >=0, satisfy (for
Oo inf,>o(1 / to (t))

(P)
1
log [rh(t, A)] qA + (exp{s(A-Wo)}-l)d4,(s)+a
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where q => 0, a is real, Re , <-Wo and O(s) is a monotone nondecreasing function such
that

Jo s d0(s)<+c and Jo exp [w(s)-OoS] d4t(s)<

then Phillips [6] has shown that

S(t)= T(s)dm(t,s), t>-O,

defines a Co-semigroup on X whose generator, C, is a function of A in the sense that
D(C) D(A) and for x in D(A)

Cx qax + Jo [e-’ST(s)x X] dO(s)+ ax.

We shall say the Co-semigroups S(t), =>0, and T(t), =>0, are o-equivalent if
Ils(t)ll=llT(t)[[, t>=O, and there exist semigroups, m(t,.) and n(t,.), t=>0, in S(o)
satisfying condition (P)such that

t" t"

S(t)= Jo T(s) dm (t, s), T(/)= Jo S(s) dn (t, s), 0.

Clearly o-equivalence forms an equivalence relation on the collection of all
Co-semigroups on X. (Note that each semigroup T(t), >= O, is o-equivalent to itself, for
if e(t,. is the Borel measure defined by

1, t6
e(t, 6)=

0, t6
for any Borel set 6, t->_0,

then e(0,. is the identity of S(w), e(t,. ), >-O, clearly satisfies (P) and

Io T(s) de (t, s)= T(t), >=O.)

For S(t), _-> 0, and T(t), _-> 0, w-equivalent,

and

B*S(t)*x Io B*T*(s)x dr (t, s),

B*T(t)*x B*S*(s)x d (t, s), t>=O.

Hence B*T(t)*x=O for t>=0 implies B*S(t)*x=O for t->0 and conversely. The
conclusion of these remarks is the analogue of Theorem 2"

THEOREM 4. Let $(t), >= O, and T(t), >= O, be co-equivalent Co-semigroups with
respective generators C and A. Then the system (C, B) is controllable if and only if the
system (A, B) is controllable. (Note that C and A are necessarily bounded here:)

Theorems 3 and 4 remain true when X is replaced by a general Banach space. The
present Hilbert space setting exhibits the fundamental ideas.

An example. Take X L2(-cx3, +cx)), A d2/ds z, U to be the rapidly decreasing
functions [7, p. 146] on (-, +c) and define x to be in D(A) if and only if there exists a
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u in L2(-c, +) such that for all g in U,

u (s ), (s cls x (s)-s f, (s ds.

Then D(A) is dense in X, and it is easy to see (via the Fourier transform) that A is
self-adjoint, dissipative, and generates the Gauss-Weierstrass semigroup on X"

(G) [T(t)x](s)= { (2,rrt)_1/2X(S), I*-x(s-u)exp(-u2/(Zt))du’ t>0,t=0.
Note that (G) with x in D(A) is the solution to the heat equation, u(s, t)= [T(t)x](s),

c’)U C2b/
a.e. in -oe < s <

Ot

lim,+o Ilu(" ,t)-x(. )112 0 [5, p. 578].

Then A 1/2 -(-A)1/2 exists (since A is self-adjoint and dissipative) and is given by
the singular integral operator

1 I+_x(s-u)-x(s)[A 1/2x](s)= 1.i.m.- 2 2 du a.e. in -ee < s < +oe [8 p. 268].
h+O 7r U +h

Hence by Theorem 2, (A 1/2, B) is finitely controllable if and only (A,B) is finitely
controllable, and therefore by [3], (A 1/2, B) is controllable if and only if the dimension
of Y is at least two, and in this case the operator B

B(yl, y2) Yl UI(" )-+- yzU2(" ); U1, U2 in L2(-oe,
must satisfy ( denotes the Fourier transform of U, U L2)

l)l(S)lQz(-S)-l(-S)Oz(s)#O a.e. in s->0.

Acknowledgment. This work benefited from several discussions with C. T. Taam
and expands some remarks made in the author’s Dissertation presented to George
Washington University, January 1977.
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VALUE CONVERGENCE IN A
GENERALIZED MARKOV DECISION PROCESS*

GARY J. KOEHLER’

Abstract. We consider generalized Markov decision problems formed from the duals to Leontief
substitution systems and relate several properties of the associated polyhedron to value iterative solution

procedures used on the induced generalized Markov decision problems. For example, under two assump-
tions the associated polyhedron is bounded if and only if the spectral radius of some transition matrix is

greater than one. The polyhedron has an interior and is unbounded if and only if the spectral radius of each
transition matrix is less than or equal to one and no transition matrix P having a spectral radius of one gives
I-P spans its corresponding reward vector. These results and others are then used to show that the value
iterative procedure is convergent for all v if and only if the dual set has a nonempty interior and is unbounded.

1. Introduction. We consider here a generalized Ma:kov decision process where
the transition matrices are nonnegative rather than stochastic. Related models can be
found in [6], [9], [12]. Our main concern is to answer: when is value iteration
convergent irrespective of the starting vector? Unlike the discounted Markov decision
process [5], value iteration in the generalized Markov decision process may not yield a
convergent sequence even starting with the zero vector.

A concomitant objective is to relate the geometric properties of a polyhedron
associated with the decision process to the spectral properties of the transition
matrices and, in turn, to the convergence properties of the value iteration procedure.

In 2 we introduce the notation to be used throughout this paper. In addition, we
define precisely what we mean by our generalized Markov process. In 3 we derive
properties of C (the set of convergent points). In 4 we relate some geometric
properties of D, the associated polyhedron, to the spectral radii of the generalized
transition matrices. These results are sharpened and extended in 5 after adding one
additional assumption. This assumption is motivated by computational considerations.
Here also we completely characterize D in te:ms of the spectral radii of the P.’s and
determine when value iteration converges irrespective of the starting vector. In doing
so we generalize some results presented in the literature.

2. Notation and preliminary results. Let x and y be two vectors. Write x-> y
(resp., x > y) if xi -> (resp., >)yi for every i. Also, write x -> y if x _-> y but x y. Also,
let L(x)={zlz <-x} and if T is a set let L(T)= x7-L(x). We define G(x)={z]z >-x}
and G(T) in a manner analogous to L(T). We say a set is bounded from above if there
is a u such that T L(u). Finally, a matrix B is said to be Leontief [13] if it has exactly
one positive element in each column and there is some x -> 0 for which Bx > O.

Consider the problem

max c’x

(2.1) subject to Bx b

where B is an m x k Leontief matrix and b -> 0.
We impose the following on (2.1).
Assumption A. Problem 2.1 has a bounded objective and the columns of B are

scaled so that the positive elements of B are not greater than one.

* Received by the editors February 4, 1977, and in final revised form January 30, 1978.
f Department of Management, University of Florida, Gainesville, Florida 32611.
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Let Ai {jIBii > 0} for i= 1,..., rn and A I-I= Ai. Observe that Ai # Q5 since
each row of B must have a positive element for B to be Leontief. For 6 A let B 8 be
the corresponding submatrix of B, and let 08= I-B8 and P8 (08)’. Of course
Ps>=0.

Since the objective in (2.1) is bounded, we have that the problem has an optimal
solution at an extreme point of the feasible set. By Veinott [13, Thm. 6] this extreme
point corresponds to a basis B 8. where 6* e+/-, B 8. is invertible, (BS*)-1->_0 and
p(Ps*)< 1, where p(P) denotes the spectral radius of the matrix P.

Let D {ylB’y =>c} represent the dual feasible set. From Cottle and Veinott [2,
Thm. 1] D has a least element v* and v* [(B8")’]-1c 8.. Since b > 0 and v* is the least
element of D, v* solves the dual of (2.1).

We define the following operators on R
8(v)= Psv + c 8, 6 A.

Also, let

5(v) max 8(v).
8eA

Note that the "max" operator above is well defined. Also, as P8 >= 0, one has that for
every 6 A, 58 is isotone, i.e., 58 (y) <- 8(z) whenever y <= z. Consequently, is also
isotone.

It is easy to see that since p(Ps,)< 1, for every v R"
8* 8" ,

lim ,(v)= 2 P,c =(I-Ps,)-ac =v
nc =0

We will study conditions under which limn_5"(v)= v*. These conditions will
depend on v and the spectral radii of the P8 matrices. Let C {vllim,_ "(v) v*}.
Of course, always v* C. In order to compute v* by successive approximation, i.e., by
iterating , we have to start with v C. Unlike discounted Markov processes, the zero
vector may not be in C, even though C # , and C # R" may occur.

3. Some properties of C. In this section we derive some properties of C that will
be used in subsequent sections.

The following lemma was first established in [8].
LEMMA 3.1. For every v R n, lim inf,_ v- (v) => v,.
Proof. Obviously, (v)->8*(v) and by induction, for every n 1, 2,..., "(v)

-> (o.9v.8,)" (). Since p(Ps*) < 1, we have that lim,_ (5F8-)" (v) v*. So, lim infn_, "(v)
=> v*, completing the proof.

"(v) < *The above lemma implies that v C if and only if lim sup,_oo v ..We use
this fact and the isotonicity of to obtain two important properties of C.

PROPOSITION 3.2.
(a) L(C)_ C.
(b) C is convex.
Proof. Assume that y, z 6 C, v =< y and 0 < A < 1. The isotonicity of implies that

lim sup"(v) -< lim sup"(y) =< v*,

completing the proof of (a). Next notice that [hy +(1-h)z]<=h(y)+(1-h)(z).
A simple inductive argument shows that for n=l,2,’’’,n[Ay+(1-h)z]_-<
h"(y) + (1 h )" (z). Taking limit superiors of both sides .shows that

lim sup Y’" [hy + (1 h )z =< h lim sup " (y) + (1 h lim sup L’" (z)

-<_- by* + (1 h )v* v*. V!
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Part (a) implies that L(v*) C. A somewhat stronger result was derived by
Denardo [4, Thm. 4] under stronger conditions.

A point v is called excessive (resp., fixed point) of if (v)-< (resp., =)v. Of
course, D is the set of excessive and fixed points of . The set of fixed points of 5g will
be denoted F. Naturally F D and it is easy to verify that v* F. So v* is also the least
element of F.

PROPOSITION 3.3. D\G(F\{v*})c_ C.
Proof. Let v* : v D\G(F\{v*}). As v D, v _->(v). Iterating this inequality, it

follows that v->_O(v)->Sg2(v)>= This shows that "(v)D for n 0, 1,...; so
n(v) _-> v*. Since the sequence {" (v)},=0,1,... is decreasing and bounded from below,
it has a limit, say w. We will show that v C by establishing that w v*. A simple
continuity argument shows that 5g(w)= w, i.e., w 6 F. But w-<_ v and v ]" for every
fF\{v*}, so w v*, completing the proof. [-]

COROLLARY 3.4. If F={v*}, then L(D)_C. In addition, if for some d>0
Pd <= d for all 6 A, then C R ".

Proof. The first result follows directly from Proposition 3.3. Next note that if
Pd <- d for all A, then v* + Ad 6 D for all

Remark. Corollary 3.4 establishes some relation between tlaboundedness of D
and the case where C R

The next result establishes a sufficient condition that F {v*}.
PROPOSITION 3.5. Ifp(P) <- 1 for all 6 A and c range (B) whenever p(P)

1, then F {v*}.
Proof. Obviously v* F. Let fF, i.e., (f)=f. Then there exists y with

(I-Pv)f c . This implies that p(P)< 1, so f= (I-Pv)-lc
c "/, so v*>=(I-Pv)-lcV=f. But as v* is the least element of F, we have that

f=v*.
THEORFM 3.6. Assume that C R’. Then for every 6 A, p(p)<_ 1 and for 6

having p(P) 1 there exists no v R" such that v <=Pv + c.
Proof. First observe that for 6 A, v, x e R and a R

n--1

"(v+ax)>-_’(v+ax) Pc+P’(v+ax)
i=O

’(v) + aP’x.
Assume p =o(P)> 1 for some 6 A. By the Perron-Frobenius theorem (see [10] or

[11]) there exists a row vector y >_ 0 having y’P OY’. Let x > 0. Premultiplying (3.7)
by y gives

n--1

y’"(v+ax)_-> Y o’y’c+o"y’(v +x)
i=0

O"(y’c/(1 -O)+ y’v + cry’x)- y’c/(1 -p).

The above and the fact that y’x > 0 imply that for every (fixed) v and a > 0 sufficiently
large, y’"(v +ax)does not converge to a finite vector. So v +ax et C, contradicting
the hypothesis that C R". Thus o(P)< 1 for every 6 A.

Next assume that o(P)= 1 and that v <-Pv +c. Iterating this inequality we get
for n 0, 1,..., (v)>= v. By the Perron-Frobenius theorem there exists a vector
z _> 0 such that Pz z. Let a > 0 be large enough so that v* v + az. Apply to

v+az to conclude that for every n=O, 1,’","(v+az)>-v+az. If v+azC,
this would imply that v*>- v +az, a contradiction. Thus v +az : C, proving that
CR’. [3
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4. Spectral properties of the Pn’s and geometric properties of D. In this section
we obtain results that relate the spectral radii of the Pa’s to boundedness of D and the
property that it has a nonempty interior. We first study boundedness of D from above.

THEOREM 4.1. Consider the following properties of the p (Pa)’s and D:
(a) For some d > O, Pad <= d ]:or all 6 A.
(b) p (Pa)<= 1 for all 6 A.
(c) D is unbounded from above.
(d) For some d >- 0, Pad <- d for 6 A.

Then (a)--> (b)-> (c)-(d).
Proof. (a)-> (b): Assume that for some d >0, Pad <- d for every t A. By Varga

[11, p. 47], for every 6 zX, p(Pa)_-< maxi (Pad)i/di <- 1.
(c)--- (d): The proof is trivial.
(b)-> (c): We will show that there exists a vector d >0 such that B’d->_O, i.e.,

Pad <= d for every 6 6 A. This will be accomplished by showing that the operator of
defined on R by v maxaa Pay has an excessive point d>0. This result was
proved by Seneta [10, Thm. 3.1, p. 60] for the case where each Pa is irreducible (see
also Howard and Matheson [7] and Veinott [12]). To prove the general case let, for
each e > O, P; =-- Pa + eJ where J is the matrix of ones and define the operators X on
R by v maxaa Pv. Applying the results for irreducible matrices, we find there
exist vectors d >0 so that d-<de. Obviously one can normalize d so that
IId[I 1. Since {dle >0} is a bounded set it has a finite limit point d. Obviously, d->0
and Ildll- 1, so d _> 0. A simple continuity argument shows that d <= d. !-1

To see that (c) does not imply (b) consider the following example.

max X1--2X2+X3--3X4+Xs.

subject to xl+ x2 3x4 2
(4.2) -2x2+x3+ X4 2

X1, X2, X3, X4, X5 0.

x5=2

Here v*’= (1,1,1) and for d’=(0,0,1) we have that v*+AdeD for all ,->0.

However, for 6 {2, 4, 5}, p(Pa)=
THEOREM 4.3. Consider the following properties of the Pa’s and D:
(a) For some d > O, Pad <- d for every 6 A.
(b) D has a nonempty interior.
(c) If p(Pa) 1 then c a range (Bay.

Then (a)and (c) together imply (b), and (b)-> (c).
Proof. (b)-> (c): Suppose that (I-Pa)v c a for some v e R and 6 e A. Since B is

Leontief, no column vanishes and the interior of D is given by {wlB’w > c}. So, if the
interior of D is empty then for some o B;w > c a. It follows that (I-Pa) ( -v) >0. By
the Perron-Frobenius theorem there exists a vector y -> 0 such that p(Pa)y ’= y’Pa. It
follows that (1 p (Pa))y’(oo v y’(I Pa)(w v > 0 proving that 1 p (Pa).

(a) and (c)--> (b): Assume that (a) and (c) hold and that D has an empty interior.
The latter condition implies that the system of linear equations B’v > c is infeasible.
Let B be the ith row of B’. Let a be the set of indices for which

C max B v.
vD

Since B’v > c is infeasible, a = . Thus for e a the system B’v >= c and Bv > ci is
(in-)feasible for (i a) a. Note for later use that (B")’v* >-c implies (B")’v* c.
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It follows from duality and Assumption A that there exists a vector z such that

z ->_0, zi>0, Bz =0, and c’z =0

for a and there exists no such z for a. Let z z . We have that z _>0, zi >0
if and only if a, Bz 0 and c’z 0. It follows that z > 0, bz 0 and c z 0.

By our assumption there exists a vector d > 0 such that d’B >= O. Let 3" {flrow
of B does not vanish}. Since a : and each column of B has a positive element we
have that 3" - . Also as Bz 0 we have that every row of B that is indexed in
has a positive element. Let B be a submatrix of B with exactly one positive element
in each row and column. Clearly, from d’B 0, p(O)= 1. Let 8 be a 8" completion
of/3. Then, collecting results, we have p(Ps) 1 and (BS)’v * =c. Thus we reach a
contradiction since p(P) 1 and c range (B)’. Hence D must have an interior.

COROLLARY 4.4. IfD has a nonempty interior and for some d > O, Psd <-_ d for all
8 A, then C R

Proof. Combine Theorem 4.3 with Proposition 3.5 and Corollary 3.4.

5. The irreducible case. A partitioned matrix of form

Bll 0

"’’pl

is called dynamic Leontief if each B,, 1,..., p, is Leontief and B0. _<-0 for < i. If
matrix B in problem (2.1) can be permuted to a dynamic Leontief matrix then, using a
procedure given by Dantzig [3], one may solve problem (2.1) by solving a sequence of
Leontief problems. Hence computational considerations suggest then that we consider
only Leontief systems not permutable to dynamic Leontief systems. Throughout this
section we impose the following on (2.1).

Assumption B. B of problem (2.1) is not permutable to a dynamic Leontief
matrix.

We would like to point out that Assumption B is weaker than the assumption that
every P is irreducible. For example

1 -1 0 i]-1/2 1 1
0 0 -is not dynamic Leontief yet each P is reducible. Note that B is Leontief (use

x’= (2, 0, 10, 7)).
Assumption B may be stated in a computationally verifiable manner. Let $

{1,..., m}. "State" $ is accessible from/’,/" S, if there is a.8 A and n, where
0 _<- n _<- m 1, which give (P)ij > 0.

Communicating classes are mutually accessible classes of states. Assumption B
can be stated as "problem 2.1 has a single class." When there is more than one
communicating class, one can determine the appropriate permutations to the dynamic
Leontief block triangular form using a procedure given by Bather [1].

We now strengthen results of 4 using Assumption B.
LEMMA 5.1. IfAssumption B holds, d >- 0 and Pd <- d for every 8 A, then d > O.
Proof. Assume that Pd <-_ d for all 6 e A where d >-0. So d ’B _->0. Let tO (d)=

{il&>0} and U(d)={ild=O}. We will show that U(d)= . Let ]eA for some
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l 1,3(d). The facts that idiBii>-_O and Bii<=O for imply that Bit =0 for all
1,3(d). Thus, if (d) , B is permutable to a dynamic Leontief matrix, which

contradicts Assumption B. Hence, (_J(d)= , or equivalently, d > 0. 7-I
COROLLARY 5.2. If Assumption B holds, then the following are equivalent"
(a) D is unbounded from above,
(b) Pd <- d for some d > O,
(c) p (P)_< 1 for all 8 A.
Proof. The implication (b)--> (c)-> (a)follows from Theorem 4.1. The implication

(a)-> (b) follows from Theorem 4.1 and Lemma 5.1.
Notice that example (4.2)was an example of a dynamic Leontief system.
The following result completes the characterization of D under Assumption B in

terms of the spectral properties of the P’s and shows when C R
THEOREM 5.3. If Assumption B holds, then the following are equivalent:
(a) D is unbounded from above and has a nonempty interior.
(b) C=R ".
(c) p(P)<= 1 for all 8 A and c range (B) whenever p(P) 1.
Proof. The fact that (b)->(c) follows from Theorem 3.6. We next show that

(c)--> (a). Assume (c) holds. It follows from Theorem 4.1 that for some d -> 0, Pd <= d
for every 8 e A. By Lemma 5.1, d > 0. The fact that D has a nonempty interior now
follows directly from Theorem 4.3. Finally we prove that (a)-> (b). If D is unbounded
from above then from Theorem 4.1 and Lemma 5.1, for some d > 0, Pd <= d for every
8 e A. Corollary 4.4 gives us the rest. []

6. Conclusion. It was shown under two assumptions that the dual feasible solu-
tion set of a Leontief substitution system can be characterized by the spectral radii of
the P matrices of the corresponding generalized Markov decision process. By use of
these results it was then shown that such processes can be solved by value iterative
type methods, independent of the starting vector, if and only if each p (P)=< 1 for 8 A

and if p(P)= 1 no v solves v Pv + c.
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RATES OF CONVERGENCE FOR CONDITIONAL GRADIENT
ALGORITHMS NEAR SINGULAR AND NONSINGULAR EXTREMALS*

J. C. DUNN

Abstract. Two conditional gradient algorithms are considered for the problem minn F, with 1 a
bounded convex subset of a Banach space. Neither method requires line search; one method needs
no Lipschitz constants. Convergence rate estimates are similar in the two cases, and depend critically
on the continuity properties of a set valued operator T whose fixed points, , are the extremals of F
in 1. The continuity properties of T at : are determined by the way the function a(r)=
inf {p (F’(), y >IY f, IlY 11 => } grows with increasing or. It is shown that for convex F and Lipschitz
continuous F’, the algorithms converge like o(1/n), geometrically, or in finitely many steps, according to
whether a(r)>0 for r>0, or a(r)>=.Ar with A>0, or a(r)>=Acr with A>0. These three abstract
conditiions are closely related to established notions of nonsingularity for an important class of optimal
control problems with bounded control inputs. The first condition is satisfied (in 61) when meas {tls(t)--
0} 0, where s(. is the switching function associated with the extremal control (. ); the second condition
is satisfied when s(. has finitely many zeros, all simple (typical of the bang-bang extremal); the third
condition is satisfied when s(. is bounded away from zero. Strong or uniform convexity assumptions are
not invoked in the main convergence theorems. One of the theorems can be extended to a large subclass of
quasiconvex functionals F.

1. Introduction. In [1], Demyanov and Rubinov consider two basic types of step
length rule for conditional gradient processes in convex sets f. The first rule is a
classic line minimization scheme in which the (n + 1)st iterate Xn+l is gotten by
minimizing the payoff functional F over a segment of a conditional gradient descent
line issuing from x,,. When F is quadratic, there is a simple formula for x,,+l; however,
in general it is necessary to approximate X,+l with an inner iterative line search loop
which may entail numerous and possibly costly evaluations of F. The second step size
rule in [1] avoids this difficulty by minimizing a certain upper bound on the one
dimensional section of F, in place of F itself. The bounding function is a simple
quadratic expression in the step length parameter, and so it is an easy matter to solve for
x,,+l (eqs. (4.2)-(4.3), in 4). Moreover, it is shown in [1] that for convex F, Lipschitz
continuous F’, and convex, weakly compact f, this simple step size rule always
produces minimizing sequences with O(1/n) convergence at least, and geometric
convergence under certain additional conditions of the uniform convexity type on f.
However, from a practical standpoint, the utility of (4.2) (and all its variants in [1]) is
compromised to some degree because this rule requires explicit knowledge of a
Lipschitz constant for the derivative F’ of F, i.e. a constant L satisfying

(1.1) L _->L0 sup

Computing a bound on L0 can be a formidable problem in its own right, but if (4.2) is
used with a constant L<Lo, the resulting step length parameters w, may never
become small enough to insure that x, is a minimizing sequence for F.

Ideally, one would like to have a conditional gradient step size rule which avoids
line search, does not require inaccessible "nonlocal" parameters of the Lipschitz type,
and yet manages to match the performance of other known rules. The open loop step
length parameter sequences devised in [2] are simple in the extreme, but still produce

* Received by the editors October 14, 1977.

" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607. This
investigation was supported by a grant from the North Carolina Engineering Foundation.
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the same worst case convergence rate (O(1/n)) as the closed loop rules in [1]. On the
other hand O(1/n) convergence is essentially the best one can expect from open loop
schemes, whereas closed loop rules are capable of achieving geometric convergence
under certain conditions. In the present paper, an analytical device employed in [2] is
modified to produce the one parameter family of simple closed loop step length rules
(4.9) which resemble (4.2) but require no Lipschitz constants. Under the same condi-
tions invoked in [1] on F and , every member of the family (4.9) generates minimiz-
ing sequences with asymptotic properties comparable to sequences obtained with
(4.2)-(4.3). In fact, for certain values of the parameter 0, the a priori error estimates
for (4.9)-(4.10) are actually better than the corresponding estimates for (4.2)-(4.3).

In the analysis to follow, it will be shown that the behavior of conditional gradient
sequences near a minimizer " of F differs markedly according to whether a certain
multivalued mapping T: ) 2n is or is not "continuous" at . The map in question
determines the set of all conditional gradient directions emanating from each x
and its continuity properties at a minimizer are pivotally dependent upon how
(F’(), y) grows as y moves away from into f. If the monotone nondecreasing
function, a(. ): [0, c) [0, ] defined by

a(o-)= inf (F’(sc), y-sO), o-_->0,

Ily-511_->r

is strictly positive for o- > 0 and if F’ is continuous at , then every single valued branch
(i.e., section.)of T is strongly continuous at . Furthermore, if a(o-)=>Ao-2 for some
constant A > 0, and if F’ is locally Lipschitz continuous at , then every branch of T is
locally Lipschitz continuous at sc. Finally, if a(cr)>=Atr, with A >0, and if F’ is
continuous at :, then every branch of T is constant in some neighborhood of sc. In 5,
these continuity properties support a comprehensive convergence theorem for the
algorithm (4.9)-(4.10), along with a comparable theorem for (4.2)-(4.3) which
improves significantly on the analysis in [1]. Under the same conditions imposed on F
and fl in [1], it is shown here that F(xn)-infF=o(1/n) if a(tr)>0 for tr>0, that
F(xn)-infnF and x, converge geometrically if a(tr)>-Atr2, and that x, actually
terminates at a minimizer of F after finitely many steps if a(tr)>=Atr. These
conclusions run counter to the impression, created inadvertently by certain remarks in
the literature (e.g., [3], [4]), that O(1/n) convergence is the best one can expect of a
conditional gradient method unless fl satisfies some sort of uniform convexity condi-
tion. Actually, uniform convexity is part of a very strong sufficient condition for
geometric convergence 1 ], [4], considerably stronger than the condition, a (tr) => Atr2,
invoked here. This point is developed at length in 3-5, and is made even more
forcefully by the results obtained in 6 for optimal control problems on admissible
control sets with empty interiors in 1. It is of further interest that the geometric
convergence theorem for the algorithm in [3] does not apply to the class of optimal
control problems treated here.

In 3, an extremal for F in f is classified as i) singular, ii) nonsingular, iii)
strongly nonsingular, iv) regular, or v) strongly regular, according to whether i) the
linear functional F’() has multiple minimizers in , ii) F’() has a unique minimizer
(namely, itself), iii) a (tr) > 0 for tr > 0, iv) a (tr) => Ao-2 with A > 0, or v) a (o’) => Atr
with A > 0. Within the context of optimal control theory, this general classification
scheme is closely related to the Haynes-Hermes notion of singular optimal control [5]
and the more comprehensive definitions formulated by Kelley et al. [6], [7], and Dunn
[8]. Moreover, the min H method proposed in [9], the averaging methods treated in
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[10], [11], [12], and the iteration scheme in [13] are all conditional gradient methods
in one form or another, and conversely, the conditional gradient algorithms investi-
gated here are immediately applicable to optimal control problems. In 6, it is shown
that for an important class of bounded optimal control problems, the position of an
extremal control within the proposed classification scheme is determined by the
behavior of an associated "switching function" s(. near its zeros. Thus: if the set
0--{tls(t)= 0} has positive measure, the control is singular; if meas 0 0, the control
is strongly nonsingular relative to the 1 norm; if 0 consists of finitely many simple
zeros (typical for "bang-bang" controls), the control is l-regular; finally, if s(. is
bounded away from zero, the control is a-strongly regular. When placed alongside
the general convergence theorems in 5, these results give added insight into why
singular controls are aptly named.

2. Preliminaries. In the following development,

X a real Banach space with norm I1"
X* the dual space of continuous linear functionals, x*: X

(x*, x) value of x* at x
IIx*ll the induced norm on X*, i.e., supllxll=l (x*, x)

l) nonempty subset of X
Ka(x) cone of normals to fl at x, i.e., {x* X*l(x*, y-x)-< 0, Vy el-l}

F real functional on X
F’(x) Fr6chet derivative of F at x
fv set of minimizers of F in D., i.e., {"

T(x) set of minimizers of F’(x), i.e., {2 fl(F’(x), 2) <= (F’(x), y), y }.
DEFINITION 2.1. " fl is an extremal of F in D. if and only if F’(’) exists and

(2.1) (F’(:), y-s>>=O, Vy).

THEOREM 2.1. I]: f is convex, fFand F’() exists, then is an extremal ofF. If
F is convex and is an extremal, then

Proof. The proof may be found in standard references, e.g. [1], [14].
Note 2.1. The following statements are equivalent:

i) is an extremal,
ii) .F’(:) Ka(),
iii) : T(:).
DEFINITION 2.2. {X,,} c f is a conditional gradient sequence if and only if there

exist sequences {2,,} c f and {w,}c [0, 1] such that

(2.2A) Xn+ Xn -v (.On (.n Xn

(2.2B) 2,, T(x,,)

for n 1, 2,....
If lq is convex and weakly compact, then T(x) is never empty and (2.2) cannot

lead out of . However, as in [2], the principal concern here is with the convergence
properties of conditional gradient sequences, on the assumption that such sequences
exist. Therefore, compactness will be invoked only where it seems to have an essential
bearing on the convergence of (2.2).

3. Singular and nonsingular extremals. At an extremal :, the set T(:) must
contain : (Theorem 2.2) and consequently is not empty. There are now just two
possibilities: either : is the only element of T(sc) or else there are several elements in
T(:). The continuity properties of the set valued map T" f-2 are significantly
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different in the two cases, and this has an important bearing on the convergence of
conditional gradient sequences.

DEFINITION 3.1. X is a singular point in f (relative to F) if and only if T(x) is
empty or has more than one member. Otherwise, x is a nonsingular point in f.

Note 3.1. An extremal is singular if and only if T() contains more than just :.
Every extremal in the interior of f is necessarily singular since F’()-- 0 at such a
point and consequently T()= f. More generally, if an extremal is not an extreme
point of f, then falls in the relative interior of some line segment 4 c f, in which
case (F’(:), x :) 0, /x 4, and therefore T() 4. Thus every extremal which is
not an extreme point of f must be singular. However, it is also possible to have a
singular extremal at an extreme point. Various cases are illustrated in Fig. 3.1.

The following theorem reveals a fundamental connection between uniqueness
conditions on T(x) and the continuity properties of the map T at x.

THEOREM 3.1. Let F’ be continuous on f, and let f be compact. Then every
single-valued branch of T is continuous at nonsingular points x f. Conversely, at every
singular point x , at least one single-valued branch of T is discontinuous.

F con

F const.

’()

FIG. 3.1A FIG. 3.1B

F =const.

<F’(:), y

(F’(:), y ) 0

’()

FIG. 3.1C FIG. 3.1D
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Proof. f compact::> T(x) , Vx Ft, consequently there is at least one single-
valued branch T" Ft f with T(x)6 T(x), Vx Ft. For any such T, suppose that xn x
and T(x,,k) Ft. For each k and each y Ft, one then has

(F’(xn), y ) ->_ (F’(x,), (x,)-)
:(F’(x,)-F’(x), (xn)-Y.)+(F’(x), (xnk)-Y)
--> -[IF’(x=)-F’(x)ll[l(x)-ll/<F’(x), (Xnk)-->.

Fix y and let k c to obtain

(F’(x), y-$)>=O, Vy Ft.

Thus, x, x z all cluster points $ of {T(x,)} fall in T(x). Since x is nonsingular, T(x)
is the only element in T(x), and therefore all cluster points of {7(x,)} coincide with
T(x). Because Ft is compact, this means that T(xn) T(x).

Conversely, suppose T is continuous at x. If x is singular, there is an $ e T(x) with
: T(x). Put

T(y), if y e Ft and y : x,
TI(y) -., if y x.

Then T1 is a single-valued branch of T, discontinuous at x. Q.E.D.
Note 3.2. Theorem 3.1 has several straightforward "weak" extensions. For

instance, if compactness is replaced by weak compactness, then every branch T is
strong-weak continuous at nonsingular points. If continuity of F’ is replaced by
weak-strong continuity, then every T is weak-strong (resp., weak-weak)continuous at
nonsingular points if Ft is compact (resp., weakly compact). In all such cases, T(xn)-
x, approaches 0 in some sense, as xn approaches a nonsingular extremal s, and this
favors the more rapid convergence of conditional gradient sequences. It is also
possible to improve and considerably extend the strong continuity result in Theorem
3.1. This is accomplished in Theorems 3.2 and 3.3, after the following preparations.

DEFINITION 3.2. X is a strongly nonsingular point in f (relative to F and the norm
on X) if and only if x is nonsingular in Ft, and in addition

(3.1) r>0 => inf (F’(x),y-)>0
y

where is the unique element in T(x).
LEMMA 3.1. For z Ft and z* Kn(z), put

(3.2) a(o-)= inf (z*, y-z), r >=0,

and

a(r)
(3.3) b(o’) or>0.

Suppose that f is either bounded or convex, and that >-_ a (tr)> 0 for cr > O. Then for
all e > O, b(r) is bounded away from zero on the half line tr >= e.

Proof. It follows immediately from (3.2) and the definition of Kn, that a(. ) is
always monotone nondecreasing, with _->a(o-)->0, for o-->0. If a(o’) is strictly
positive for o- > 0, then o" =>- e > 0 =), a (o-) => a (e) > 0.



192 J.c. DUNN

Case i) (f is bounded): fl bounded => d supyally- z[[ < oo. Furthermore

d>-00>-_e >O =), a(00)>_a(e) and 00>d>-e >O
o" d 00 d

Finally, 00 >_- e > d >_- 0 =)> a (o’)/00
Case ii) (f is convex): For 00 > 0, let B= {u e Xly , u (y z)/r}. Then

b(o’) =a(’----)-- inf (z*,.Y-Z)= inf (z*,u).
17" y [l 00 B

Ily-zll->cr Ilull_->l

Furthermore, D. convex =)> wu eBb, Vu B,, Vto e [0, 1]. If 02 > 001 >0 and u B2,

then 3yu=(y-z)/002=to(y-z)/001, with o)= 00"1/002s (0, 1). Since (y-z)/001s
B1, this gives u BI. Consequently, 002>001>0 =)> BB2, and therefore
b (0.2) >- b (o’1) -> 0. It follows that 00_->e =)> b(00)>-b(e)=a(e)/e >0. Q.E.D.

LEMMA 3.2. For z ll and -z* Kn(z), let a( ) be the correspondingfunction in
(3.2). If 11 is convex, then

(3.4) a(00)= inf (z*,y-z), V00->0.

Proof. Let y D with IlY z >_- o’, and put u z + (00/lly z II)(y z). If fl is con-
vex, then u sfl. Also, 11u-z][=00 and (z*, u-z)<-(z *, y-z). Consequently,

THEOREM 3.2. Let F’ be continuous on D and suppose that f is either bounded or
convex. Then at every strongly nonsingular x in 1), the set valued map T: f- 2a is
continuous in the sense that

(3.5) and Ily xl[ => I1- 1[ , v; T(y)

where is the unique element in T(x). In particular, this means that every single-valued
branch of T is continuous at x.

Proof. If T(x), then -F’(x)e Kn(). Let a(. ) and b(. be given by (3.2) and
(3.3), with z = and z* F’(x). If x is strongly nonsingular, then a(00)>0 for 00>0,
and it follows from Lemma 3.1, that for all e >0, b(00) is bounded away from 0 on
00_->e. Consequently, ge >0, ::l/x >0 0_-< b(o-)-</x =:), 0=<00<e. Furthermore, for
T(y),

[]F’(x )- F’(y )[l lly [l >- (F’(x )- F’(y ), 37-27)+ (F’(y), 7-.)

(F’(x), ;-Y,)

Since F’ is continuous, =13 >0 lly -xll IIF’(x)-f’(y)ll . Consequently, Ily
xll-<_ => lbT-l[_->a(ll;-ll) -; or _->b(l[7-ll)_->0 => 117-1[<_-. Q.E.D.

THEOREM 3.3. Let f be convex .and suppose that either one of the following
conditions also holds:

(i) f is compact, or
(ii) f is closed and X is finite dimensional.
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Then x is a strongly nonsingular point in 1 if and only if x is a nonsingular
point in D‘.

Proof. Every strongly nonsingular point is nonsingular. Conversely, suppose that
x is nonsingular and that 27 is the unique element in T(x). In Lemma 3.2, put z 27 and
z* F’(x), to obtain

inf (F’(x), y 2?) inf (F’(x), y -.).
y y’

[ly-Zll>-cr

By hypothesis, D. is compact, or the sphere {y XIIly-1[ o’} is compact and D‘ is
closed. In either case, the intersection D. {y D.ll[y-[1 o’} is compact and the
infimum on the right is achieved somewhere in D.. Moreover, since x is nonsingular,
one has (F’(x), y-Y)>0 for y , consequently the infimum on the right is positive
for cr > 0, and so x is___strongly nonsingular. Q.E.D.

Note 3.3. Let Co denote the 61osure of the convex hull of D‘. Then for every
x D‘, Kn(x)= K (x). Let z* Kn(z)= Kc (z) and put

(3.6) _a(o-)= inf (z*, y-z), or=>0,
yECo 1"
[[y-z[[cr

_a()
(3.7) _b(cr) , r>0.

Then a(tr)_>- _a(tr)--- 0 and b(o’)>-b(o’)->_ 0, where a(. )and b(. )are given by (3.2) and
(3.3). Suppose xf), is strongly nonsingular in COD,, i.e., _a(cr)>0, Vr>0; then it
follows at once from Lemma 3.1, that _b(tr) (and, a fortiori, b(tr)) is bounded away
from 0 on half lines tr _-> e > 0. This means that condition (3.5) in Theorem 3.2 actually
holds at every x which is strongly nonsingular in Co D‘, irrespective of whether D‘ is
bounded or convex. Theorem 3.3 has a similar extension; thus if x D‘ is nonsingular
in CoD‘ (i.e., (F’(x), y-Y)>0, VyCoD‘,y:)and if CoD‘ is compact (<=>D‘ is

compact) or X is finite dimensional, then x is strongly nonsingular in Co D‘. What
really matters for the continuity condition (3.5) is not the convexity or boundedness of
f), per se, but rather how the function b(. ) behaves near 0 and c. One can also see
now that the distinction between nonsingularity and strong nonsingularity has little

significance in finite dimensional spaces. However, this is not true for infinite dimen-
sional X, as the following example demonstrates.

Example 3.1. In the Hilbert space of p2 sequences x {x l, x2,""", Xn,’’" }, let
e(1)= {1, 0, 0,... }, e (2)= {0, 1, 0,... } etc., and let D‘ closure of the convex hull of
the vectors 0 and e (") n 1 2 D‘ is a closed bounded convex subset of 42. At
x =0, the cone of normals to f consists of all vectors in 42 with nonpositive
components, i.e., Kn(0) {x* e2[x _-< 0, 1 =< < c}. Suppose that for some Fr6chet
differentiable functional F: a2 1, and for some x f, one has F’(x) w ,2, with

wi >0 for 1 <-i< 00 Then -F’(x)KaO). Moreover, since the wi’s are strictly posi-
tive, y f and y 0 :ff (F’(x), y) Y.= wiYi ) O, consequently x is a nonsingular
point in D‘ and 0 is the unique element in T(x). However, since e(n) D‘, Ile(")ll 1, and
lim,_, (F’(x), e (")) limn_,oo w, 0, it follows that

inf (F’(x), y)= 0, Vo’ [0, 1].

Thus x is nonsingular, but not strongly nonsi’ngular (relative to the a norm).
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Roughly speaking, x will be strongly nonsingular if the boundary of f curves
away from the supporting hyperplane {y e XI(F’(x ), y-y)=0}, "uniformly" with
respect to directions leading into tq from J. But even if the boundary of f contains line
segments issuing from $, x will still be strongly nonsingular if -F’(x) lies in the interior
of the normal cone at Y; in fact this is the ultimate form of strong nonsingularity.
These ideas are developed below.

The following theorem establishes an important link between strong nonsing-
ularity and conditions of the uniform convexity type. This connection is implicit in
Theorem 4.3 of [1, p. 56] and Theorem 1.8 of [1, p. 131].

THEOREM 3.4. Suppose that D satisfies the uniform convexity condition

(3.8) x, y fand lIz[[ ,/(llx- y[[)
x + Y+ z n
2

where 3"(. is some monotone nondecreasing function, with 3,(0)=0 and 3,(0")>0,
t0" > O. Let F’ exist on D. Then for x D, T(x), and 0" >= O,

(3.9) a(0") inf (F’(x), y -y>-> 2[IF’(x)ll3,(o).

Consequently, x is strongly nonsingular in f .i[ and only if T(x) is not empty and
F’(x)# O. In particular, an extremal is strongly nonsingular in 1 if and only if
F’(j) O.

Proofi For y61q, write (F’(x), y-Y)=2(F’(x),(y+)/2-z)+2(F’(x),z-Y). If
Ilzll_-< (lly- ll), then (y+Y)/Z-zf, and so (F’(x),(y+Y)/Z-z)>-(F’(x),Y). It
follows that (F’(x), y-) >= 2(F’(x), z)if Ilzll_-< 3’(lly-11). Consequently,

inf (F’(x), y-$)> 2 sup (F’(x), z>= 211F’(x)llv().
y{ zX

lly-ll_->r Ilzll<-v0r)

The rest is now immediate from the definitions. Q.E.D.
Note 3.4. In applications, is typically specified by inequality constraints,

g(x)O, Viii. Consequently, it is worth noting that certain uniformly convex
functionals g" X l have uniformly convex level sets, {x Xlg(x) 0}. Thus, if

(3 10) g(X <g(x)+ g(y)_ 6([y-x), x, yX
x z/ 2

for some positive definite nondecreasing 6(. ), and if g’ exists and is bounded on the
level set f, then 11 is uniformly convex. The prototype for this is g(x)=l]xl[2-R in
Hilbert space; here, the parallelogram law establishes (3.10) with 6(0")= 0"2/4, the
closed ball -{xXlllxll=-R2<-o} satisfies the corresponding uniform convexity
condition

1
x, y D, and [[z -X--I[x Y [[2 z x+y+z f,

2

and condition (3.9) becomes

(3.11) a(0")= inf (F’(x), y-Y)->__A0"2

y
Ily-llr

with A [[F’(x )[I/ (4R ). Finally, the intersection of a family of uniformly convex sets
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fi, L is uniformly convex if y(o-)= infit yi(o’)> 0, Vr > 0; in particular, this is so if
the index set I is finite.

Note 3.5. For (3.9) to hold at any one x D,, it is sufficient that f is "separated"
from the hyperplane {y XI(F’(’), y- X)--0} by some uniformly convex set F, in the
sense that F f and -F’(x) Kr() Kn() (Fig. 3.2).

-F’(x)

FIG. 3.2

THEOREM 3.5. X fl satisfies the strong nonsingularity condition

(3.12) a(o’)= inf (F’(x), y-Y)>-_Acr
Ily--zll_>-r

with T(x) and A > O, if and only if -F’(x) lies in the interior of the normal cone

Proof. For x
/llxlllly-ll. Consequently, IIxll<-_A=>-F’(x)+xK(), and therefore
-F’(x)IntKn($). Conversely, if -F’(x)IntKn($), then for some A>0,

For yfl and IIx*ll_-<A, one then has (F’(x),
y-$)=(F’(x)-x*, y-S)+(x*, y-S)>_-(x *, y-S). Consequently, (F’(x),
suplIx.II__<A <X*, y ) Ally ll. Q.E.D.

Figure 3.3 gives a finite dimensional illustration of the essential content of this
proof, and Theorem 6.2 shows that the condition F’(x) Int K(.f) can be realized for
nontrivial optimization problems on infinite dimensional spaces. Notice, however, that
the normal cone Kn(0) in Example 3.1 has an empty interior.

If F’ is locally Lipschitz continuous at x e fl, and if T(x)# f and x satisfies the
strong nonsingularity condition (3.11), it turns out that the set valued map T is also
locally Lipschitz continuous at x in a certain sense; moreover, if F’ is merely continuous
and x satisfies the more stringent condition (3.12) with T(x)# , then T is actually
constant near x. These results (Theorems 3.6 and 3.7) and the associated conditional
gradient convergence theorems in 5, justify the following additional terminology.

DEFINITION 3.3. X is a regular (resp., strongly regular) point in l if and only if x is
nonsingular in D. and satisfies condition (3.11) (resp. (3.12)) for some A > 0, with
$ the unique element in T(x).

Note 3.6. If is bounded, (3.12) =), (3.11). Also, (3.11) =), fl is bounded.
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Kn(.f)
1’

2

(F’(x), y ) 0
2

FIG. 3.3

THEOREM 3.6. Let F’ be locally Lipschitz continuous at x fl, i.e.,

(3.13) =lL>O,=lao>O[ly-xl]<-o [IF’(y)-F’(x)[[<=Ll]y-x[I.

If x is a regular point in fl, then the set valued map T: fl-> 2n is locally Lipschitz
continuous at x in the sense that

(3.14) Ily-xll<_-,So :> II;-l[<-Mlly-xll, Vmr(y)

where is the unique element in T(x), M L/A, and A is the constant in (3.11).
Proof. For all )7T(y), IIF’(x)-F’(y)llll-ll>-(F’(x)-F’(y), )7-)+(F’(y),

37 2) (F’(x), 37 2) ->- All)7 112. Therefore ]]y xl[ <- 60 =)> Lily x ][)7 21[ => All)7 2112
IlY- 11 <- (L/A)Ily xll. Q.E.D.
THEOREM 3.7. Let F’ be continuous at x. If x is a strongly regular point in 12, then

the set valued map T: - 2n is constant near x; more precisely,

(3.15) o>Olly-xll<_-o ::) T(y)={2}

where 2 is the unique element in T(x).
Proof. According to Theorem 3.5, -F’(x)IntKn(2). Therefore, since F’ is

continuous at x, 36o>O[[y-xl]<=6o -F’(y) Int Kn(2). A second application of
Theorem 3.5 now yields T(y)= {2} (Fig. 3.4). Q.E.D.

Note 3.7. In a general metric space setting, Dantzig et al. [15] investigate upper
semicontinuity properties of minimizer sets under perturbations in the payoff and the
constraint set. Robinson [16] obtains continuity estimates of the Lipschitz type for
certain solution branches of perturbed linear programs in Rn.

4. The algorithms. Let fl be convex, let {x,,}cfI be a conditional gradient
sequence, and suppose that F’ is Lipschitz continuous on fl. According to Lemma 1.2
of [1, p. 117], one then has

(4.1A)
2

ton0 /n+l <:r -o)n(F’(x), x.-2.)/-Lllx-2.ll
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Kl()

(’(x), z ) o

FIG. 3.4

with

(4.1B) r, F(xn)-inf F

where L is a Lipschitz constant for F’ on f. In this expression, {wn} can be any
sequence in [0, 1] which satisfies (2.2) with {x,} and {,}. Suppose now that at each
n, w, is specified by the rule

0,

(F’(x,,),x,,-Y,,)
(4.2) w, oo (x,, Y,, F) Ll[x, .,n 2

1,

if (F’ (x.), x. $.) 0

(F’(x,,), x,,-.,,)
if0<

Ll[x,,-Y,,l[2
<1

(F’(x,,),x,,-Y.,,)

which minimizes the right side of (4.1A)over ,, [0, 1], given x, and $,, and also
insures that Xn XN, ln >--N, if xN is an extremal. This is the basic closed loop step
length rule proposed and analyzed in [1].

Given any single valued branch T of T, (2.2) and (4.2) produce a corresponding
recursive algorithm for generating conditional gradient sequences, namely

(4.3A)

with

(4.3B)

Xn+ Xn + (.O (Xn, .n F)(g,, -x,);

,,= T(x,,).

For each z D., this scheme produces exactly one corresponding conditional gradient
sequence {x,} f with xl z (provided T(x)# for x f). Demyanov and Rubinov
prove that if, in addition to the assumptions already listed, F is also convex and f is
bounded, then infn F > -oo, and for any branch T of T, the corresponding sequences
{x,,} generated by (4.3)are always minimizing sequences with rn O(1/n); moreover,
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if D. satisfies the uniform convexity condition

(4.4) x,ylIandllzll=<yl]x-yll2 =), x+y+zsfl
2

for some constant y>0, and if infn[IF’(x)ll>=e>O, then {r,} converges to 0
geometrically, i.e., 0-<_rn--<const. A ", ::lA e[0, 1) [1, Thms. 1.7 and 1.8, Chap. 3].
Worst case convergence rate estimates for the classical line minimization step size rule
are no better than this [17], and (4.2) has the important advantage of not requiring a
potentially costly inner iterative line search loop. On the other hand, if (4.2)-(4.3) is
used with an L which is not a Lipschitz constant for F’, then (4.3) may generate
nonminimizing and divergent sequences {x’}. For example, let X NI, f [_ 1, 1],
and F(x)=x2/2. Then F’(x)=x and consequently L0 1 in (1.1). If 0<L<1/2 in (4.2)
and if X 0, then (4.3) generates a sequence {Xn} which terminates in a limit cycle
..,-1,1,-1,... beyond some value of n. On the other hand, if L_-_1/2 then

x’:(1-1/L)’-lx Therefore, for this problem, (4.2)-(4.3) produces minimizing
sequences if and only if L > 1/2= Lo/2. The minimizer 0 happens to be singular here;
however similar behavior is observed for problems with nonsingular solutions in
spaces of arbitrary dimension.

The convergence theorems quoted above from [1] for (4.2)-(4.3), assume that F
is convex. If this condition is invoked at the outset, the inequality (4.1A) can be
carried further to

2
(-O

(4.5) 0 <= rn+l <_-- (1 ton)r" +  LIIx 
since one can readily show that

(4.6) oo>(F’(x’),x,,-’)>-r. >=0, V,, T(x.)

when F is convex (cf. proof of Theorem 1 in [2]). Let 0 be an arbitrary constant 0,
and divide (4.5) by LO2 to obtain

2
(-On

(4.7A) 0_--< R.+I _-< (1 w.)R" +  0 llx.  .ll2

with

(4.7B) R. r" 1 (F(x,, )- inf F)LO2-LO2
n

In effect, 0 is a kind of scaling parameter; the reason for introducing it here will
become clear in 5. In any case, if {x,,} satisfies (2.2)with {,f,,} and {w’} c [0, 1], then

(4.7) holds for all n _-> 1, and a simple inductive argument yields

(4.8A) R. -<_ Bfl.,

with

Vn_>_l

(4.8B) B max {1, R 1}

and {fl’} c [0, oo) recursively generated by
2

(sOn
(4.8C) /3,,+1 (1-o).)/3,, + 0--llx" -x.ll2"
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Proceeding as before, let us now choose to. according to the rule,

0, if (F’(x.), x. 2.) 0

02. 02n
(4.9) w,=w(x,,,2,;/3,)= [[x,-X,[[z’

02n >11, if (F’(x,), x, Y,) > 0 and
[Ix, Y, 2

which minimizes the right side of (4.8C)over to, [0, 1] and insures that
’n _-> N; if xu is an extremal. Given any single valued branch T of T, one then has the
associated algorithm

(4.10A) Xn+l Xn -[-O)n(.n--Xn); X1--" Z -,
2

ton(4.10B) i[n+x-’- (1--(.On)j3 "--llXn --nll2" 1--" 1

(4.10C) 2, T(x,),

(4.10D)

It is shown in 5 that for any fixed value of 0 # O, the sequences {x,} generated by
(4.10) are always minimizing sequences for convex F on bounded f, even though a
Lipschitz constant L does not appear explicitly in (4.9); in fact, this is also true for a
somewhat larger class of quasiconvex F on bounded f (Note 5.4).

5. Convergence theorems. The following result is a straightforward modification
of Lemma 2 in [18].

LEMMA 5.1. Let {ft.}= (0, ) and {q.}= [0, co) satisfy

n+l <n qn2 /31 =1

]:or all n >= 1. If q. >=q >0, for n >= 1, then . O(1/n); more precisely

1
0</3. <

l + q(n -1)’
Vn >= l.

Furthermore, if lim,_ q, , then ft, o (1 /n ).
Proof. Put 8k 1//3k. Then for all k >_- 1,

qkSk
k--qk>O and k+--k

8k qk

Consequently, for all n _-> 1

If qk q for all k, then

n-1 n-1

tn’-tX’+" E (tk+X--Sk) -1+ E qk.
k=l k=l

1 1
=-<

)’
’n=>l./3.

3.- l+q(n 1

Suppose that q. --> . Given M> 0, choose K so large that k >= K qk >= M. Then, for
n>K,

/( KX nl ) n
0 < nil. <--_ n 1 + qk + qk <:

k--1 k=K =(n-K)M



200 J.c. DUNN

and consequently 0 =< limn-, nfln <= lim,_,oo nil, <= 1/M. Since M can be arbitrarily
large, this gives limn_,o nfln 0. Q.E.D.

LEMMA 5.2. LetFbe convex. If is a nonsingular minimizer ofF in fi, then is the
only minimizer of F in fi. Moreover, if is strongly nonsingular in fi, then every
minimizing sequence for F converges strongly to .

Proof. fie and sc nonsingular :ff (F’(sc), y -:) > 0, Vy fi, y # sc. F convex =>
F(y)-F()>=(F’(),y-),Vy6f. Therefore is unique. Furthermore, F(y)-
F(s)>= (F’(), y so) ->_ a(lly :11) >- 0, with

a(o’)= inf (F’(), y-).

Consequently, if {y,,} is a minimizing sequence for F in fi, then a(]]yn-]])-0 as

n - 0o. But if is strongly nonsingular, a (o’) is strictly positive and monotone nonde-
creasing for o- > 0. Therefore, a (lly ’ll)-* 0 => Ily ’ll- 0. O.E.D.

THEOREM 5.1. Suppose that g is convex and bounded with D diam , that F is

convex, and that F’ is Lipschitz continuous on fi, with L a Lipschitz constant for F’. If
the sequences {x} f, {2L,}f, and {fl} [0, oo) are generated by the algorithm
(4.9)-(4.10) with any 8 0, then

0_<- r. _<- max {rl, L02} fl,,, Un >= 1(5.1A)

where

(5.1B)
0--<_ F(xn)- inf F rn <

Moreover, one of the following conditions holds: either XN is a minimizer ofF in f for
some N and

(5.2) Xn XN e fiF, Vn > N,

or else

1
(5.3A) 0 </3. -<

),
Vn ->_ 1

l+q(n-1

with

(5.3B) q =min 1,

In either case, {fin} is monotone nonincreasing. Finally:
i) If is a strongly nonsingular minimizer of F in fi, and if (5.2) does not hold,

then the sequences {x,} and {2,} converge strongly to , and fin o(1/n).
ii) If is a regular minimizer ofF in f and if (5.2) does not hold, then

(5.4A) 0 < fin A n-l, Vn ->- 1

(5.4B)

with

and

h=max -, --- e ,1

1 AO2

(5.4C)
(1 + L/A)2" max {ra, LO2}
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where A is the constant in (3.11). Moreover, IIx.-.11 o(x "/) aa IIx.- 11
0(,"/:).

iii) If is a strongly regular minimizer ofF in D, then (5.2) always holds for some
N >- 1, with xr and n , tn >-N.

Proof. (4.6)=:), r, <oo and (4.8)=:> (5.1). Suppose that (F’(xn),xn-$,)>O, for
1 =< n _<-N- 1. Then for n in this range, Xn is not an extremal and consequently r, > 0
by Theorem 2.1. It follows from (5.1) that/3n >0, and (4.9)-(4.10) then yield

0<fl,,+ <-,-q.fl.

(5.5B) qn=min /n, llx,,_n[ia
_>-q min 1,--

for 1--<_ n---< N-1. If (F’(xN), xr-N} 0, then x e YF by Theorem 2.1, and condi-
tion (5.2) holds. On the other hand, if (F’(xn), xn-n} >0, Vn >_-1, then (5.5) holds
with/,, > 0 for all n, and the a priori error estimate (5.1)-(5.3) follows from Lemma
5.1. In either case, {/n} is monotone nonincreasing.

i) If is strongly nonsingular, then is unique and xn :, by Lemma 5.2, (5.1),
(5.2) and (5.3). Furthermore, ns, by Theorem 3.2, and consequently
IIx,-.[I-, 0. If (F’(xu),xu-Y.r)=O for some N, then (5.2)holds with xu
and n=,’qn>N. Otherwise, if (F’(x.),x.-n)>O, Vn>=l, then (5.5B)
gives qn-->oo, since /3.4->0 and IIx.-.nll-->0 through positive values.
Consequently/3. o (1/n ) by Lemma 5.1.

ii) If : is regular, then for all n >= 1

r. (F’(gj), x. ) A
(5.6) 3. >= BLo >- >-

BLO2 max {rl, LO

where A is the constant in (3.11). Moreover, by Theorem 3.6,

(5.7) IIz, ll-<- -Ilx,, 11. Vn _>- 1.

If (F’(xn),x,-n)>O for 1 -<_n -<_N- 1, then (5.6) and (5.7) give

02fin 02fin(5.8) IIx, x, 2 --> (llx, ll / II, 11)2
>- > 0

for 1 <= n <-N- 1, where/z is the constant in (5.4C). It now follows from (5.5)
and (5.8) that

(5.9) 0< fin+l--< 1 - min {1, Ix} fin max , 1 fin

for 1 _-< n _-< N 1. If (F’(xre), x ) 0, then xr e fv and (5.2) holds, as in
i), with xr= and n=S, Vn>N. Otherwise, if (F’(xn),Xn-n)>O, Vn
then (5.9) holds for all n >_- 1 and this establishes (5.4). From (5.4), (5.6) and
(5.7) one then obtains

x ll-- O( n/2) and IlYn ’ll--
iii) If : is strongly regular, the inequality

A
(5.10) /3, ->-

max {rl, LO2}[[Xn [[, Vn >= 1
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replaces (5.6), where A is now the constant in (3.12). If (F’(x.),x.-$.)>
0, Vn _-> 1, then IIx.- :11 > 0, ’n >_- 1, and

ao202n " Vn >- 1.IIx, *,[I2 max {r, LO} (llx, :11 + I1 11)=’

It has already been established that IIx -  11-, o; therefore by Theorem 3.6,,, : for all large n, and so,

02/3,, A 1
>(5.11

Ilx, *,11z =>
max {rl, LO2} "llx.  11-1

for n sufficiently large. However, it follows from (4.9)-(4.10), and (5.11) that
w(x,, ,;/3,)= 1 and x,+ ,, for large n. This contradiction establishes
(5.2) with xu g and ,, , Vn > N. Q.E.D.

THF.OM 5.2. Let fl and Fsatisfy the conditions of Theorem 5.1. If the sequences
{x,,} c f and {y,}c f are generated by the algorithm (4.2)-(4.3), then either (5.2) holds
or else

(5.12A) 0<r. =<2 max {rl, LD2} 1, Vn >= 1

with

(5.12B) r, F(x,,)-inf F.

In either case {r,,} is monotone nonincreasing. Furthermore:
i) I]’ is a strongly nonsingular minimizer of F in fl and if (5.2) does not hold,

then the sequences {x,,} and {.g,,} converge strongly to , and r. o(1/n).
ii) If is a regular minimizer ofF in 1 and if (5.2) does not hold, then

rn(5.13A) 0<--=<1 ’qn_->l
rl

with

(5,13B) a =max
2’

and

1 1
(5.13C) /x (L/A---" (1 +L/A)2

where A is the constant in (3.11).
iil) If is a strongly regular minimizer ofF in [1 then (5.2) always holds for some
N >-_ 1, with Xr , and , , Vn > N.

Proof. If (F’(x,), x,,- $,)> 0 for 1 =< n =< N- 1, then for n in this range, x,, is not
an extremal and consequently r, >0, by Theorem 2.1. From (4.1)-(4.2)one then
obtains for 1 -< n <N- 1

(5.14)

r,, -7.(F (x.), x.
J.+l =<

{F’(x")’ x"-X")2

(F’(x.),x.-.)
>=1

(F’(x.),x.-Y.)
if 1 >

Lllx. .112 > 0.
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Since F is convex, the estimate (4.6) holds and therefore

(5.15) O<-_r] <-(F’(x,), x,-,)2.
Thus (5.14) can be carried further to

rn+ < rn --qnr2 rn(5.16A)

with

(5.16B) q,,=min >
r. Lllx.  .ll2

q min
rl LD

> 0

for 1 <_-n <_-N-1. If (F’(xN), xN-r)= 0, then xu 6 fv, by Theorem 2.1, and condi-
tion (5.2) holds. On the other hand, if (F’(xn),xn-n)>O, Vn->1, then (5.16) holds
with r,, > 0 for all n, and the estimate (5.12) follows easily from Lemma 5.1. In either
case, {r,} is monotone nonincreasing.

The remainder of the proof is obtained from the proof of Theorem 5.1 by putting
02= 1/L and B 1, and replacing/3n and (5.6) by r, and (5.16) respectively. Q.E.D.

Note 5.1. It may be possible to sharpen the estimate (5.13) considerably if
is bounded away from 0 on D., and D. satisfies the uniform convexity condition (4.4).
Thus, from Theorem 3.4 and (4.4), one obtains

(F’(x), x ) -> 2 y[lF’(x)[I Ilx 1[2 _>- A [Ix  112
for all T(x) and x f, where

A=2ye>O

and e >0 is a lower bound for IIF’(x)]]. It then follows from (4.6) and (5.14) that
(5.13A) and (5.13B) hold with

1 2ye

in place of (5.13C) (this result is essentially a corollary of Theorem 1.8, of [1, p. 131];
the estimate (5.12) is contained in the preceding Theorem 1.7). In general (5.4C) and
(5.13C) are rather crude estimates; however, the regularity condition (3.11) is
considerably weaker than a uniform convexity assumption (see Note 3.4 and 6). No
results comparable to i) and iii) are established for the algorithm (4.2)-(4.3) in [1].

Note 5.2. For the algorithm (4.9)-(4.10), the inequalities (5.1) and (5.3) in
Theorem 5.1 combine to give

1
(5.17) O<=r.<-C(L,O)

with

C(L, 0)= 2 max {rl, L02} max 1,

where L is any Lipschitz constant for F’, i.e. L _>-Lo (see eq. (1.1)). The least value of C
is achieved with 0 D2 and L Lo, i.e. for fixed rl > 0, one has

C(L, 0)>= C(Lo, D)- 2 max {r, LoD}
for all L_->Lo and 02>0. Notice that the corresponding estimate (5.17)equals or

surpasses (5.12) in Theorem 5.2 (depending on whether L Lo or L > Lo in (4.2)).
Similarly, for OZ>-r/L, the parameters x coincide in the estimates (5.4) and (5.13).
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Note 5.3. O(1/n)convergence for F(xn)-inf F can be achieved even with open
loop conditional gradient methods [2]. Theorems 5.1 and 5.2 show that closed loop
methods can improve considerably on this when F has a strongly nonsingular mini-
mizer; however for problems with singular solutions, O(1 In) convergence is typically
the best one can achieve with any conditional gradient method (e.g. see [17]).
Moreover, if F has a singular minimizer ’, the sequence {xn} may not converge, even
weakly, to any minimizer of F unless is unique and f is weakly compact [2]; and
{$n} is typically divergent in any case.

Note 5.4. For convex F, the quantity Pn (F’(xn), xn- :fn) always provides an a
posteriori upper bound on rn F(x,,)-infn F (eq. (4.6)). It is known that Pn0 for
the algorithm (4.2)-(4.3) under the conditions imposed on F and f in Theorems 5.1
and 5.2. Under these same conditions, p, O(A n/z) for (4.2)-(4.3) or (4.9)-(4.10) if F
has a regular minimizer.

Note 5.5. The essential content of Theorem 5.1 extends readily to a somewhat
larger class of quasiconvex functionals F. In general, suppose that

(5.18) F(x)= h(G(x)), VxX

where h is a strictly increasing real function with a continuous derivative h’. The chain
rule then gives

F’(x)=h’(G(x))G’(x)

with h’(G(x))>O. It follows that F and G have the same minimizers, extremals,
strongly nonsingular extremals, regular extremals, and strongly regular extremals in
D,. Moreover, if TF(X)={,fl(F’(x),Y)<--(F’(x ), y),/yf} and T(x)=
{fl(G’(x),$)<=(G’(x), y),Cyf}, then TF(X)= T(x),fxf, and the condi-
tional gradient sequences {x,} generated by the algorithm (4.9)-(4.10) for F are
indistinguishable from those generated for G. Consequently, if (4.9)-(4.10) is applied
to F, and if G is convex and G’ Lipschitz continuous, then according to Theorem 5.1,
G(x,)infn G, which in turn yields F(xn)infF in view of (5.18). Furthermore,
since h’ is continuous and G(f) is a bounded set in 1 under the conditions of
Theorem 5.1, it follows that h is Lipschitz continuous and this means that the
sequence F(x,)-infn F is O(1/n), o(1/n), geometrically convergent, or terminates in
finitely many steps, according to whether F has a singular, strongly nonsingular,
regular, or strongly regular extremal.

6. Some connections with optimal control theory. The results in 3-5 clarify
the meaning and significance of the Haynes-Hermes notion of singularity [5] and the
related definitions of Kelley et al. [6], [7] and Dunn [8] in optimal control theory. For
example, consider the class of Mayer optimal control problems prescribed by

(6.1)

(6.2)

(6.3)

Y f(x, t, u(t));

f ={u(" ) t0,] lu(t)l-< 1, a.e. in [0, 1]}

F(u(. ))= P(x (1))

x(0)=0, 0_-<t<_-l,

with x n, p: n - [11, and f: n 1 []1 _.) [n.1 Suppose that the initial value prob-
lem (6.1) corresponding to each u(. ) f has a unique solution x(. ) on [0, 1]. Then

The restriction of u(t) to R is a convenience; all of the conclusions reached in this section can be
extended to f={u(. ) LP([0, 1], R")I lui(t)l_- a.e. in [0, 1], i= 1,..., m}.
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(6.1) and (6.3) define a functional F on f, and the problem is to minimize F over 1. If
f and P are sufficiently smooth, F can be extended to some neighborhood of f in
l0, and will have a Fr6chet derivative F’ on ft. More specifically,

<F’(u(" )), v(" ))= s,(.)(t)v(t) dt, My(" )

with s,(.)(" ) ,11 and

s,(.)(t)=Or(t)f’,(x(t),t, u(t)) a.e. in[0, 1]

where x(. is the unique solution of (6.1) corresponding to u(. ), 4’(" is the unique
solution of the associated final value problem,

$ -[f’(x(t), t, u(t))]T0; 0(1)= P’(x(1))

and superscript T denotes the transpose operation. In this setting, the first part of
Theorem 2.1 is equivalent to the Pontryagin maximum principle [19] when f is linear
in u; more generally, when f is not linear in u, the result in question is a corollary of
the maximum principle. In any event, an optimal control :(. )must be an extremal in
the sense that

(F’(:(.)), v(" )-(" ))= Jo se(t)(v(t)-(t))dt>-O

for all v(. ) f. The function s.)(. ) is called a "switching function" because :(. )
typically has jump discontinuities at isolated zeros of s. )(. ).

Let 0 {t [0, 1]lse(.(t)= 0}. in the classification schemes of [5], [6], and [7], an
extremal :(. is said to be singular if meas 0 > 0. It turns out that :(. is then also
singular in the sense of Definition 3.1. In the references just cited, all extremals with
meas 0 0 are eonsidered to be nonsingular and no further delineations are made
within this class. However in [8], reasons are given for distinguishing between extre-
mals with 0 #- , meas 0 0, and extremals for which 0 . Additional support for
this distinction is provided by the results which follow.

THEOREM 6.1. Let fc L9[0,1] be the set (6.2) and let F be defined on some
neighborhood of f. Suppose that F has a Frdchet derivative at u (.) Ut, with

(F’(u(" )), v(" )) Jo s(t)v(t) dt, k/v(" ) Ltlo, xl

2and s(. ) o,11. Then u(. is respectively singular or strongly nonsingular, according
to whether meas 0 > 0 or meas 0 0, where

0 {t [0, 1 ]Is(t)= 0}.

Proof. The set T(u(. )) consists of all the single-valued branches of -sgn(s( )) in
f, where

{1}, if s > 0

sgns= [-1,1], ifs=0

-1}, ifs<0.

F is a general functional here; i.e., F is not necessarily specified by (6.1)-(6.3). Also, the dependence
of the representor s(. on u(. has been suppressed in order to simplify the notation.
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More precisely,

inf (F’(u( )), v( ))= Io s(t) sgn s(t) dt
v(.)fl

fo [s(t)l dt (F’(u(.)), a(" ))

if and only if

(6.4) tT(t) -sgn s(t), a.e. in [0, 1].

If meas 0 >0, there are infinitely many such ti(. ), pairwise distinct on a set with
positive measure. Thus T(u(. ))contains more than one member (i.e., more than one
a.e. equivalence class) and so u (.) is a singular point in f, according to Definition 3.1.
Conversely, if meas 0=0, then any pair of functions ti(. satisfying (6.4) must
coincide a.e., in which case T(u(. )) contains a single element and u(. is therefore
nonsingular. To see that u(. is in ’fact strongly nonsingular, suppose that
(F’(u(.)), v,,(. )-ti(. ))0 for some sequence {v,(. )}c f, with ti(. )=the unique
member of T(u(. )). Then

lim | s(t)(v,(t)+sgn s(t)) dt lim | Is(/)l Iv(t)+sgn s(/)l 0
Jo Jo

or equivalently, with p,(t)= Is(t)llv,(t)+sgn s(t)l for 0=<t_-< 1. It follows
that p,(. )converges in measure to 0 and consequently has a subsequence P-k("
which converges to 0 pointwise a.e. in [0, 1] [20]. Since meas 0 =0, the bounded
sequence v,k(. )+sgn s(. must therefore converge to 0 pointwise a.e. in [0, 1], and
consequently IIv. (. )+sgns(. )l[l"--I[/)n(" )--/( )1110, by the dominated conver-
gence theorem. Thus

<F’(u(. )), v,(" )-a(. )>+0 :ff :l{v,(. )}[Iv.(. )-a(. )11,-o,
and this means that

o’>0 =), inf (F’(u(.)), v(. )-ti(. ))>0. Q.E.D.
v(.)

When meas 0 0, u (.) may or may not be regular in D c [10,z] depending upon
how the function s(. behaves near its zeros. It will now be shown that if Is(" )l is
bounded below a.e. by a certain type of nonnegative continuous function with finitely
many zeros, all of which are "simple" in a certain generalized sense, then u (.) will be
regular. Moreover, if Is(" )1 is bounded away from 0 a.e. by a positive constant
function, then u(. will be strongly regular. These conclusions, taken together with
the convergence theorems in 5, have practical significance for optimal control
problems with "bang-bang" solutions (Note 6.4).

LEMMA 6.1. Given N >-1 points t [0, 1], i= 1,..., N, with

put

0<=tz <t2<" "<tN <= 1,

,(t) It- t,I, [0, 11, 1 _-< <= N.
For m > 0 and g > O, put

(6.5) b(/) min {g, md)z(t), mb2(t),..., mbN(t)}
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tt t2 t3

m4,3(t)

b(t)

FIG. 6.1

(Fig. 6.1) and let

(6.6) (e)= {t [0, l]lb(t) < el.

Then for some sufficiently small > O,

(6.7)
C

meas (e)=--e, Ve [0, g)
m

and

(6.8)

with

C 2)b(t)dt=mme Ve6[0, g)

N

c=EG
i=1

and

Ci {2, iftiE(O, 1)

1, if ti O or 1.

Proof. For e _-> 0 and 1 =< -< N, consider the intervals

[0, ], ifti=0

fi-, ti h- if ti (0, 1)
m

1-, 1 if ti- 1.
m
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Choose g>0 so that Ii(e)c[O, 1], Vi and j :ff Ii(e)f’llj(e) Ve [0, g). Then
N /14

(e)= 1,3 i=11i(e) and meas (e)= i--1 meas Ii(e), provided e [0, g). If tx 0, then
Ii(e)=[O,e/m] and measll(e)=e/m. If tN=l, then IN(e)=[1-e/m, 1] and
meas IN(e)= elm. Otherwise, for all ti (0, 1), meas L(e)= 2elm. This establishes
(6.7). Finally, for e [0, g), Ii(e) ::), ok(t)= mci(t), and therefore

ok(t) dt m ]t- tg] dt m-m e Q.E.D.
() ()

THZOrM 6.2. Let the conditions of Theorem 6.1 hold, and suppose that for some
m > 0 and for all sufficiently small g > O, the function Is(. )[ is bounded below a.e. by the
function ok(" in (6.5) (Fig. 6.2). Then u(. is regular in fc tXo,11. Furthermore, if
[s(. )l is bounded away from 0 a.e., then u( is strongly regular in f tO,ll.

0

FIG. 6.2

Proof. Since is convex, Lemma 3.2 gives

(6.9) a(o-) inf (F’(u(.)) v(. )-(. ))= inf s(t)(v(t)-a(t))dt
v(.)f v(.)

IIv(.)-a( )lla ->,r IIv(’)- a(’)lla

with ti(. ) given by (6.4). If Is(" )1 is bounded below a.e. by b(. in (6.5) with g > 0 and
m >0, then meas 0=0, and so tT(t)= + 1 or -1 a.e. in [0, 1]. Thus, (6.9)can be
carried further to

with

a(cr)= inf Io Is(t)]w(t) dt
w(.) W

IIw(’)lla

W--{w(. ) to.lll0 w(t)--< 2, a.e. in [0, 1]}

By Lemma 6.1, there is an g >0 so small that conditions (6.7) and (6.8) hold, while
b(. in (6.5) continues to bound Is(" )1 from below. For w(. ) W, ]]w(. )][1 r, e 6
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[0, g), and (I)(e) given by (6.6), one then has

fo ,s(t)[w(t) dt >= I. 4)(t)w(t) dt + I 4)(t)w(t) dt
(e) 0,1]-O(e)

f. (ch(t)- e )w(t) dt + I() 0,1]-0()

>-- I. (&(t)- e )w(t) dt + err

>= 2 I, (cb(t)- e) dt + co"
()

=2 I. 4(t)dt+e(cr-2meascI)(e))=ecr---
()

and therefore

(qb(t)- e )w(t) dt + co"

C 2
E

m

C 2a((r)>-_ ea’---e Ve [0, g).
m

For tr in the range 0 <_-tr < 6" 2Cg/m, the right side of this expression is maximized
2over [0, g) at e mtr/(2C), where etr-(C/m)e (m/(4C))o"2. Consequently 0-<_tr <

6" : a(cr)>-Acr2, with A m/(4C). Furthermore, since f is bounded and a(o’) is
nondecreasing, one actually has a(tr)>--flo"2 for O’>--0, with /-A6"Z/d2 and d
supv(.)n ]]v(. )- ti( )][< c. Thus, u(" )is regular in

Finally, if ]s(t)[-> A a.e. in [0, 1] for some A > 0, then

a(cr) inf | Is(t)[Iv(t)-5(t)l>-_acr
v(.)f a0

Ilv(.)-a(.)llxo"

and therefore u(. is strongly regular in 1)c [lo,1] Q.E.D.
Note 6.1. If s(. ) is continuously differentiable and has just finitely many zeros at

tl,’’’, trq, all of which are simple in the classical sense (i.e., s(ti)
0) then [s(. )1 is bounded below by a b(. in (6.5), with m < mina=i=rl(ds/dt)(ti)[ and
some sufficiently small g > 0. To see what can happen when higher order zeros are
present, suppose that s(. has an isolated zero at-t 0 and is increasing near 0. By an

argument similar to that used in the proof of Theorem 6.2, one can then show that for
sufficiently small cr >-0

r/2

a(tr) -<2 | Is(t)l=<trs(tr/2).
a0

Consequently, if s(t)=o(t)as t--)0, then a(o’)>-Acr2 for cr >_-0 is impossible with any
A>0.

Note 6.2. For continuous s(. ), Is(. )[ is bounded away from 0 a.e.
Note 6.3. The set fI in (6.2) is not uniformly convex in

in o,11. The unit ball in o,al is also not uniformly convex.
Note 6.4. For the set f in (6.2) it can be shown that u(. ) is strongly nonsingular

in D, relative to the wl norm if and only if it is strongly nonsingular in f relative to the
P norm, with 1 < p < c. Thus, the strong nonsingularity condition in Theorem 6.1
can be utilized in conjunction with the convergence theorems of 5, under
(v, v/cl-v)) Lipschitz continuity conditions on F’. On the other hand, the regularity
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conditions in Theorem 6.2 really are tied to [o,1] and consequently have significance
for the convergence theory only when F’ is (1, oo) Lipschitz continuous on 12.3

Fortunately, this requirement is satisfied for a nontrivial class of optimal control
problems with f linear in u. For instance, in (6.1)-(6.3), let x (yo, y) [1 X n-1 and
let

3) A(t)y + B(t)u(t), ))0 Q(y, t)+ Bo(t)u(t),

with A (.) and B(.) matrix valued functions, B0(" a scalar valued function,
Q(y,. and Q’ ’.,y(y, ) functions for each fixed y, and Qy( t) Lipschitz continuous
uniformly in [0, 1]. Furthermore, let P yo + P(y), with/6 Lipschitz continuous.
Then the Fr6chet derivative of the corresponding functional F in (6.3) is (1,)
Lipschitz continuous. Moreover, if Q.(., t)is convex for [0, 1] and if/ is convex,
then F is convex.

A more thorough working out of the present theory’s implications for optimal
control problems will be presented elsewhere (also, see [1], [3] and [10]).
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DETERMINATION OF THE TRANSITIVITY OF BILINEAR SYSTEMS*
WILLIAM M. BOOTHBYt AND EDWARD N. WILSON"

Abstract. We consider a bilinear control system on Rg R"-{0}

dx
Ao+ u,(t)a,)x,dt i=1

where x In, Ao, A 1, , A, are n n real matrices, fl is the Lie algebra they generate, and ul(t), , u,(t)
are real valued control functions. Although there exists a standard rank condition in terms of the Lie algebra tt
which Sussman and Jurdjevic have shown to be sufficient to guarantee accessibility, it is primarily of
theoretical interest, being essentially impossible to apply to given data. In this paper the authors investigate
the possibility of developing algorithms involving only rational computations on the matrices, which would
determine whether the rank condition is everywhere satisfied, i.e. whether the bilinear system has the
accessibility or, in some instances, controllability property. This is equivalent to determining whether or not
the. matrix Lie group G generated by exp (tAi), 0, 1,..., r, is or is not transitive on [R. The possible
transitive Lie groups have been classified by one of the authors. Using this classification, it is shown that there
do exist various sequences of rational operations on the matrices Ao, A 1, ",A, which enable one in a finite
number of steps to decide whether or not the system has the accessibility-transitivity property.

1. Introductory remarks. We will be concerned below with a well-known Lie
algebra condition for controllability and accessibility of a bilinear system of differential
equations of the form

(1) d---- Ao+ ui(t)A x
i=1

where ul(t),..., ur(t) are admissible (say, piecewise continuous) real-valued control
functions, x(t)= (Xl(t), xn(t)) is R"-valued, and Ao, At," Ar are n n real
matrices. Such systems have been studied by many people, in particular by Mohler 10]
and Brockett [2]. Indeed, Brockett showed that any bilinear system has a realization of
form (1).

Before giving details, we establish a few notations and definitions. As usual, the set
(and associative algebra) of all real n n matrices is denoted by ,,.(IR) and the group of
all invertible elements in ,, (JR) is denoted by GL(n, IR). The Lie algebra of GL(n, IR) is
denoted by gI(n, ) and is identified with the set ,,([R) equipped with the bracket
operation [A, B] AB-BA. For ,any subalgebra fl of tl(n, R), the rank of 1 at x
(denoted rank,,fl) is the dimension of the subspace {Ax:A 6 fl} I". We say that fl is
transitive if rankxfl n for all x 0. To understand the reason for this terminology, let G
be the unique connected Lie subgroup of GL(n, ) with Lie algebra tl. Then rank,,fl
coincides with the dimension of the orbit Gx of x under the natural action of G on n. It
follows that rankxfl n if and only if Gx is an open subset of ". Since IRg JR" -{0} is
connected and is the disjoint union of its G-orbits, it is then immediate that 1 is
transitive if and only if G is transitive on [R in the usual sense that Gx IRg for all x g 0.

Let fl be the subalgebra generated by the matrices A0, A1,." ", A,. It has been
shown by Elliott [5] that g transitive is a necessary condition for controllability of (1)on
tRY. By controllability we mean here that any two points of Ig may be joined by a
solution curve. In the case of (1), this condition is not sufficient in general. Further
detailed results concerning accessibility and rank are given by Sussman and Jurdjevic

* Received by the editors November 30, 1977, and in revised form June 8, 1978.

" Department of Mathematics,. Washington University, St. Louis, Missouri 63130.
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[12]. Systems of the more restrictive type

dx ( ui(t)Ai)x(2/ d- i=1

have been studied by Kuc,ra [7] and Elliott and Tarn [6] who showed that such a system
is controllable on Rg with, say, piecewise constant controls having unrestricted values,
if and only if g is transitive.

Thus, in studying systems of type (1)or (2), it is of interest to determine whether or
not the Lie algebra g generated by a given finite set of matrices is transitive. From the
definition of rank given above, if B1," BN is a basis of , then fl is transitive if and
only if the n N matrix whose columns are BlX, , BNx has rank n for all x # 0. This

requires that the (nm) n n minor determinants of the matrix, each a polynomial in

x (xl, , x,,) of degree n, have no common zeros (except x 0) and is thus a difficult
criterion to verify. On the other hand, one of the authors 1] has classified all transitive
Lie algebras and thus all controllable systems of type (2). The purpose of this paper is to
use this information to give a relatively straightforward procedure to determine by
purely rational operations on the generating set when the algebra fl is transitive. In what
follows, such an algorithm is given. It is not, in principle, difficult to carry out except
when n is a multiple of 4. In only this case(see 5) is it possible for the semi-simple part
of fl to be both noncompact and nonsimple; this greatly complicates the situation.

Our insistence that the algorithm be limited to rational computations stems not
only from the simplicity of such operations, but the problem of loss of accuracy inherent
in operations such as polynomial root extraction to find characteristic values. Indeed, as
shown in 1 ], any of the transitive Lie algebras may be generated by two suitably chosen
matrices A 1, Az. Moreover, the set of pairs of n n matrices (A 1, A z) which generate
gl(n, [) forms an open dense set in the collection of all pairs of n n matrices. Hence
any small round off error in operations on given matrices (see also Lobry [9] and
Levitt, Sussman [8]) is apt to yield .generators for l(n, ). The following argument
outlines the proof of this assertion. Using the notion of a free Lie algebra on two
generators, it is possible to write down once and for all a finite collection of brackets,
A1, A2,[A1, A2],[AI[AIA2],[A:[AIA2]," ,[Aq[A," [A,_A]’" "] (whose
form depends only on n and not at all on A I, A2!) which contain a basis of g. Each
element of the collection is a matrix whose entries are polynomials in the entries of A 1,

A z, i.e. polynomials on :t/,, () A/,, (). The set of pairs A 1, A2 for which this collection
contains fewer than the maximum, n , independent elements, is given by the vanishing
of certain polynomials and is thus of lower dimension. But such pairs are precisely those
which do not generate l(n, ). Hence {(A1, Az)lg =gl(n, )} is open and dense in
.()x.().

In 2, we give a brief description of the most frequently used rational compu-
tations. Section 3 supplies a table of the transitive algebras and some data concerning
them, including some corrections and improvements to [1]. In 4, the algorithm is
completely described except for the case n 4k which is dealt with in 5. The last
section points out a few of the simplifications possible in special cases.

2. Rational computations. For easy reference, we give here four basic compu-
tations, denoted BC1 to BC4, each given by a finite sequence of rational computations
and hence itself rational. We also illustrate our use of these computations to uncover
information about a Lie subalgebra 9 of 91(n,) defined by given generators
A1, A2, ,At.
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BE1. Given a finite sequence vl, V2," Vr Of vectors in Rd for which the first s
elements are independent, select a basis of the linear space they span which contains
v l, vz,"’, vs as the first s elements.

This is a standard exercise in linear algebra solved by applying Gaussian row
reduction to the d r matrix whose columns are the given vectors.

We may apply BC1 to find a basis for t in the following way. Let il be the subspace
of /g,, (R) spanned by A 1, A2, Ar and use BC1 to obtain a basis of tl. Proceeding
inductively, for k > 1, define tk tO be the subspace of n(R) spanned by tk-1 together
with the collection of all matrices of the form [X, Y] for X, Y ik-1. By induction, we
may assume a basis for tk-1 has been found. Since tk is.spanned by these basis elements
and their brackets, we may use BC1 to extend the basis of tk-1 to a basis of ilk. The
computation stops when no extension is necessary for then i=tk =tk-1 and the
computed basis {B1, B2,""", BN} for tk-1 is also a basis for i. In general, assuming
A1, A2,’’’ ,Ar linearly independent, at most n2-r steps are necessary; use of
theorems on free Lie algebras could further simplify this process somewhat. Note that
inversion of the row reduction operations in BC1 at the last step yields a description of
each term [Bi, Bj] as a linear combination of B1, B2, Bn and thereby provides the
Lie algebra structure constants of t relative to the chosen basis.

BC2. Given a basis wl, wz," ", wa of Ra and the matrix entries g(wi, wi) of a
symmetric bilinear form K on Rd, find a basis v l, v2, vd such that K(vi,
ij.

BC2 may be performed by a variant of the standard Gram-Schmidt ortho-
gonalization procedure. Thus suppose k d and v l, v,..., v have been found such
that vl, V2, Vk, Wk+l, Wd is a basis of d, K(vi, vi)= 0 for f and K(vi, vi)=0
if and only if K(v, u)= 0 for all u d. Define the linear transformation Qk on a by
QkU u--Y’. (K(u, vi)/K(vi, vi))v where the sum is taken over all indices i<-k for
which K(v, v)O. Trivially K(QkU, vi)=0 for all i<=k. Put Vk+x=QkWk+l if either
K(QkWk/l, QkWk/l) 0 or K(QkWk/l, wi)= 0 for all >- k + 1. Otherwise select the first
index j>k + 1 such that K(QkWk/l, wi)O and put Vk/x =Qk(Wk+I+CWi)where c is
any scalar for which K(Vk /1, Vk/ 1) 7 O.

Recall that the Killing form on a Lie algebra b is the symmetric bilinear form K
defined by K(X, Y) trace (ad X ad Y) where ad X: b I is the linear transformation
given by ad X(Z) [X, Z]. Two of the standard results about the Killing form are that
is semi-simple (respectively, compact and semi-simple) if and only if K is nonde-
generate (respectively, negative definite). Thus for t as above with B1," ", Bu the
basis of t found by BC1, we use the BC1 computations to compute the matrix of ad Bi for

1, 2, , N, then compute K(B, Bj) for 1 =< _-< -< N, and finally use BC2 to obtain
a basis C1, C2, , Cu relative to which K is diagonal. It follows that t is semi-simple
(respectively, compact and semi-simple) if and only if K(C, Ci)O (respectively,
K(C, C)<0)for i= 1, 2,...,N.

BE3. Given a system of linear equations, find the general solution by rational
operations on the coefficients.

As usual, BC3 is carried out most efficiently by performing Gaussian row reduction
on the matrix of the system. To illustrate the use of BC3, note that we may select any
vector x [, find a basis B1, B2, , Bu of t by BC1, solve the system ( ciBi)v 0 to
find a basis for tx {X t:Xv 0}, and thereby compute rankt N-dim tx. From

1, if rankt < n, then t is not transitive. As another illustration, we can use BE3 to find
the centralizer of t, i.e. the collection of all matrices Z satisfying the system

In fact it is easy to see that brackets 6 the special form mentioned in suffice (see, e:g. [3]).
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ZBi BiZ O, 1, ., N and thus commuting with every element of g. The central-
izer is an associative subalgebra of,(R). When g is transitive, then certainly there are
no nontrivial g-invariant subspaces of R" and this implies that every nonzero element of
-ismttmmi "i.e. 3 s a a v s on a gebra. By a well known result, every finite dimensional
division algebra over R is isomorphic to [, C, or H (the quaternions). Hence, if 3 is not
isomorphic to I, C, or 0-t], then g is not transitive. This indicates the usefulness of our last
basic computation.

BC4. Given a basis {Z1, Z2, Zk} ]:or an associative subalgebra M of ,()
which contains the identity matrix, determine whether M is isomorphic to R, C, or .

Let E denote the n x n identity matrix. If k 1, 2, or 4, M cannot be isomorphic to
R, C, or H. If k 1, 4 RE, which is isomorphic to R. For k 2 or 4, an easy application
of BC allows us to convert to a basis {E, W,..., Wk-x} with trace W=0 for
1 -< -< k 1. In the case when k 2, it is trvial to check that M C if and only if W is a
negative multiple of E. When k 4, we claim that M is isomorphic to H if and only if
with suitable numbering of the W’s, the symmetric matrix (a0), 1 -< i,/" <- 2, defined by
WW. + WiW 2aiE is real and negative definite. Indeed, given this condition, routine
checking shows that

Xo + xli + x2f + x3k - xoE + XlI + X2J + x3g

is an isomorphism from HI into M for I (--all)-1/2 W1, J
[--O111/(O1110122--O1212)]l/2(W2--Og11/OlllW1), and K=IJ. Conversely, given any iso-
morphism from HI into ,, (R), the pure quaternions xli + x2] + x3k must correspond to
linear transformations with zero trace. But for q and q2 any two independent pure
quaternions, the matrix ((qqi + qiqi)/2)l<=i,i<-2 is easily seen to have real entries and to be
negative definite. The claim follows.

3. The list of transitive Lie algebras. Recall that a Lie algebra g c gl(n, ) is
transitive by our definition if the corresponding connected subgroup G c GL(n, ) acts
transitively on R. Define two subalgebras g and of gl(n, [) to be equivalent if there
exists A GL(n, ) such that ] AgA-1. Clearly this defines an equivalence relation
with the property that if g is transitive, then any algebra equivalent to g is also transitive.
Hence we need list only one representative from each equivalence class of transitive
algebras. It should be noted that although algebras which are equivalent are certainly
isomorphic, it may happen that g and ] are isomorphic with g transitive and ] not
transitive; for example, ] may be a faithful representation of g on a space [a with
dimension d > dim g. With this caveat, we reproduce the list of [1] together with some
corrections, improvements in structural detail, and a more complete description of the
matrices involved.

We begin by recalling some of the standard Lie algebra notations. For m ->_ 1 and
IF= C (respectively, H) restriction of scalar multiplication to [ turns IF" into [2m
(respectively, R4") and, through the usual identification of rn x rn matrices over IF with
transformations on IF", turns m x m complex (respectively, quaternionic) matrices into
2m 2m (respectively, 4m 4m) real matrices. For IF R, C, or H, l(m, IF) denotes the
Lie algebra of all m m matrices over F which have zero trace where the real trace is
used for F or H and the complex trace for IF C. Hence the equivalence class of
l(m, R) consists of l(m, R) alone while the equivalence class of l(m, C) consists of all
subalgebras fl of gl(2m, R) for which there exists a complex structure I (i.e. an element
of GL(2m, R) whose square is -E) such that g={Xfll(2m, ):[X, I]= 0 and
trace X 0 trace IX}. The equivalence class of l(m, HI) consists of all subalgebras of
,l(4m, R) for which there exists an H-structure on [4" such that g is the collection of all
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elements of l(4m, ) commuting with this H-structure. The subalgebra of l(m, IF)
consisting of those elements X such that X* -X is denoted by o(m for IF It, u(m)
for IF C, and p(m) for IF H. Here X-X* may be viewed either as the conjugate
transpose operation for IF-matrices or the restriction to IF-matrices of the transpose
operation on real matrices. The associated equivalence classes consist of those sub-
algebras of gl(n, ) (n m, 2m, or 4m) maximal relative to the property that their
elements commute with some IF-structure on n, are skew relative to some positive
definite IF-sesquilinear form on ’ :", and, in the case IF C, have zero complex trace.
For IF E or C, p(m, IF) denotes the subalgebra of l(2m, IF) consisting of those elements

X such that JXJ is the IF-transpose of X where J is the 2m x 2m F-matrix
-E 0

the associated equivalence classes are the subalgebras of gl(n, N) (n 2m or 4m)
maximal relative to the property that their elements commute with some -structure
and are skew relative to some non-singular, IF-bilinear, alternating form on N" IF". It
is well known that the algebra (2rn + 1) has a representation on’ for m congruent
to 0 or 3 modulo 4. This representation is called the spin representation of o(2rn + 1)
and the associated algebra of 2" x 2 real matrices is denoted by pin(2m + 1). Finally
the algebra g(-14) refers to the algebra of 7 x 7 matrices obtained from the represen-
tation on N7 of the compact simple Lie algebra of type G.

Every algebra in Table 1 is of the form g=go (direct sum) where go is
semi-simple and is the center of g. In each case, go acts irreducibly on the underlying
Euclidean space N", so the centralizer a0 of o is of the form N, 12, or H. Since is abelian
and is contained in o, the dimension e of is -<2. The centralizer of g is contained in o
and coincides with o if o is abelian. For o HI, however, o if IE and otherwise

TABLE 1"
Transitive matrix algebras.

Type N Representative 30

1.1 m m(m 1)/2 + o(m)R
1.2 2m m2-1 + e (e 1, 2) u(m) C
1.3 4m 2mZ+m+e (e 1,2) p(m))c
1.4 4m 2mE+m+4
1.5 8 22 pin(7)I
1.6 16 37
1.7 7 15 g2(_14)( {]

II. m m2-1 + e (e 0, 1) l(m, )c
11.2 2m 2(m2-1)+ e (e O, 1, 2) l(m, C)O)c C
11.3 4m 4m2-1 + e (e 0, 1, 2) l(m, H)c H
11.4 2m 2m + m e (e 0, 1) p(m, )c
II.5 4m 4ma+2m+e (e-0,1,2) (rn, C)c C
III 4m 4m: + 2 + e (e 0, 1)- |(m, H)u(2)c

* This table corrects minor errors in [1], to wit replacing spin(5) and s0irt(7) by
spin(7) and oirt(9), respectively, and changing the designation under III.

For each class, we list the dimension n of the underlying Euclidean space, the
dimension N of the algebras in the class, one class representative, and the form of 30.
Whenever it appears, the parameter m is allowed to be any positive integer. The
algebras of type II share the property that g0 is a noncompact real or complex simple
algebra which, by itself, .is transitive. Hence go0) is transitive if t is any abelian
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subalgebra of 30. The algebras of type I share the property that go is compact and
semi-simple (actually simple except for 1.1 with m 3 and for 1.4 where go has the
compact ideals p(rn) and u(2){pure quaternions}). In each case the corresponding
compact group Go acts transitively on the unit sphere. Here g is transitive if c is any
abelian subalgebra of 3o which is noncompact in the sense that some element of has
eigenvalues with nonzero real part. Thus for 30 iE , c must be equal to io, while for
3o C or H, may be either of the formF for F any element of 3o with nonzero real
part (i.e. F2 not a negative multiple of E) or of the form RE +RI C for I a complex
structure in 30. As will be seen below, algebras of type III are the most difficult to
recognize. The representative l(m, H))u(2) for go is to be regarded as the matrix
subalgebra of fll(4m, ) obtained by the natural left action of l(m, H) on H" 4m and
the right action of u(2) as multiplication by pure quaternions on H". As with algebras of
type Ii, go is transitive, so the center may be either {0} or RE 3o.

4. Algorithm for transitivity. Let A1, A2,’’ ", Ar be given n n real matrices
generating a subalgebra g c gl(n, [). We begin by attempting to match g with an algebra
from Table 1. Before doing anything else, a basis B1, B2,..., BN for g must be

computed using BC1. This determines the dimension index of g, i.e. the pair (N, n)
where N is the dimension of g. Table 1 is then consulted to see whether there exists a
transitive algebra with the same dimension index as g. If not, g is certainly not
transitive. If such an algebra exists, proceed to Step 1, 2 or 3 below depending on
whether is of type I, II, or III. In the.very rare situations where there is more than one
such ., go first to Step 2, then to Step 1 if necessary, and, in final desperation, to Step 3.
The computations in each step should be performed in the order indicated with the
understanding that the algorithm terminates whenever a definite answer regarding
transitivity is obtained. For the reader’s convenience, along with each step, we indicate
the relevance of each calculation and give a brief justification for the conclusions given.

Step 1. (i) Select any nonzero vector v in n and use BC1 to choose from
B v,"’, Brv a basis for the space fv {X g:Xv 0}. If N-dim Iv n, g is not
transitive.

(ii) Use BE3 and BC4 to compute the centralizer 3 of g and determine whether
3 , C, or H. If not, then g is not transitive.

(iii) Using BC1 and BC2, obtain a basis B’, B’nfor g which diagonalizes the
Killingform K. Let ai K(Bi, Bi), e the numberofindicesfor which a O, and reorder if
necessary so that a 0 for > e. Then g is not transitive ife > 2. Also, g is not transitive of
type I if there exists > e with a > O. Finally, ife <- 2 with a < 0 for all > e, is transitive

of type I.
In this step, we are trying to determine whether our g is transitive and has the Lie

algebra structure g go with go compact semi-simple and abelian of dimension 1 or
2. It follows from the discussion of the Killing form under BE3 and standard Lie algebra
arguments that has the indicated form go if and only if, in the notation given in (iii),
e 1 or 2 and a < 0 for > e. Before tackling the fairly lengthy calculations in (iii), it is
advisable to determine first whether the action on of the corresponding group G has
an open orbit (test (i)) and whether the centralizer of g is a division algebra (test (ii)); we
know from the discussion in 2 that these are necessary conditions for transitivity. Now
suppose g passes all three tests. Because G has an open orbit, C e" cannot be compact.
Since is contained in the devision algebra 3 and G GoC for Go the subgroup of G
with Lie algebra go, it follows easily that Go has an open orbit on the sphere of radius
But compactness of Go implies that all Go orbits are closed so by connectivity, Go acts
transitively on spheres and hence G is transitive on R.



218 WILLIAM M. BOOTHBY AND EDWARD N. WILSON

An example. To illustrate this procedure, suppose r 2, n 3, and, for some
number e,

-13 16 Aa 0 0

0 0 e 0

Easy calculations show that

[A1, Aa] 0

8e -5e

with [AI,[A1, Aa]]=-Aa and [Aa,[A1, Aa]]=-5eAI+4OeE. For e=0, t is 3-
dimensional and we can conclude that i is not transitive either by observing that no

algebra in type I has the dimension index (3, 3) or by using Step 1 (i) with v to

obtain dim k 2 0 3 3. For e 0, t is 4-dimensional and Table 1 tells us that the
only transitive algebras with dimension index (4, 3) are those of type I. 1. A convenient
basis {B1, B2, B3, B4} for t is given by BI =E, B2=A1-8E, B3--A2, and Ba=
[A 1, A2]. For a routine choice of v (e.g. a basis vector in 3), one sees at a glance that
dim ko 1 so (i) is inconclusive. A few seconds work is enough to see that the centralizer
of t is [E so (ii) is inconclusive. Proceeding to (iii) and noting that IBm, Bi] 0 for 2,

3, 4, [BE, B3] B4, [B2, B4] =-B3, [B3, B4] =-5eB2, one sees easily that the Killing
form K is diagonal relative to the given basis with the diagonal entries being 0, -2, 10e,
10e. From (iii), we conclude that t is transitive of type 1.1 if and only if e < 0.

In the following, we use the familiar abbreviation iff for "if and only if". Recall that
denotes an algebra of Table I whose dimension index is the same as that of tif there

is none, i cannot be transitive.
Step 2. (i) If 1 is of type II.1, t is equivalent to I iff either (N, n) (3, 2) or trace

Bi =0, 1, 2,... ,N.
(ii) If 1 is of type II.2, compute the centralizer of i using BC3 and BC4. Then t is

equivalent to iff C and either (N, n) (6, 4) or trace Bi 0, 1, 2,.. , N.
(iii) If is of type II.3 and if either e 0 or if e 1 and it is determined via BC3 that

E t, compute the centralizer of t. Then is equivalent to 1 if H. In all other cases
when is of type II.3, use the structure constants of t and BC1 to select a maximal
independent set C, C2," , Ctfrom the collection of elements [Bi, Bi], 1 <-_ < <-N. If
M N-e, t is not equivalent to I; ifM N- e, t is equivalent to iff BC3 and BC4
show that the algebra o ofelements commuting with C1, C2, , Ct is isomorphic to H.

(iv) If is of type II.4, compute using BC3 the set of solutions to the system
Jt + J O, JAi +A t.,j 0, 1, 2,. , r. If {0}, t is not equivalent to . If {0},
select any nonzero element J in and compute det J; i is equivalent to iff det J : 0.

(v) If 1 is oftype 11.5, first compute the centralizer of t; ifz RE +RI C, t is not
equivalent to 1. If C, compute by BC3 the set of solutions to the system JtI IJ,
J + J O, JA +A 0, 1, 2,. , r. If {0}, t is not equivalent to 1. Conversely, i
is equivalent to t iff any nonzero element in is nonsingular.

The simple dimension comparisons in (i)-(iii) rest on the observation that for IF ,
C, or H and m > 2, any subalgebra t of ill(n, g:) whose dimension is at least as large as that
of l(m, Ii:) must contain l(m, IF). For m 2 and F or C, it is necessary to check the
zero trace condition in order to rule out the possibility that t is isomorphic to the
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collection of upper triangular matrices. In (iii), the elements C1, CM are a basis for
the derived subalgebra 9o of 9; the test given checks to see if 9o is equivalent to l(rn, H).
For fi of type II.4 or II.5, a dimension comparison is not enough; we must also check to
see that 9 leaves invariant a nondegenerate alternating bilinear form. In (iv), this is
trivially done by finding a nonsingular element in . In (v), note that a real matrix J
defines a complex 9-invariant alternating form a by a (x, y )= Jijxiyi- x/--- , Jii(Ix)iyi
precisely when J .

5. The difficult case. We emphasize that Step 3 below is to be performed only
under the following rare circumstances; n 4m, N dim 9 is either No 4m2/ 2 or

No + 1, and Steps I and 2 indicate that 9 is not of type I or II. Let 9o be the subalgebra of
9 consisting of those elements in 9 with zero trace. From Table 1, 9 is transitive precisely
when 90 is equivalent to o l(m, H) +u(2) and then 9=90 if N No, 9 9oq)tE if
N No+ 1. This explains the purpose for the simple dimension checks in test (i) below.
Test (ii) is the familiar centralizer check while test (iii) checks to see if 90 is not only
semi-simple but has the same signature (or Cartan index) for its Killing form as does rio.
These tests have the same order of computational difficulty as those in Steps 1 and 2 and
in most cases will allow us to conclude that 9 is not transitive. However, if 9 passes these
tests and we have to move on to (iv)-(vi), the computational difficulty escalates
considerably since we have to start dealing with the No x No matrices ad X for X o.
For example, if rn-6, step (iv) asks for the solution of a system of (146)3 scalar
equations in (146)2 unknowns! We have included these remaining steps primarily for
the sake of mathematical completeness. Test (iv) rests on the observation that the
adjoint representation of any semi-simple algebra decomposes into the sum of irre-
ducible, inequivalent representations corresponding to the algebra’s simple ideals. It
follows that the centralizer s of the adjoint representation is the direct sum of
subalgebras corresponding to these simple ideals with each subalgebra isomorphic to
or C depending on whether the ideal is noncomplex or complex. Therefore, if our 9
passes test (iv), we know that 9 is either complex simple or has two noncomplex simple
ideals. Successful passage of test (v) means that 9 910392 with 91 a simple noncomplex
ideal of dimension No- 3 and 92 a three-dimensional simple noncomplex ideal. Then 92
is isomorphic to either sl(2, ) or u(2) and 91 is a real form of a complex simple algebra
with dimension N0-3. Finally, in part (vi), we compute the rank r of 90, i.e. the
dimension of any Cartan subalgebra of 90. If r 2m, the classification of complex simple
algebras forces 91 to be a real form of l(2rn, C)so 91 is isomorphic to l(2m, ), l(m, HI),
or one of the pseudo-unitary algebras u(p, 2m-p), 0=< p-<_ m. Out of the possible
candidates for 90, only l(rn, HI)@u(2), U(P, 2rn -p)@u(2) for p rn-x/(m 1)/2,
and u(p, 2m-p)@l(2, ) for p rn- m,//2are compatible with the Caftan index
computed in (iii). Since the last two do not have a faithful representation on [4m, 90 must
be equivalent to ,l(m, HI)0)u(2).

Step 3. (i) 9 is not transitive if eitherN No and 9 # 90 (i.e. trace Bi # 0 for some ])
or i] N No+ 1 and E 9 (determined via BC3). If N No+ 1 and E 9, use BCI to
select a basis B’I, B’2, ", Bo for 90 from the set of elements Bi- 1/(4m)(trace Bi)E,
/’= 1,2,... ,N.

(ii) Compute the centralizer of 9 using BC3.9 is not transitive if dim 3 > 1.
(iii) Startingfrorn the known structure constantsfor 9 and basisfor 9o found in (i), use

BC2 to obtain a new basis C1, C2," , CNo such thatKo(C, Cj) 0 for ]. Then 9 is not
transitive ifKo(Ci, Ci ) O forsome or ifthe numberofindicesfor which Ko(Ci, Ci < 0 is
unequal to 2m 2 + m + 3.

(iv) Use the structure constants for 9 and BC3 to compute a basis for M
{A: 90 90[A ad Ci ad G A 0, 1, 2,. , No}. If dim M # 2, 9 is not transitive.
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(v) Take any element F s which is not a scalar multiple of the identity and use
BC2 to compute a basis ]’or B {B: g0 go[BF FB}. 1]’ dim B # (No- 3)2 + 9, g is not

transitive.
(vi) For C1, C2," , Cro as in 5(iii), use the structure constants of go relative to these

Nobasis elements to compute thepolynomial det i=1 xi ad C-hE) in the indeterminants
NO(Xl, X2, Xro, h Rv+l. Express this polynomial in the form ,k=l h

fk (X 1, XZ, , Xro) and find the largest integer r such that all of the polynomials fk vanish
identically ]’or k < r when written as linear combination of monomials xlx xJuNo
(fk =- 0 precisely when all coefficients are zero). Then g is transitive if and only if r 2rn.

6. Comments on the algorithm and easy eases. When n is odd, our algorithm is
easy to apply since Table 1 yields only the transitive algebras of type 1.1, II.1 and 1.5
(n 7) as candidates for g.

Another nice situation occurs when n <-8. Since g transitive implies g irreducible,
we can take advantage of a tabulation by Cartan [4] of all irreducible n n matrix
algebras for n <_-8. Now suppose g is a semi-simple n n matrix algebra acting
irreducibly on R ". If g is compact (resp. noncompact) and dim g is the same as one of the
list of compact (resp. noncompact) semi-simple irreducible algebras in Cartan’s list,
then for n <-7 we know that g is equivalent to fi and hence transitive if and only if fi is
transitivemwhich is easy to check. Even in the case n 8 there is only one exception to
this, namely

1 I(2, H)(R)u(2) and ]2 I(4, R)I(2, )

acting linearly on 8 (and hence an 8 8 matrix algebra). The first appears in our Table
1, but not the second. It acts on 8 identified with 4 2 real matrices as follows: if X is a
4 2 matrix and (A, B) I(4, )0)I(2, [), then (A, B)X AX-XB. This (linear)
action is irreducible but not transitive. (It does have open orbits however.) Thus if
the n n matrices of our bilinear system generate an algebra g which is found to
have the same dimension as an algebra fi rio + 7: in Table 1, then our procedure is as
follows. W’e use BCa to compute a basis for the derived subalgebra go of g, use BC2 to
diagonalize the Killing form on go and use BC3 and BC4 to compute the centralizer o of
go. From these computations, we can immediately see whether dim go dim ]o, go is
semi-simple and irreducible, and go, ]o both compact or both noncompact. If all of these
conditions are satisfied and n _-< 7 or n 8 with ]o I(2, H)@u(2), then g is equivalent
to . When n 8 and o I(2, H)q)u(2), g is equivalent to if the above conditions are
satisfied and our diagonalization of the Killing form for go yields the same number of
negative diagonal entries as for fi0, namely 13.

For any given even n > 8, one could in principle make use of the available wealth of
information regarding the representations of semi-simple Lie algebras to extend
Cartan’s list to N" and thereby determine the extent to which more computations need
to be added. We have not tried to do this and see little point in doing so for the following
reasons: the remaining calculations in Steps 1 and 2 are either easy or of the same order
of difficulty as those given above while for the troublesome Step 3, we have already
noted that all relevant computations get rapidly out of hand as n grows large.
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OPTIMAL THINNING OF A POINT PROCESS*

P. BRtMAUD"

Abstract. It is shown that a problem of control in which decisions occur at the jump times of an observed
point process can be reformulated as an intensity control problem, and also that the methods of dynamic
programming can accommodate the case of random controls. The particular example considered was
addressed by Rishel [9; Optimal control o]:a Poisson source, Proceedings JACC Conference at Purdue, 1976]
and is relative to the regulation of a point process to a given rate. The question of equivalence of various
information patterns (whether input only, regulated input only, or both input and regulated input are

observed) is answered by the affirmative.

1. Introduction: a special class of impulse control problems. In problems of
impulsive control a decision dn is to be taken at time -n for each n >_- 1, where (-., n _-> 1)
is a sequence of increasing times. The controller has the choice of both sequences
(-., n _-> 1) and (d., n >_- 1) and this choice is adapted to the flow of information (.t, -_> 0)
(an increasing family of sub-o’-fields of , where (f, , P) is the subjacent probability
space) in the following way: for each n _-> 1, ’ is an ot-stopping time and dn is an

.-measurable random variable, taking its values in the decision space (D, ).
Such problems have received attention by Bensoussan and Lions [1] when -t is

generated by a Wiener process or a diffusion. The corresponding dynamic programming
conditions are not of the Hamilton-Jacobi type, but take the form of "quasi-variational
inequations".

In the case of point process observations (when t is generated by a marked point
process; see [3] for definitions), quasi-variational inequations also arise; however, when
the sequence (-., n >_- 1) is constrained to be contained in the sequence of jumps of the
observation process, it is possible to restate the problem as one of control of the
intensity of a point process (intensity controls are considered by Boel and Varaiya [2]
using the martingale approach to dynamic programming), for which the optimality
conditions are of the Hamilton-Jacobi type.

Although the ideas in the present .article can be developed in a general framework,
we have preferred to present a case study relative to the cancellation problem of Rishel
[9]: there, one takes decisions at the jump times (T., n _-> 1)of a point process, and for
each n, the decision consists in cancelling or not cancelling the corresponding point T.,
in order to regulate the thinned process (the point process after cancellations) to a given
rate. The line of arguments for this case can be followed in a large class of control
problems where one has to take decisions at the jumps of the observed point process"
dynamic file allocation as in Segall [10], nonpreemptive dynamic priority assignment in
queuing systems, routing in communications networks, etc.

The choice of the cancellation problem to illustrate the method was motivated by a
question of R. Rishel concerning random strategies (each cancellation is decided after
tossing a coin; the bias 7. of the coin depends upon the observation n at time T., and
the sequence (t., n >= 1) is the control): Is there a difference between the three cases: on
is the past at time T. of (1) the original point process only, (2) the thinned point process
only, or (3) both processes? It turns out that, if one is interested in optimal controls,
there is no difference. This follows from the completeness of the class of pure strategies

* Received by the editors May 5, 1977, and in revised form July 10, 1978.
f This article was written while the author was visiting the Department of Electrical Engineering and

Computer Sciences and the Electronics Research Laboratory of the University of California, Berkeley,
California 94720. Present address: IRIA/LABORIA Domaine de Voluceau, 78150 Le Chesnay, France.
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(tn 0 or 1 for all n => 1) and the. fact that for pure strategies, the three information
patterns are equivalent.

2. The original problem: Taking decisions at the jump times of a point process. Let
(Tn, n >=0) be a sequence of nonnegative random variables defined on the measure
space (D., ) and such that To 0 and

T,, < :r), T,, < T,+I.

This sequence is called a pointprocess over the positive half line without multiple points.
With such a point process one associates the counting process Nt defined by

(2.1) Nt n if t [Tn, dTn+l)’n >=0,

if => Too lim Tn.
The Tn’s can be interpreted as arrival times of tasks (resp. customers) in a processing
unit (resp. service station).

Let now (Xn, n_-__ 1) be a sequence of {0, 1} valued random variables, to be
interpreted in the following manner: if Xn 1, the task (or customer) arriving at time Tn
is admitted for processing (or service), otherwise it is dispatched somewhere else.
Therefore, the flow of tasks (or customers) in the processing unit (or service station) is
represented by the counting process Yt defined by:

(2.2) Y, E x. I(T. -< t).
nl

The nth cancellation decision Xn is taken after tossing a coin: if the coin f.alls
"Heads up" then Xn 1, 0 otherwise. The "coin" is biased and its bias varies with n and
the available observation at time n. If on is for each n >= 1, a sub-o--field of
representing the observation at time n, the probability that Xn 1 conditioned by n is
tn. Therefore for each n, t2n has to be n-measurable. The choice of the sequence
a (an, n >= 1) is at the discretion of the controller. The set consisting of all sequences
(tn, n => 1) of [0, 1]-valued random variables such that for each n---1,
measurable is called the set of admissible controls.

A control r is sought that minimizes the expectation of

(2.3) Yt rt) dt,

where tr and r are positive real constants; tr is the terminal time, and r is a rate at which
the input Yt is to be regulated by cancellation over N,, or thinning of Nt (the average
value of the quantity in (2.3) gives a measure of the quality of the regulation).

To the following three cases:
(1) $; o-(T1,. , T,,, X0, Xl, ., X,,_l),
(2) ’n o’(T1, Tn),
(3) , o’(XoTo,

there correspond resp.ectively the classes of admissible control U1, U. and U3. For each
i, 1, 2, 3, define Up.i to be the set of pure strategies in Oi, that is to say the set of
controls r7 such that t7 U and rTn 0 or 1 for all n _>- 1.

In this article we show that in the case where Nt is Poisson, there exists a control
that belongs to the intersection f3 3__1 Opi. and is optimal for all classes of admissible
controls U, 1, 2, 3. In other words the class of pure strategies is complete, and, as far
as optimality is concerned, the three above observation patterns are equivalent.
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The plan of proof is as follows:
(a) First we show that p,1 p,. ,3.
(b) Then we show that an optimal control for the minimization problem cor-

responding to 1 is in p,3.
Before proving the announced result, we need to state the problem in more precise

mathematical terms. In particular the probability structure corresponding to each
control has to be explicated. When this is done, we will replace the original problem with
in fact one of control of the intensity of a point process, as studied in Boel and Varaiya
[2]. We then apply the method of dynamic programming, via martingales.

3. The transformed problem: Control of intensity. Let f be the set of double
sequences o (tn, xn, n >= 0) where

and
t0=0; t <OO:tn <tn+l, Vn_-->0

x0=0; xn=0orl, Vn>_--0.

Let be the g-field generated by the mappings T,," o t and X,’w x,,, for all
n_->0. Let Nt and Y, be defined by (2.1) and (2.2). Let tT=(tT,,,n->l) be a
sequence of [0, 1]-valued random variables such that for each n_>-l, t,, is
o’(Xo, , X,,_x, To," , T, )-measurable. The following requirements:

(3.1) /Sa[ T,+I T, _-< tlo’(Xo, , Xn, To,’", T,)] 1 exp /- h (s)

(3.2) Pa[X, llo-(Xo,..., X,,-x, To,..., T,,)]

where th(t) is some nonnegative, measurable, locally integrable, real-valued
function, completely characterize a probability measure/a on (f, ), up to completion
(we assume in the sequel that (f, ,/6a) is indeed complete). Define Z, to be the
bivariate point process (N,, Y,). Then:

LEMMA 1. (a) Nt is, with respect to a, a Poisson process with the intensity h (t) and
for all 0 <-_ s <-_ t, N, Ns is Pa-independent ofz

(b) For some tZ-predictable [0, 1 ]-valued process u,, Yt has the (a, z)-intensity
h (t)ut and moreover:

(3.3) ur, 7, /a-a.s.

Proof. (a) From Lazaro 18, Lemma 3.3, pp. 286-287] it follows that:

(3.4) z =r(Xo, X1, X,, To,"" T,)T,,

and from Boel, Varaiya and Wong [14, Cor. 2.4, p. 1002]:

(3.5) zTn---o’(Xo, Xl,""’ Xn-1, To,"’, T,,).

Therefore (3.1) reads

fT+’ , ds(3.6) Pa[Tn+l- Z,, <- t[.] 1 -exp t- (s)

and by Jacod [7, Prop. 3.1, p. 241] it follows that h (s) is the (/Sa, ,z)-intensity of Nt.
From the version of Watanabe’s characterization theorem given in [4], this suffices to
ensure that conclusion (a) is true.

Although the result of [14] is given in the special framework of Blackwell spaces, it is valid in our
situation; without hypothesis on (f, r), as in [8]. The proof is an easy combination of the proofs in [8] and
[141.
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(b) For any nonnegative Z-predictable process C,, any

(3.7) O<=La Cs dYs <-l-la Cs dNs

This implies that on P(tz) the ,-predictable r-field on (0, oo)D, the measure
#a(doo)dY,(oo) is absolutely continuous with respect to the measure .#a(doo)dN,(oo),
and that a version of the corresponding Radon-Nikodym derivative, u,(oo), is [0, 1]-
valued. Since, by definition of the intensity,-#a(do)) dN,(o)) =/3a(&o)A (t) dt on (z),
Pa(&o) dY,(oo) #a(doo)u,(oo)h (t) dt on (.z). In other words utA (t) is the (/3a, ,z).
intensity of Yr. Note that the process u, is [0, 1]-valued and Z-predictable (as
Radon-Nikodym derivative of measures on (.z), (t, oo)-->u,(oo)is (-z)_
measurable). In other words the marked point process (Tn, Xn, n >= 1) admits the
(/3a, Z)-predictable measure/x defined by"

(3.8)
(o, dt x {1})= x(t)u,(oo) dt,

(o9, dt {0})= h (t)(1 u,(w)) dt

and therefore, as follows from Jacod [7, Prop. 3.1, p. 241]’

I._] uo(3.9) Pa[X, 1 z

and (3.3) then follows from (3.9) and (3.5).
With the help of Lemma 1, we can replace the original problem #, which consists of

minimizing ](tT)= La[ (Y, rt)2 dt] among all t e l..7 (recall that 0 can take 6 values:
Oi, Op.,, i= 1, 2, 3, and therefore there are 6 problems " #i, #p.i, i= 1, 2, 3), by an
equivalent problem of control of the intensity of a point process:

Problem . Let U be the set of nonnegative Z-predictable [0, 1]-valued proces-
ses u and let for each u e U, P, be the probability measure on (D, ) that makes N a
point process with the (Pu, .z)-intensity A (t) and Yt a point process with the (Pu, .,z)-
intensity A (t)u, (the existence of Pu is a result of [3]; the uniqueness is due to Jacod [7]).
Problem consists in minimizing J(u)= E[o (Yt rt) dt]. Here again we can define
six problems i, p.i, 1, 2, 3 and six sets of admissible controls Ui, Up.i, 1, 2, 3, as
we already did above for l# and .

Since our plan is to show that the optimal control iT* for #, is in 0.3 we willmfor
notational conveniencemdenote 1 and. #1 by and #. Similarly U, and , will be
denoted by U and

PROPOSITION 2. I[ U* is an optimal solution for , then t* defined by

(3 10) . =u-., Vn_>-l,

is an optimal solution for .
Proof. To any u e U, we can associate t e by"

(3.11) , UT., Vn >-- 1,

and moreover Pu Pa" indeed, Pa is the unique probability measure on (12, )such that
(3.1) and (3.2) are verified, andP also satisfies (3.1) and (3.2) (in the course of the proof
of Lemma 1 we have seen that P[X liar(X0,’’’, X, To,’", T.)] ur. which is
equal to tT,, by definition of

Similarly, to t e O, one can associate, according to Lemma 1, u e U such that
(3.11) holds, and moreover P =/3a, by the same arguments as above.

The result is then clear since when P --=
We now proceed to the solution of .
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4. The solution via dynamic programming. The following remark will be useful" if

we let N be any fixed integer greater than rtr, then clearly one can restrict one’s attention
to controls u such that u,(o)) 0 on { Yt(w) >= N}. Indeed, if for some to s [0, q], Yto >- rq,
then for all e [to, q] and all k >= O, (Yt + k rt)2 >- (Yt rt)2. Let us call the class of
controls U 71 {u/u,(w)= 0 on {Yt(w)-> N}}.

LEMMA 3. Suppose there exists a family (t V(t, n ), n >= O) of measurable map-
pings from gt into such that for all n >-, O, V (t, n) is differentiable and satisfies

(4.1)
dV
-d-)--(t, n)+ h (t)l(V(t, n + 1)- V(t, n)_o)(v(t, n + 1)- v(t, n))+ (n rt)2 0

and

(4.2) V(tt, n.)= O.

Then u* defined by"

(4.3) u* !(V(t, Yt-+ 1)- V(t, Yt-)<-O)

is optimal for . Moreover:

(4.4) V(0, 0)= J(u*) 2nfJ(u).
Pro@ We first note that:

(4.4’) l(V(t, n + 1)- V(t, n)<-O)(V(t, n + 1)- V(t, n))= inf u(V(t, n + 1)- V(t, n)),
u[0,1]

so that (4.1) reads"

(4.1’) d---V(t, n) + inf
dt

h(t)u[V(t, n + 1)- V(t, n)l+(n-rt)2=O.

Let us now decompose V(t, Y) as

V(t, Yt) V(O, 0)+ Y’. (V(T,, YT.)--g(Tn-1, YT,_a))+ V(t, Vt)-V(Ot, Vo,)
O<T.<_t

where

sup (T//T/-< t).

Equivalently:

(4.5)

V(t, Yt) V(O, 0)+ , (V(T,, Yr.)-V(T,, Yr._))
O< Tn

q- E (V(Tn YTn-)--g(Tn-1, YTn_a))q" V(t, Yt)-V(O,, Yo,).
O< T. _t

Now, observing that Yr._l Yr.- and Yt Yo,"
dV

(4.6) E (V(T,,, YT.-1)--V(Tn-1, Yr._l))+ V(t, Yt)-V(Ot, Yo,) --s(S, Y)ds.
O<Tn-<

Also:

V(T., V.)-V(T., V._,)= V(7"., V.-+X.)-V(T.,

(V(T,. Yr.-+ 1)- V(T,,, Yr.-))X,,
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and therefore:

E[(V(T,,, YT.)--V(T,,, YT._))I(T,, _-<t)]

E[(V(T,,, YT.-+ 1)-- V(T,,, YT,,-))UT,, I(T,, <_-- t)]

(where we have made use of the fact that Tn is ,--measurable and that Pu[Xn
-z1/ T,-] UT-,). Therefore, for any u "
E o<<_,(V(T,,, YT.)--V(T,,, YT,,-1)) =E (V(s, Y-+ 1)-V(s, Y-))udN

(4.7)

E[If (V(s, Y-+ 1)-V(s, Y-))uA (s) ds]
by the integration theorem of [3].2 Combining (4.5), (4.6) and (4.7) we obtain:

(4.8) Eu[V(t, N,)] V(O, O)+Eu

+A(s)us(V(s, y + 1)-V(s, Y))} ds].
Adding o (Y rs)2 ds to both sides of (4.8) we obtain, after letting q and using (4.2)

(4.9) J(u)= V(O, O)+Eu (s, Y)+(s)us(V(s, Y + 1)- V(s, Y))

+(Y-rs)2 ds].
By (4.1), J(u) >- V(0, 0) for all u e U, and by definition of u*, J(u*) V(0, 0). ["1

LEMMA 4. There exists a solution to (4.1)-(4.2).
Proof. Let N be as in the remark at the beginning of the present paragraph. Then

clearly:

(4.10) V(t, n)= (n-rs ds, n >=N,

satisfies

dV
dt
(t, n)+h(t)l(V(t, n + 1)_-< V(t, n))(V(t, n + 1)- V(t, n))+(n-rt)2=O, n>-_N,

and

V(t, n)=O, n >=N,

since for such V(t, n), l(V(t, n + 1)-< V(t, n))= 0 for all n ->N. Therefore what remains
to be solved is the finite system of differential equations"

(4.1’)
dV
--;-y(t, n)+h(t)l(V(t, n + 1)<_- V(t, n))(V(t, n + 1)- V(t, n))+(n rt)Z 0,

O=<n<_-N-1,

At least for the controls u /Q because then (V(t, Yt-+ 1)- V(t, Yt-))u, is a bounded Z-predictable
process (bounded by 2 supon_<_ suptto,ttl V(t, n)).
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and

(4.2’) V(t, n)=O, O<=n <=N-1,

where V(t, N) (N -/’S)2 ds. In view of the following definitions:

/ v(t, o)

V(t)= / V(!,. 11 b(t)=

\V(t, JV-1
1 +1 0
0 -1 +1

A=

x0

Xl
x--

X

F(t, x)=a(t) inf {uxi},
us[O,11

(0-rt) \
(1 -:rt))2 /’

(N-i-rt)2]

-1

0

+1
-1

[ Fo(t,x)

F(t, x) / FI(I’ x)
\Fr-(t, x

i=0, 1,"" ,N-2,

fN-l(t, X) A(t) inf {u(V(t, N)-xu-1)},
u[0,1]

system (4.1’)-(4.2’)can be written:

(4.11)
dV
4-F(t, A V)+
dt

Since the mappings x F(t, x) is Lipschitz, as well as x Ax, (4.11) has a unique
solution.

We can now state the main result:
THEOREM 5 (Completeness of Pure Strategies). There exists a common optimal

solution to i, 1, 2, 3 (resp. , 1, 2, 3) corresponding to a pure strategy.
Proof. By Lemmas 3 and 4, there exists an optimal solution to 1 that belongs to

Up 3. Equivalently, by Proposition 2 there exists an optimal solution of 1 that belongs
to U.3. The conclusion follows from"

LEMMA 6. Op,1 01o,2 Op,3.
Proof. Clearly it suffices to show that 0,1 Up,2 and Op,1 = 0,3. We only prove

Op,1 0,2, since Op,, = 0,3 3is proven with exactly the same arguments.
Let t7 6 0,1. There exists a sequence (f"), n >= 1)of measurable functions

f"): R z" - {0, 1} such that:

(4.12) t,, f(")(T, ", T,,, Xo," "’, X,,-1), Vn >- 1.

It has been pointed out by a referee that we do not need to show this in order to prove Theorem 5 since

the optimal solution to (1)is in Op.3 and o.3 c 0.1 Op,2. Also both referees have insisted, with good
reasons, that we mention that the "shape" of a be part of the information (by the shape, we mean the f(")’s
such that 7,, f(")(, ), see (4.12) for instance). This is equivalent to saying that the controller should not be so

absent-minded that he forgets about his "strategy" (the "shape" of



OPTIMAL THINNING OF A POINT PROCESS 229

Now since tTn {0, 1} and tT, =/a IX, 1/, ], X,, t,,/3a a.s., therefore:

=[a)(Ta X0) [a)(Ta 0)=ga)(T),Ul

a2 f(2)(rl, T2, Xl, Xo) f(2)(T, r2, g(1)(T1), 0) g(2)(rl, T2), Pa a.s.

and so, to obtain the general representation

an g(n)(rl, T2,’", T,,), Pa a.s.

where g(") is a measurable mapping from R" into {0, 1}. If we let a be defined by:

/n g(")(rx, r2,’’’, rn)

then, firstly t7 Op,2, and secondly rT’,, t,,/a a.s. And this clearly implies that JOa
at least if both (f, , Pa) and (f, -, Pc,,) are completed, as was assumed.

5. Concluding Remarks.
(1) This article is a new version of [11]. Although the arguments in [11] are

completely different and somewhat complicated, it shows the interaction between
various methods of solution of stochastic control problems (dynamic programming,
maximum principle along the lines of Bismut [12], control of Kolmogorov equations as
in 13]). It also contains a partial treatment of the case where the incoming point process
is Markovian.

(2) Although a particular problem was considered here, the method used for
transforming a problem of impulsive control into one of intensity control and the proof
of completeness of pure strategies are quite general.

(3) The fact that one could restrict attention to controls depending only upon
the present state of the output has its analogues in other situations. For instance,
in the dynamical file allocation problem considered by Segall [10], it could be proven
that the class of controls considered there (depending only upon the present position
of the file) is indeed complete. Note however, that this result strongly depends upon the
Poissonian character of the inputs (in the present paper as well as in [10]). If the output
were Markovian for instance, the optimal control would depend on the present value of
the counting process Nt (see [11] for details).
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ON THE FAST SOLVING OF
PARABOLIC BOUNDARY CONTROL PROBLEMS*

WOLFGANG HACKBUSCH"

Abstract. We present a multi-grid method for the solution of boundary control problems with quadratic
cost functions, where the state is a solution of a parabolic initial-boundary value problem. The computational
work is proportional to the work needed for the integration of the parabolic equation. The method can be
extended also to nonlinear problems.

1. Introduction. Let y(v) denote the solution of a parabolic initial-boundary
value problem depending on the boundary value v (Neumann or Dirichlet boundary
condition). If a cost function J(v) is to be minimized, where J is a function of y (v) and v,
this is called a parabolic boundary control problem. The method presented in this paper
is restricted to those problems, where the optimal control can be characterized by an
equation of the form (2.4) or (2,8) involving the adjoint state p(u). Also nonlinear
equations like (5.2) can be treated by a slightly modified version of the algorithm.

We need no decoupling technique. Only a sequence of parabolic initial-boundary
value problems is to be solved. The method can be applied to general problems. The
coefficients of the parabolic system may depend on all variables. If the number of space
variables exceeds one, also general regions are admissible. We do not fix the method
used for discretizing the parabolic equations. One may choose a suitable difference
scheme or a Galerkin method.

In the following section we present five examples of boundary control problems
with different observations and different boundary conditions. Furthermore, the dis-
cretization is discussed in 2. Section 3 investigates the equation that characterizes the
optimal control. The fast solving of this equation is described in 4. The foregoing
sections are restricted to linear problems. A nonlinear problem is studied in 5.

2. The boundary control problem and its dlscretization.
2.1. Notation. Following the notation of Lions [9] we denote by !-I a domain of

with the boundary F. I (0, T) is a finite time interval. The differential equation
described below is to be satisfied in Q ll L Boundary conditions are prescribed on
the lateral boundary Y-, F L Y-,0 is defined by F0 x/, where F0 is a nonempty subset of F
(,Zo E possible). We summarize:

fl, F=0fl, I=(0, T), Q=xL E=FxL 0E.
Here we study boundary control problems. Therefore, the control functions are

defined on :E0. The corresponding linear space is denoted by v//. In the main part of this
paper we assume the case of no constrains, that means that the subset @/a of admissible
controls coincides with

Let A be an elliptic differential operator of second order with coefficients defined
on O, Let A* be the formally adjoint operator. Let B and C be boundary operators of
first order such that Green’s formula

(2.1) (Ay, p)L2<a--(y, A*p),2n (y, Cp)L)-r)-(By,

holds (cf. Lions and Magenes [10, pp. 2 and 157]).

* Received by the editors May 4, 1978.

" Mathematisches Institut, Universitit zu KOln, KOln, West Germany.

More general problems can be treated without difficulty.
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2.2. Six examples of control problems. In 3.2 we shall study the properties of the
following control problems.

2.2.1. Observation of the total state (Neumann problem). We choose a//aa
L2(0). For any u aa, y(u)= y(x, t; u) is defined as the solution of the parabolic
initial-boundary value problem

(2.2a) otY(u)+Ay(u)= [ ((x, t)6 0),

u on Y-,0,
(2.2b) By(u)]x

g on E\X,o,

(2.2c) y (x, 0; u) yo(x) (x s D,).

We seek u a/t,,a such that y(u) za holds for a given function za L2(Q).4f in addition
the norm of u must be small, we obtain the following cost function

J(v) Ily(v) -zall=o)+(Nv,/))L2(Xo) (13 e O’ad),

where N is positive definite, e.g.,

(2.3) N 6 identity, 6 > 0.

The solution of J(u)= inf {J(v): v e q/a} is characterized by

(2.4) u -N-a(p(u)lo),
where p(u) is the solution of

0
(2.5a) ((x, t) O),otP(u)+A*p(u) y(u) Zd

(2.5b) Cp(u)= 0 ((x, t)e Y_,),

(2.5c) p(x, T; u)= 0 (x

We repeat the proof given in [9]. u q/a is optimal if and only if J’(u). (v u)>= 0 holds
for all v //a, i.e.,

(y (u)- za, y (v)- y (u))L2(O) + (Nu, v u )L2(y_,o) 0 for all v

Using (2.5), (2.1) and (2.2) we obtain

(y(u)- z, y(v)- y (u)),(o

-p(u)+ A*p(u), y(v)- y(u)
,(o

L2(O)

-(Cp(u), y(v)- y (u))r.2(x)+ (p(u), B(y(v)- y (U)))L2(X)

(p (u), v u)(o).
Equality (2.4) follows from (Nu +p(u), V--U)L(Xo)>=O for all v e a//a, since a//,,a is a
linear space.

By means of (2.4) the control u can be eliminated in (2.2b). The purpose of this
paper is the numerical treatment of the arising coupled (y, p)-system. The application of
the decoupling technique (el. [9, p. 132]) is possible but too expensive.
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2.2.2. Observation of the final state (Neumann problem). Take q/aa L2(Z0) and
za L2(f). We want to obtain y(., T; u) zd, where again y(u) is the solution of (2.2).
The cost function is

J(v): IlY(’, T; v)--zall2Lm+(Nv, V)LXo).

The optimal control is determined by (2.4), where p(u) is the solution of

0
(2.6a)

Ot
p (u)+ A*p(u)= 0 (in O),

(2.6b)

(2.6c)

(cf. Lions [9, p. 124]).

Cp(u)= O

p(x, T; u)= y(x, T; u)-z,(x)

(on E),

(x

2.2.3. Observation on the boundary (Neumann problem). Let aa L2(o) and
za L2(yo). We seek a solution y(u) of (2.2) with y(u)lxo z. The minimization of

2J(v)- Ily (v)- zal[,=(o)/ (Nv, v)(o)
leads us to (2.4), where p(u) is the solution of (2.6a), (2.5c) and

za on Eo,
Cp(u)

0 on
(cf. Lions [9, p. 187]).

2.2.4. Observation on the boundary (Dirichlet problem). Choose Rd LZ(Zo)
and za H-I(Yo) (for the notation compare [9]). Let y(u) be defined by (2.2a),

(2.7) y (u)lo u, y (u)l\.o g

and (2.2c). In order to obtain By(u)[o za, we define
2J(v) IIBM (v)[o- ZdllH-l(o)/ (Nv, v)(.o),

where llfl[,-<o)-- (g, f),<o), -Ag f, gloo- 0 (A. Laplace-Beltrami operator of Y_.;
A.-----O2/Ot2 for the one-dimensional case). The optimal control is characterized by

(2.8) u -N-1Cp(u)l.o,
where u is the solution of (2.6a),

p(u)lxo (-A)-I(By (u)[xo za), p(u)lx\Xo 0

and (2.5c) (cf. Lions [9, p. 198]).

2.2.5. Observation of the final state (Dirichlet problem). Let q/ L2(0) and
za H-I(fl). y(u) be the solution of (2.2a), (2.7), (2.2c). If the cost function is

J(v)- Ily(" T; v)- zall2-l(m / (Nv,

the optimal control satisfies (2.8), where p(u) is the solution of (2.6a) and

p(u)lx= 0, -Ap(x, T; u)= y(x, T; u)-za (x6fl),

p(x, T; u)=0 (x

(cf. Lions [9, p. 202]).

2.2.6. Control by initial values and distributed control. This example is not a
boundary control problem, but it can be treated similarly. Let y(u)= y(ul, u2) be the
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solution of

0
O--y(u)+Ay(u)=f+aul, By[,.= g,

y(’, 0; u)= yo+tu (, t e e),

where u (Ul, u2) //aa L2(O) x L2(f). Let za e L2(II). Optimizing

J(v) IIY( T; v) zal 2ILZ(f)-+.(NIU1, vl)C:’(o) f-(N2v2, V2)c2(f)
we are led to Ux =-aN-lip(u) and u2 -3Nip( 0; u), where p(u)satisfies

---p(u)+A*p(u)=O, Cp(u)lr.=O, p(., T; u)= y(., T; u)-za.
0t

For problems of this kind we proposed a fast numerical method in [2]. Neverthe-
less, the multi-grid methods of this paper can be applied. Only the considerations of
4.2 must be changed.

2.3. Diseretiation. We have to solve the coupled system of {y, p} (e.g. (2.2a, b, c)
and (2.5a, b, c)), where the control u is eliminated (e.g. by (2.4)). Assume that the
parabolic equations are discretized by a suitable difference scheme or a Galerkin
method. The discretization parameters are the step sizes At and Ax of the interval
I (0, T) and of the grid of f.

In the sequel we need a sequence of step sizes tending to zero. Let At0 and Ax0 be
fixed and define

2-,’/2Axo
(2.9) At 2-Ato Ax ( even)

AX_l (u odd)

for u 0 :- {0, 1, 2, .}. In [4] we used the number n T/At / 1 for indexing. Here
it seems to be more appropriate to use the "level number" u o as index.

The discrete control function v is defined for I with t/At o. The discrete
solutions corresponding to y(v) and p(v) are denoted by y(v) and p(v). Replacing
the condition (2.4)or (2.8), respectively, by a discrete one, we are able to eliminate the
control u and obtain a discrete (y, p)-system. Its solution is y y(u) and p p(u),
where u denotes the discrete approximation to the optimal control u. In 4.3 we shall
give an example for the discretization.

We note that there is another possibility of discretization. Replace the parabolic
equation for y (v) by a difference method and discretize the integrals of the cost function
J(v) by sums taken over y,,(v,,) and v. Define p,(v,,) by the difference scheme, which is
the adjoint one of the y-scheme. Then the solution u is not only an approximation to
the optimal control u but also the true optimum with respect to the discrete cost
function J,,(u,,).

3. Interpretation by integral equations.
3.1. The integral equation. Consider the first example described in 2.2.1. For a

given control v q/aa, y(v) is defined by (2.2). In a second step p(v) can be determined
by (2.5) using y(v). Now we define the function w(v)=-N-(p(v)]r.o). By (2.4) the
optimal control is the solution of w(u)= u. u - w(u) is an affine mapping. Writing
w(u)=Ku+q (K linear, q= w(0)), we obtain the characterization of the optimal
control u by

(3.1) u Ku +q (u, q 71).
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As illustrated in the following section, (3.1) may be called an integral equation
(Fredholm’s type, second kind).

In special cases, where K is explicitly known, it would be advantageous to solve the
integral equation (3.1) instead of the coupled (y, p)-system. But even in the general case
we shall use the representation (3.1).

Replacing the differential equations by difference schemes we obtain a discrete
analogue of (3.1):

(3.2) u Ku +q (v No).

Theoretically, the matrix K can be computed by calculating w(v)=Kv+q for
v 0 and all unit vectors v. But only in the case of the coarsest grid size (v 0) we shall
put up with the corresponding amount of computational work. In the other cases we
only have to compute v-Kv which requires the work of determining y(v) and
p(v).

We shall regard K as a discretization of the operator K and apply the fast
algorithm for Fredholm’s integral equations of second kind (cf. Hackbusch [4]). As
emphasized in [4], the smoothing property of K or its powers is essential. In the next
section we investigate for a model problem, how fine the topology of the range of K may
be chosen so that K is still continuous.

3.2. Operator K for special cases. Our model problem is

fl= (0, ), A A* -O:/Ox, E0 E {0} I,

B C -O/Ox, N 6 identity.

Therefore, the equations (2.2) and (2.5) are

yt Yxx + f, --Pt Pxx + Y Zd, y(x, 0)=yo, p(x, T)= O,

-y(0, t)= u(t)=-p(0, t)/, -p(0, t)= 0.

The term q of (3.1) vanishes if we choose f= za 0 and Yo 0. Then, y(u) has the
solution

H(T) -x2/[4(t-’r)ly(x, t)= x/r(t_r)e dr (x >=0, O<-t <- T)

(cf. Ladyenskaja et al. [8, p. 261]). For p(u)we obtain

IITI) y(,’r){e_(X_)2/[4(t_,)]+e_(X+)2/[4(t_)]}dd,r.p(x, t)=- x/r(t-r)

Substituting the representation of y and evaluating at x 0, we obtain p(0, t) and Ku:

(3.3a) (Ku)(t)= {/2T- t- r- /lt- rlIu(’) dr.

One can verify that

(3.3b) IIKIIL2f)_,H3/2t) <--_ C, ]lg2llg2,)_,g2-e,) <= C(e) ( > O)

are the optimal results.
In order to give an idea of the operator K, we summarize the results for the

remaining examples of 2.2.
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Second example (cf. 2.2.2):

(3.4a)
1 Io7" u(’r)

d-r(Ku)(t)=
6 ,/2T- t-"

(0 <= <= T),

(3.4b) I[K[IL2(I)__....2(I) <= c. (e > 0).

Third example (cf. 2.2.3):

(3.5a)
I IoT (2T-t-r+24(T--)(T-t))(Ku)(t)=-- log

It-l
u(l&,

Fourth example (cf. 2.2.4): (3.5b) holds for

(Ku)(t)=

(3.6)

(e >0).

44T loT 4T ru r

lit (2T-t-’+24(T-’)(T-t))log u 0") dr.
"rr

Fifth example (cf. 2.2.5): (3.4b) holds for

1 I,T U(7")
(3.7) (Ku)(t) 26/- /2T z

&-.

Sixth example (cf. 2.2.6): K is a continuous mapping from L2(Q) L2() into
H2’I(Q) H(f) with arbitrary s . K2 maps L2(() L2(-) into H3-e’(3-e)/2 (()
H(f) (s 1, e >0).

4. Numerical method for solving the discrete system.
4.1. Description of the method. In [4] we described a multi-grid iteration basing

on the following two-level method. Given a grid function v, we apply the smoothing
procedure m times

w Kw +q

(cf. (3.2)). The standard value of m is one. The result is denoted by . The exact
correction (I-K)- d belonging to the defect

d g-Kg-q

is approximated by

6=p,-l(I_l-K-)-ar-l,d.

I is the identity mapping, r_, denotes a restriction to the coarser grid with the step
sizes At_l and AX_l (level - 1), while p,_a is the prolongation from the coarser grid
to the finer one (level ,). The simplest choice is

(41) (G-l Wv)(X. t) W_l(X, t)+ 1/4[w_(x, + +/-t.)+ W_a(X, t- At.)]

for (x, t) Eo.v_l,2

(p.-l W-l)(X. t)

(4.2) I Wv-l(X, t), (x, t)s Zoo, t/AG-1 [No
I[Wv_l(X, t+AG)+ W_l(X, t-AG)]/2 (x, t)6,o, t/AG-1-1/26No

Define w_x(x,-at)=w=x(x,O), Wv_l(X T+AG)=w_I(x T).
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in the one-dimensional case. ,Xo denotes the grid points of Y-,0 with respect to the level v.
In the case of more space variables the definitions (4.1), (4.2) must be completed by a
local summation or linear interpolation in the spatial directions of Zo, respectively. One
iteration of the two-level method is given by the mapping

V --> 6.
The two-level method requires the solving of (I-1- Kv-1)-lw-l. The solution of

this linear equation can be approximated by a two-level method corresponding to u- 1
and u-2 etc. Applying the two-level iteration recursively, we obtain the multi-grid
method. The following program similar to ALGOL describes the implementation of the
multi-grid iteration. The procedure calls the vector-valued function system(ix, v., d.)
which is defined by K.v. + d.. This result can be calculated as follows. Given the control
v., compute y.(v.) and p.(v.) by the corresponding homogeneous discrete
systems. Then -N. (p. ]So)+ d. is the desired result. Note that for ix u the argument
dv always coincides with q. If q qv is defined by (3.2), it is not necessary to know
qv explicitly. Integrating the nonhomogeneous discrete systems, system (u, vv,
-N-21 (Pv(Vv)l.o) holds. The matrix K0 (better the LU-decomposition of Io-Ko)
must be known.

procedure recursive (,, i, m, v, q);
value ,,/;integer u, i, m; array q, v;
comment ," , No, number of the actual level,

i" number of the iteration steps on the level u,
m" number of smoothing steps (usually m 1),
v" input value: starting value v ()v output value: v -(Iv-Kv)-lq,
q" (Iv- Kv)v =q is to be solved;

if , 0 then v := (Io Ko)-lq else
for := step- 1 until 1 do
begin integer ];array d, w;

for ]:= 1 step 1 until m do v:=system(u, v, q);
d := rv-l,v * (v-system(u, v, q)); w := 0;
recursive (,-1, 2, m, w, d); comment w (Iv_l-K,_l)-ld;
V := V--Pv,v-1 * w

end iterations on the level u by the multi-grid iteration;

In [4] we proved that the rate of convergence on the level , is proportional to 2
(cf. 4.3), where the positive number y depends on the smoothness of the interpolation
by Pv.v-1 and on the quality of the approximation of Kv to K. The rate of convergence
tends to zero for , --> oe. But on the other way round this fact implies that the rate can
exceed the value one if u is small enough. Therefore, the step sizes At0 and Ax0
corresponding to , 0 must be sufficiently small. The determination of the coarsest grid
can be combined with the iterative process in the following way.

ALGORITHM.
1) choose preliminary values Ato, Axo;
2) set , := 0, compute K0 and Uo := (Io-Ko)-lqo;.
3) set u:= u+l; start with u () :=p,v-lu-i and compute u (i)v (e.g. i=1)

by calling the procedure recursive (u, i, 1, uv, qv); in case of divergence go to 5); set
(i).

U, :-- U,

4) estimate the discretization error e.g. by means of uv-p,.-luv-1. If the error is
not small enough, repeat 3);

5) set At0 := At0/4, Ax0 := Ax0/2; go to 2).
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4.2. Amount of computational work. The following note shows that the work of
one multi-grid iteration is of the same order as required for the integration of the
(y, p)-systems.

NOTF 1. LetN be the number o[operations needed[or the integration o]: the discrete
(y, p )-systems on the level ,, i.e., for the performance ofthe mapping v y(v)--p(v ).
We require

(4.3) N <- C 2(1+"/2) (u No; n" dimension of f c ").

Ifn 1, (4.3)followsfrom (2.9). But even ifan implicit discretization is usedfor n > 1, the
inequality (4.3) holds provided that a fast method (e.g., the multi-grid method of [3]) is
applied to the discrete elliptic equations.

We assume that the amount N of the computational work of the prolongation be
proportional to the number of grid points of Zoo"

/’r <_ C 2(n+1)/2.

Here we exclude the example of 2.2.6, although similar results can be obtained in this
case.

Then one iteration of the multi-grid method, i.e., one call of the procedure recursive
with 1 requires less than

[1 m+1/2 ] {2(n+’/2/[1-20-n)/2]}+2G (n>l)(4.4) -+ _---L---j C2"(+"/2) + d x
1 ,2 (n= 1)

operations, where Go is the number of the grid points oj: Zoo corresponding to the level
u O. The determination of Io-Ko and its LU-decomposition require

2 3GoNo +Go
operations. For m n 1, the number (4.4) is about 5.6 x N.

Proo[. Let M be the work of one iteration on the level ,.
M <= (m + 1)N + 2M_1 +I <- (m + 1)C2(1+"/2)+ 2M_a +’2"(n+1)/2

implies

M <- C2(l+n/2)(m + 1)/(1 2-n/2) + -’ X]’{ (1 2(n-1)/2)--12 (n+l)/2}u2 +2G0
The result (4.4) follows if we take into account that the first smoothing step on the levels
/x < , is gratis, since w 0 is used as starting value,

Usually, one iteration step per level is sufficient, i.e. 1 can be chosen in step 3) of
the algorithm. Then the total amount is 8.7 N if n m 1 and 4.7 N if m 1,
n=2.

Finally we remark that the storage requirement amounts to O(2+2’/2)
O(At- + kx-2"), since only one t-level of the functions y and p must be stored during
the computation. Here again we have to exclude the case of the example of 2.2.6.

4.3. Convergence.
4.3.1. Discussion of the necessary conditions. We repeat the essential assumptions

that are needed for the proof of convergence (cf. [4]). There must be two Banach spaces
B0 and B1 c B0, where B has a finer topology than B0. We require that the mappings
K: Bo--> Bo, Kin: Bo --> B1 are continuous:

(4.5a)

(4.5b)

IlK II o-  o -<- c,
IIK ll o_.  _-< C (m >- 1 fixed),
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where rn is the number of smoothing steps (cf. 4.1). If m 1, (4.5b) implies (4.5a).
B and B ’ are suitable vector spaces consisting of grid functions of the level , No

defined on Y-,o. Usually, B; B7 holds, whereas the norms are different. I[" [Is7 is a
discrete analogue of [l" IIs, (i 0, 1). The connection is given by the prolongations
P" Bo -->B0 and restrictions R" Bi-->Bi related to p.-l" B-1

-->Bi and r_." Bi->
B"-1 (i 0, 1; cf. [4]). The mappingK defined in (3.2) must have properties analogous
to (4.5a), (4.5b):

(4.6a) IlKllno-no <= C (u No),

<C (u 0),(4.6b) [[KmI[Bo--,B1---

where the constant C does not depend on u.
Finally we require the consistency, e:g., in the form3

(4.7)

The further conditions of [4] refer to r_, and pv,-l. They are fulfilled for the
restrictions and prolongations defined by (4.1), (4.2), if reasonable spaces Bi and B’ are
chosen.

Then Theorem 3.5 of [4] implies that the rate of convergence of the multi-grid
method on the level , is proportional to 2-’/with4 T min (fl, s, 2), where s is defined
as follows. In our situation B0 L2(X0) and the Sobolev space

BI H2S’s(Wzo) HS(I, LZ(Fo))("I L2(I, H2S(Fo))
(cf. [10]) are the most suitable spaces, s <_-2 is the greatest number such that (4.5b)
holds.

(4.5a) and (4.6a) are usual stability properties. (4.5b) is valid, since we choose the
space B according to (4.5b). But it seems not to be trivial that (4.6b) holds for the
discretization proposed in 2.3. Therefore, we shall give two examples which demon-
strate that (4.6b) is a natural condition.

4.3.2. One-dimensional example. We return to the model problem of 3.2. The
spaces L2(o) andH:zs’s (Y-.o) mentioned above degenerate to B0 L2(I) andB H (I).
From (3.3b), (3.4b), (3.5b) we see that s depends on the problem and on the choice of
m 1 or m 2. s takes the values 1/2, 1 e, -, 2- e. The following analysis is restricted to
the second example (observation of the final state, Neumann problem, cf. 2.2.2).

Let B B be the space of grid functions with step size At 2 to and define
the prolongation P" B Hi(I) by piecewise linear interpolation. Then we may define
the discrete norm

IIVIIH :- IIevllHv) (o <= s <= 1, v Bg).

Bo and B are endowed with the norms II. I1, o and II. with s or s 1 e according
--Hto B1 (I) and (3.4b). In the following we write H and H instead of Bo and B1.

(4.7) is sufficient for proving the consistency condition (2.12) of [4], provided that[Iv R,,P,,[IB s, <-

C2- holds. Note that the convergence property I][(I K,,)-1R,, Rv(I K)-l]qlls,_<- C. 2-vOllqlls does
not coincide with [u,,-u[s<-C 2-V[q[[m (u, u from (3.1), (3.2)), since qv# R,x/. But if Yo, f, g, Zd are
sufficiently smooth, qv- Rq tends to zero, too.

4 If n > and 3’ > 1, the interpolation involved in (4.2) with respect to the spatial directions must be of
higher order.
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NOTE 2. Discretize (2.2a) and (2.2b) by

(t Ate(Ate)T,

(4.8a) 1
=-7--- [y(x + Axe, t)-2y,,(x, t)+ y(x- Ax, t)] +f(x, t)
Ax

(4.8b) [y.(0, t)-y.(ax., t)] u.(t) (t Atv(At)T)

and use analogous schemes ]’or p. Furthermore,

x ax(Xx)),

(4.9) 3Ax 2 < Atv < const Ax2

must be fulfilled. Then the condition (4.6b) holds. More precisely"

IlK 2 Ilm-H < Clln(At)l (e >0).

Proof. Use discrete Fourier transformations. The complete proof is given in the
appendix of [7].

4.3.3. Discrete Galerkin method in the general ease. Without loss of generality we
again restrict our considerations to the problem of 2.2.2 with N defined by (2.3). In
order to determine K, the functions y0, za, g, f are chosen to be zero. Lions and Magenes
[10, p. 80] proved that v L2(y--0) implies y(u), p(u)H3/2"/3/4(O). Therefore, the
restriction p(u)[ belongs to HI’I/Z(Eo) (cf. [10, p. 9]). Thus, (4.5b) holds for B1
H’/(Eo). In [5] we defined a discrete Galerkin solution corresponding to the step sizes
Ax, ht and proved6 that

(4.10)

holds for 0 <= r <_-s, 1 <-s <-2, where again P denotes the prolongation by piece-wise
linear interpolation, p(v) and y(v) are defined by means of the continuous control v.
They coincide with p(tT) and yv(g), where tT is the discrete control obtained from v as

We omit the conditions on the smoothness of the coefficients and of F required in 10] and [5]. Also the
assumptions on the finite element spaces are to be seen from [5].

6 If the extension of A(t) and B(t) for (T, 2 T) by A*(2T- t) and C(2T- t) is sufficiently smooth, p(t)
coincides with u(2T- t)for e (0, T). Thus, (4.10)follows. In the general case (4.10) holds for Py(v)- y(v).
Denoting the solution of (2.6a, b) and p(T)= y(T) by p(y(T)) we have

lp(v)-p(v)l

<--IlP,,(v )- p(y(T))IIH’.’/2(O+ lip (y(T))- p(y

_-< C’[(Atyl y(T)lt’-’(m+ y(v)-

3/2 /2 3/4 O

for < r -< -< 2. This result is sufficient for demonstrating (4.11).



PARABOLIC BOUNDARY CONTROL PROBLEMS 241

described in [5]. Note that tT - Rv. Choosing r s = in (4.10), we obtain

(4.11) II[Pp(v)-p(v)]l,.ollH.l2(o<= cllv II=(o.
Together with (4.5b), I[ep(v)[I,.,=(o<=fllv[l(o follows. This implies also
IIgvll,.,=,.o <--CIIvll=o; thus, (4.6b)is proved.

Let v Hl’l/2(Yo) be arbitrary and define y(v) and p(v) by the homogeneous
equations (2.2), (2.6). As mentioned above tT is not equal to Rv, but [ItTv- Rvll<=
C(at)/llvll,.,(,o ods. (4.0) yields the (nonoptimal) estimate

which proves (4.7) with/3 1/2. Thus, the rate of convergence is O(2-v) with y -.

4.4. Numerical Example. Consider again the model problem of 3.2, but replace
(0, co) by f (0, 1). Choose Zo {0} x L T 1, 6 1 and let

g=0, f=--cos (1-x Y=---cSrr (1-x, zu=l---cOSTr (1-x

be the coefficients of the systems (2.2), (2.6). The optimal control is u(t)=-1.
We apply the multi-grid iteration with At0 1/2, 5Xo 1/4 and different values of v. The

following table shows the observed rates of convergence of the multi-grid iteration on
the level v.

TABLE
Rate O depending on the level number v.

At
Ax
P

4

16 32 64

16 16 32

0.086 0.063 0.044 0.030 0.019

The theoretical rate is p O(At) with ,/= 1/2 since B1 H1/2(I). This is confirmed by
the values of the table for (101/105)1/4= 1.46 approaches ,,/.

In order to give an idea of the results we list the errors

e (i) {AtZlu(i),, (t)- u(t)12} 1/2 (i" number of iteration)

(sum taken over At(At)l) and the discretization error

e {At.Y[u(t)- u(t)]2}1/2

that appear when the algorithm of 4.1 is performed with 1 and the maximal level
number v 5.

level v 1" el) 7.81o- 3 el 1.91o- 3

(21) --3 e 1 8 --3levelv=2 e =1.710 2 lO

(31) -3 e =4.4 -4level v 3 e 1.81o 3 lO

levelv=4: e(41)=4.11o-4 e4=4.31o-4

levelv=5" e(51)=4.31o-4 e5 =1.11o-4
e(2) 1.11o-4
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The norms of the differences 6i) U(5i-1)- U(5i) are

4

c,(i) 2}1/2{Ats-o5 3.210--4 4.210--6 1.11o--7 2.21o--9 4.21o-- 11

resulting in the rate of convergence p5 0.019.

5. Unilateral constraints. In the following we study a boundary control problem of
unilateral type as one example of a nonlinear problem that can be treated by the
nonlinear multi-grid method.

5.1. Characterization of the optimal control. Instead of allaa q/-- L2(o) we now
choose

q/aa {v s 0-//= L2(Zo): v => 0 almost everywhere on Zo}

and assume (2.3): N 6 identity. The optimal control u is defined by means of the
adjoint state p(u) (e.g. cf. Lions [9, p. 125]):

(5.1) u [-N-a(p(u)lzo)]+, v/ := max (0, v).

Therefore, the linear equation (3.1) is to be replaced by

(5.2) u Yg(u):= [Ku +q]+.

The nonlinear equation (5.2)is discretized by

(5;.3) u YC,,(u,,):= [K,,u,, + q]+.

5.2. Nonlinear multi-grid iteration. Again we use the algorithm of 4.1, but the
procedure recursive must be replaced by the following procedure that is to be called
with the parameter f 0.

procedure nonlinear (u, i, m, v, f);
value t,, i; integer ,, i, m; array v, f;
comment ,, i, m, v" compare procedure recursive,

v, f: v, f B, the solution of v Y{(v)+f is sought.
Note that the solution u-a of (5.3) is used. Since u-I corresponds to the
foregoing level, it is already computed;

i t, 0 then v := (solution of v Y{o(V) +f) else
lor := step- 1 until 1 do
begin integer j; array d, w;

or j := 1 step 1 until m do v := {’(v) +f;
d := r,-1,, * ()--.’{,(Z))--f); W := Uv-1;

nonlinear (u-1, 2, m, w, d); comment w Yf,,-a(w)+ d;
v := v-p,_ * (w-u_)

end, iterations on the level u by the nonlinear multi-grid iteration;

This programme is equivalent to the procedure recursive if Y{" is an affine mapping. Note
that only on the level u 0 a nonlinear equation is to be solved. All other computations
are explicit. Useful modifications of the nonlinear multi-grid method are discussed in
[11].

5.3. Convergence of the nonlinear multi-grid method. In [4] we proved that the
rate of convergence of the nonlinear multi-grid iteration is asymptotically equal to the
linear iteration with K, replaced by the Fr6chet derivative of Y{,,(v,,) at v u (u
solution of (5.3)). Let U be a neighborhood of the solution u of (5.2)with respect to the
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topology of B0 and define Uv := {vv B;" Pv U}, where P." B; B0 is the pro-
longation mentioned in 4.3.1. Assuming the convergence Puv - u, we require uv e Uv
for all u e No. It is sufficient that Y{’. fulfills the Lipschitz condition

(5.4a) Y{(v)-Y{’(w) Lv(v, w)(v- w)

for all v, w Uv, where L is a bounded linear operator:

(5.4b) IlL (vv, C for all v, w U.
Moreover, we assume that L,(vv, w) be continuous at (u, u), where u is the solution
of (5.3):

(5.4c) IlL,(v, w)-L(uv, if v, w - uv.
The following note shows that the nonlinear operator Ytc of (5.2) satisfies (5.4a, b, c)

(Y{, v, w to be replaced by Y{, v, w). Analogous arguments can be used for the proof of
(5.4a, b, c) with v No.

NOTE 3. Assume that

(5.5) measure {(x, t)eE0: I(Ku +q)(x, t)l-<e}0 as e -0.

Then (5.4) holds with

L(v, w)= X(v, w)x K,

where X is the function
0 ifKv +q <=0, Kw +q <=0,

g(v, w)(x, t)=
(Kv + q)/(K(v w)) ifKv + q > O, Kw + q <= O,
1 ifKv +q >=0, Kw +q >0,
(Kw+q)/(K(w-v)) ifKv+q<O, Kw+q>O.

Proof. (5.4a) follows from the definition of Y{ and L. Since the function takes
only values of [0, 1], the boundedness of K implies (5.4b). Let/z be the measure and
denote by S the subset of Zo consisting of all points, where the signs of Kv + q or Kw + q
differ from the sign of Ku + q. Then

lift(v, w)-t(u, u)lzll2(o)_-

follows from K" L2(Zo)-HI"I/2(Eo)cH1/2(Eo). It remains to show that /x(S)-0
if v, wu. Let Sl be the set of (x, t)Zo with Kv+q >=0 and Ku+q <=0. Since
S is the union of sets of this kind, it is sufficient to prove /x(Sl)0. Note
that SlCS11(e)(.JS12(8), where Sxx(e)={(x,t).o: Ku+q<=-e, Kv+q>-O} and

2S12(e)={(x,t):lKu+ql<=e}. One concludes from t(S11(e))’e
cIl [L2(lo) that

(Sl()).
1]_2Choosing e IIv- UllL2(o) we obtain from (5.5) that tz(S1) 0 as v u.
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NECESSARY AND SUFFICIENT CONDITIONS FOR A LOCAL MINIMUM.
1: A REDUCTION THEOREM AND FIRST ORDER CONDITIONS*

A. D. IOFFE$

Abstract. A new approach to the theory of necessary conditions is described. The core of the approach
is a reduction theorem which replaces the initial constrained problem by a problem without constraints having
the same solution. After this, the procedure for deriving first order necessary conditions becomes almost
trivial, which is demonstrated by several examples.

1. Introduction. This work is concerned with the problem

(1.1) minimize fo(x
subject to

(1.2) F(x)=0; fi(x)<=O, 1,..., n;

(1.3) xS,

where f0," , fn are real-valued functions on a Banach space X, F is a mapping from
X into another Banach space Y and S c X. We shall be interested in conditions for a
local minimum in the above problem. Hence it suffices to regard fi and F as defined
only in a neighborhood of a prescribed point z e S.

We shall assume throughout that/ and F are Lipschitz in the neighborhood and
that S is closed.

A usual theory of necessary conditions consists of two successive components.
The first is approximation, that is, replacing the mappings and sets in question by those
having simpler structure, usually linear or convex. The second is application of one or
another known theory, usually connected with convex problems. Our approach
diverges from this tradition only in one point: the approximation stage is no longer the
first. It is preceded by a reduction of the initial problem to an unconstrained one. With
this reduction made, the final stage becomes radically simplified; it might be compared
with the calculation of the derivative of a composite function.

A close approach to necessary conditions has been recently developed by Clarke
[1]. His method of building an unconstrained problem is more straightforward and
requires less effort. But in applying this method to problems involving equality
constraints, one will inevitably be dealing with an infinite sequence of unconstrained
problems whose solutions converge to the solution of the initial problem. In contrast,
we consider only one unconstrained problem with the same solution as (1.1)-(1.3).
This is why it is possible to incorporate a wider spectrum of approximations in the
framework of our approach. But for problems containing no equality constraint, both
approaches coincide.

Unlike many abstract theories of necessary conditions, such as presented in works
of Dubovitzkii and Miljutin [2], Gamkrelidze [3], Neustadt [9], Pshenichnyi [10] and
others, this one is not essentially axiomatic. We consider only those approximations
which are inherent in Lipschitz functions (generalized gradients of Clarke, approxi-
mations of Levitin-Miljutin-Osmolovskii type, etc.). Certain results for non-Lipschitz
functions such as Halkin’s theorem [4] do not thereby follow from ours. In all those
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papers, however, as well as in Clarke’s [1] and Warga’s [12], only first-order condi-
tions were considered, whereas we shall try to present here a much more advanced
theory including conditions of Levitin-Miljutin-Osmolovskii type, higher order
conditions etc.

This research has been strongly inspired by the remarkable work of Levitin,
Miljutin and Osmolovskii [8]. To a certain extent, our theory is a reinterpretation of
that developed by the three authors. Results similar to those established in [8], as well
as differences between the two approaches, will be discussed in part 2, following this
paper. This first part, which might be considered as introductory, contains the reduc-
tion theorem and a general (and very elementary, in fact!) description of first order
necessary conditions. In further papers we hope to consider higher order conditions
and optimal control problems.

We presume that the reader is familiar with elementary properties of
subditterentials of convex functions [7], [11]. Acquaintance with the generalized
gradients of Clarke [1] is also desirable. Recall how they are defined. Let f be a
Lipschitz function defined in a neighborhood of z. The function

h -f(z h)= lim sup t-(f(u + th)-f(u))
t$o

is convex and continuous on X, and the set

Of(z {x* X* If(z h >- (x *, h ), Vh 6 X} Of(z 0),

which is nonempty and weak* compact, is called the generalized gradient of f at z.
The related notions of tangent and normal cones will be also necessary for our

purposes. Let ds(x) denote the distance from x to S, and let z 6 S. The set

Ts(z {h X ds(z h)_-<O}

is a closed convex cone called the tangent cone to S at z. The polar cone

Ns(z)={x* X*l(x*, h)<-O, Vh Ts(z)}

is called the normal cone to S at z. Note that Ns(z) contains Ods(z) and, moreover, the
closure of the cone generated by Ods(z) coincides with Ns(z).

2. The redetio theorem. Recall (see [6]) that z is said to be a regular point for F
relative to S if there are k > 0 and a neighborhood U of z such that for all x U fq S

do (x <- k F(x F(z )l[,
where O {x SIF(x)= F(z)} and do(x) denotes the distance from x to O.

In what follows, we assume that z satisfies not only (1.3) but also (1.2), in
particular F(z)= 0, and denote

I={i{1,... n}lfi(z)= O}.

THEORFM 1. Let z be a regular point for F relative to S. If z is a local (isolated
local) solution to (1.1)-(1.3), then for all sufficiently large r >0, the function

M(x) max {fo(x)-fo(z), max fi(x)} + r(llF(x)l]+ ds(x))
iI

attains local (strict local) minimum at z.
Conversely, if M,(x) attains strict local minimum at z for some r, then z is an

isolated local solution to (1.1)-(1.3).
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Proof. The second part of the theorem is trivial. Similarly simple is the following
assertion" if z is a local (isolated local)solution to (1.1)-(1.3), then z is a local (isolated
local) solution to the problem"

(2.1) minimize f(x)

subject to

(2.2) F(x)= 0, xS,

where

f(x)=max {fo(x)-fo(z), max
Choose q > 0 and a neighborhood V of z such that for any x V S there is

u S satisfying

(2.3) f(u)>-f(z)

(2.4) F(u)= 0,

Such choices are certainly possible since z is a local solution to (2.1), (2.2), z is a
regular point for F relative to S and F is continuous in a neighborhood of z. Let
c > 0 be a Lipschitz constant for F and [ on V. Take r >- qc. If x V 0 S and u s S is
chosen in accordance with (2.3), (2.4), then

f(x) >- f(x) f(u) + f(z) >- -c[Ix ull + f(z)

>-_ -cqllF(x)ll + f(z ) >- -rlllF(x )][ + f(z ).

It follows that z is a local solution to the problem

minimize f(x)+ rl[[f(x)ll, subject to x S.

In the case when z is an isolated local solution to (2.1), (2.2), we can take rl a bit
greater to make z an isolated local solution to the latter problem.

Observe now that x e S is equivalent to ds(x)= O, that z is obviously a regular
point for ds(" (relative to X) and that f(x)+ r[lF(x)[[ is Lipschitz. Using the same
arguments as above, we find r2 > 0 such that z is a local (isolated local) solution to the
problem

minimize f(x) + rlllF(x)[[ + rzds(x).

It remains to take r- max {rl, r2}.

3. First order approximations. Let f(x) be a real-valued function defined in a
neighborhood of z. A real-valued function 05 (x) will be called a first order approxima-
tion for f at z if

c(tx)=t(x), /t>-O, VxX

and

(3.1) limsup t-l(f(z +th)-f(z)-tcb(h))<-_O, Vh X.
t$0

For instance, if f is Lipschitz near z, then &(x)= f(z;x) is a first order approxi-
mation for f at z, as immediately follows from the definition. This is probably the most
important class of first order approximations" it contains usual linear approximations
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of continuously differentiable functions and directional derivatives of Lipschitz locally
convex functions. We admit, however, that in particular situations other approxima-
tions might be useful.

In what follows, we shall consider only such first order approximations which are
also continuous.

PROPOSITION 1. Let c be a first order approximation for f at z. If f attains local
minimum at z, then c attains absolute minimum at the origin. Hence if in addition c is
convex, then

o(o).

Proof. Fix h e X. Then

[(z +th)-f(z)= t&(h)+r(t),

where

lim sup t-ar(t) <- O.
t4,0

If &(h)< O, then tck(h)+ r(t)< 0 for sufficiently small t. However, this quantity is equal
to f(z + th)-f(z) and must be nonnegative if is small.

The proposition below contains the "calculus of approximations" and also is
quite trivial.

PROPOSITION 2. Let c, tl, ", (n be first order approximations for f, fl,""", fn
respectively at z. Then the following is true:

(a) if k >-O, then kO is a first order approximation for kf at z;
(b) bl +" +n is a first order approximation for f +" + fn at z
(c) maxix&i(x) is a first order approximation for maxl=i=nfi(x) at z, where

I= lie {1,’’’, n}lf(z)= max (z)}.
4. A necessary contlition tor the initial problem. Let us return to the initial

problem (1.1)-(1.3). Applying successively Theorem 1, Proposition 2, Proposition 1
and standard formulas for subdifferentials of convex functions, we come to the
following result.

THEOREM 2. Assume that
(a) there are convex functions bo," , &n, t, p which are first order approximations

for fo, ", f, IIF( )ll, ds(" respectively at z and which are continuous but for at most
one of them;

(b) z is a regular point for F relative to S.
If z is a local solution to (1.1)-(1.3), then there are numbers Ao_->0, ,An _->0,

r>O such that Ao+" "+An 1, Aifi(z)=O for i= 1,...,n (or equivalently, Ai=0 if
0 and iI) and

Oe hiO4i(O)+ rOO(O)+rOp(O).
i=0

To derive more specific results from here, one should apply one or another
criterion for z to be a regular point for F and use certain particular kind of approxi-
mations.

5. The case dim Y m > co. For this case, a workable condition sufficient for z to
be a regular point was proved in [6]. We shall quote it in a slightly modified form.
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Identify Y with R". Then

(5.1) F(x)= (f,+l(x),""", f,+,, (x)),

where the functions f,+j are defined and Lipschitz in a neighborhood of z. According
to [6], z will be a regular point for F relative to S if the inclusions

Ixlx* +"" tx,,x* Ns(z), x e Of,+i(z), ] 1,..., m,

imply that x /x,n 0.
If the opposite is true, then there are numbers In+a,""", I,+,, not all equal to

zero and such that

(5.2) 0eAn+a 0L+l(Z)-+-’’ "nt-tn+m Of+,,(z)+Ns(z).

Taking this into account, we get
TIEOREM 3. Let F be defined by (5.1), where the f,+i are Lipschitz in a neighbor-

hood of z, and let &o, 4), be convex and continuous first order approximations for
fo," f,. If z is a local solution to (1.1)-(1.3), then them are numbers o," An+,,
not all equal to zero and such that

(5.3) Ai>=O fori=O,...,n; Aifi(z)=0 fori=l,...,n;
.+m

(5.4) 0 Ai 0b,(0)+ A, Of,(z)+Ns(z).
i=0 i=n+l

We shall come to the result of Clarke [1] if we take bi(x)=(z;x) and hence
0bi(0)= O[i(z). Observe that the inverse deduction is impossible since the method of
Clarke demands that the approximations be defined at every point near z and satisfy
certain semicontinuity conditions.

6. The case of differentiable F. Assume that F is strictly differentiable at z, i.e., F
is Fr6chet differentiable at z and IIF(x+h)-F(x)-F’(z)hll=r(x,h)llhll, where
r(x, h)- 0 if x- z, h 0. For this case too, there is a simple criterion for z to be a
regular point [6, Thm. 2]. Here is one of many conceivable situations in which this
criterion can be suitably applied.

THEOREM 4. Assume that
(a) F is strictly differentiable at z;
(b) R (F’(z)) is a closed subspace in Y;
(c) int Ts(z and the cone-valued mapping x - Ts(x ) is lower semicontinuous

on S at z.
Let b0, &, be first order convex approximations for fo, , f, at z. Ifz is a local

solution to (1.1)-(1.3) then there are numbers hi->0, =0,..., n, and a vector y* Y*
not all equal to zero and such that

-F’*(z)y* 6 Ai Oci(O)+Ns(z).
i=0

Here R (F’(z)) is the range of F’(z).
Proof. If R (F’ (z)) Y, then there is y* : 0 which vanishes on R (F’ (z)); in other

words, F’*(z)y* 0 and it remains to take o , =0.
Assume that R (F’(z)) Y. If (Ker F’(z)) (int Ts(z))= we shall take a non-

zero x* eX* separating Ker F’(z) and int Ts(z) so that, say, (x*,x)>-O for x Ts(z)
and (x*, x) 0 for x Ker F’(z). Since R(F’(z))= Y, it follows that x*=F’*(z)y* for
some y* Y* which is obviously nonzero (see, for instance, [7, 0.1]). Then
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(F’*(z)y*,x)>=O if x Ts(z), and setting ,0 ,n =0, we again get the desired
result.

Assume finally that R (F’(z))= Y and that Ker F’(z) meets the interior of Ts(z).
It follows from (c) that in this case there are h Ker F’(z), IIh <-- 1 and a > 0 such that
any u X with Ilu-hll<a belongs to Ts(x) if xS is sufficiently close to z (since
Ts(x) are closed convex and lower semicontinuous in x at z). For any such x,

where

C(F’(z), Ts(x))= sup inf {llu[llF’(z)u y, u Ts(x)}
Ilylll

-1<-, C(F’(z),X),

C(F’(z), X) sup inf {llu F’(z)u y }
Ilyll_-<l

because F’(z) maps X onto Y.
It follows [6, Thm. 2] that z is a regular point for F relative to S. It remains to

apply Theorem 2 by setting O(h)=l[F’(z)h[I, 0(h)= d(z; h).
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NECESSARY AND SUFFICIENT CONDITIONS FOR A LOCAL
MINIMUM.

2: CONDITIONS OF LEVITIN-MILJUTIN-OSMOLOVSKII TYPE*

A. D. IOFFE

Abstract. The general approach suggested in the preceding paper with the same title is applied to
derive various necessary conditions similar to those which have been recently found by Levitin, Miljutin and
Osmolovskii. The main technical tool is a new kind of approximation extending those used by the three
authors. Normal problems are separately considered; conditions which are both necessary and sufficient are
established for such problems.

1. Introduction. Here we continue to study the same problem as in [3]"

(1.1) minimize fo(x)

subject to

(1.2) F(x) 0, fi(x)<=O, i= 1,..., n;

(1.3) xS,

where f0," , fn are real-valued functions defined in a neighborhood of a given point
z X satisfying (1.2) and (1.3), F is a mapping from the neighborhood into Y (X and
Y being Banach spaces) and S X. As in [3], we suppose that fi and F are Lipschitz in
a neighborhood of z.

The purpose of this paper is to present an alternative and somewhat more general
version of the recent theory of Levitin, Miljutin and Osmolovskii [7], who have found a
very powerful necessary condition of quite a new nature. The alternative character of
our version is connected with the general approach described in [3]. Unlike the three
authors, who used the traditional separation scheme enriched with a new and elegant
idea of how to choose the sets to be separated, we establish the main result first for
unconstrained problems and then, using the reduction theorem of [3] and ready
formulas of convex analysis, pass to the general case. This makes the proofs more simple
and the ideas more transparent. On the other hand, the problem considered here is
somewhat more general since we incorporate nonfunctional constraints (1.3) which are
absent in [7].

The principal technical equipment used here is a modified version of the approx-
imation introduced by Levitin-Miljutin-Osmolovskii. These approximations are
applicable to Lipschitz functions as well as certain other approximations suggested
recently. To certain extent, the approximations of Levitin-Miljutin-Osmolovskii can
be considered as a generalization of generalized gradients of Clarke [1] and derivative
containers of Warga [10]. But they, as well as screens of Halkin [12] are oriented
mainly to the first order conditions while the approximations of Levitin-Miljutin-
Osmolovskii type were created to approach stronger necessary conditions. The crucial
role of these approximations is revealed in 3 in which an exact dual characterization
for unconditional local minima of functions is presented. Using this characterization,
we establish in 4 our main result, which appears as a dual form of the reduction
theorem of [3]. In examples which follow, a special emphasis is made on studying the
cases of Y being finite dimensional or F being strictly differentiable. The concluding

* Received by the editors January 16, 1976, and in revised form January 11, 1978.
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section is devoted to normal problems in which case the main result assumes quite a
perfect form presenting conditions both necessary and sufficient for a local minimum.

All notions and notations which are not explained here are the same as in [3]. We
denote by

s (x, A) sup {(x*, x)]x* 6 A}

the support function of A cX*. Conjugacy and subdifferentiation symbols near
functions of two variables are referred to the second of them, so that &*(x, h*) is the
Fenchel conjugate to &(x, and O&(x, h) is the subdifferential of &(x, at h, etc.

Here again the reader is assumed to be familiar with certain basic facts of convex

analysis, especially those concerning dual operations ([5, 3.4 and 4.2]; [9, 1.6]).

2. Approximations of Levitin-Miljutin-Osmolovskii type. Let f(x) be a real-
valued function in a neighborhood U of z. A real-valued function &(x, h) defined on
U xX will be called an LMO-approximation for f at z if

(i) & (x, 0) f(x);
(ii) for any x in a neighborhood of z, the function h->&(x,h) is convex

continuous;
(iii)

lim inf IIh II-l(& (x, h)-f(x + h)) >= O.

h0

Remdrk 1. This is a refinement of the notion of thin convex approximation
introduced by Levitin, Miljutin and Osmolovskii in [7]. An equivalent modification
was made simultaneously by the three authors under the name of upper approximation.

Consider several examples.
Example 1. Let f be strictly ditterentiable at z. Then

eft(x, h)= f(x)+(f’(z), h)

obviously satisfies (i)-(iii).
Example 2. Let f(x)= g(G(x)), where G" X- Y is strictly differentiable at z and

g is convex and continuous in a neighborhood of G(z). Then the function

(x, h) g(G(x)+ G’(z)h)

is an LMO-approximation for f at z.
Example 3. Let f be Lipschitz in a neighborhood of z. Take sufficiently large

k > 0 and set

cb (x, h) f(x) + k llh II.
More sophisticated examples for Lipschitz functions can be constructed with the

help of the generalized gradients of Clarke.
Let A c X* be convex and weak* compact. We shall say that A is locally effective

for f at z if for any e >0, there is 6 =6(e)>0 such that Of(x)cA whenever

]Ix- zll <--8(e). Here A is the (norm) e-neighborhood of A in X*.
To large extent, this notion is a generalization of the notion of e-subdifferential of

a convex function (see Example 5 below).
Example 4. Let f be the same as in Example 3, and let A c X* be locally effective

for f at z. Then

ck(x, h)=.f(x)+ s(h, A)

is an LMO-approximation for f at z.



CONDITIONS FOR A LOCAL MINIMUM. 2 253

Indeed, properties (i), (ii) are obviously satisfied. Take r/> 0 and 6 > 0 such that
Of(x)can if IIx-z]]<-6. If Ilx-zll<-_/2, Ilh[[<_-/2 then Ilx+th-zl[<- for any t
(0, 1). By the mean value theorem of Lebourg [6] there are t0e(0, 1) and x*
Of(x + toh such that

(x*, h f(x + h f(x).

But x* An and hence

s(h, An)= s(h,A)+llhll>=f(x +h)-f(x).

To conclude the example, observe that for a Lipschitz function, locally effective
sets always exist. Indeed, every set

cnv (,lx_<= Of(x))
is norm bounded and hence locally effective, provided 6 is sufficiently small (because
the multifunction x Of(x) is upper semicontinuous). Moreover, if we are given a
derivative container in the sense of Warga [10], then its convex closure is locally
effective at the corresponding point.

In the next example we shall consider approximations extending directly those
actually used in [4]. Let a convex function f and e > 0 be given. The set

0/(x) {x* X*[f(x)+f*(x*) <- (x*, x)+ e}

(nonempty if x dom f) is called e-subdifferential of f at x. This set (see [9]) is always
convex, weak* closed and (if f is continuous at x) norm bounded. It is easy to verify
furthermore that Of(u)c Of(x) if u lies sufficiently close to x. Thus Of(x) is locally
effective for f at x. In particular

(2.1) sup {(x*, u)-f*(x*)lx* Off(x)}= f(u)

if u is not very far from x.
Example 5. Let b(x, h) be an LMO-approximation for f, and set

b (x, h)= sup {(h*, h)-c*(x, h*)lh* Oc(x, 0)}.

PROPOSITION 1. Iff is Lipschitz in a neighborhood of z and e > 0, then c (x, h) is
an LMO-approximation for f at z.

Proof. Conditions (i) and (ii) of the definition of LMO-approximations follow
immediately from elementary properties of subdifferentials and the Fenchel con-
jugacy.

Let k be a Lipschitz constant for f. Given rt < k, rt > 0, we choose a positive
8 <- e/(2k) such that

(2.2) qb (x, h + 7 IIh I[--> f(x + h)

whenever [Ix zll Ilhl[ . It suffices to show that (2.2) would not be violated if b is
replaced by b.

Let x and h be such that IIx-z[l-<_, Ilhll<_-, By definition, O,(x, h)<-_c(x, h). If
the equality holds for the x and h, nothing would remain to prove. Therefore we
assume that b (x, h)< b(x, h) (which implies in particular that h 0). Let

to inf {t > O l& (x, th < cb (x, th )}.

Then to > 0 according to (2.1), and to < 1 by what we have just assumed.
First we shall prove that there is an h* Oc (x, toh) such that

(2.3) c(x, O)+ *(x, h*)= e.
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Indeed, since c (x, toh d (x, toh and < =< b, the inclusion 0 (x, toh 0< (x, toh ) is
true. But Oct,(x, toh)+ c9 since b(x, is convex and continuous, and Oct,(x, toh)c
0<b(x, 0) by definition. Hence there is h*l Oda(x, toh) such that h* Ocb(x, 0) or in
other words, <b(x, 0)+ <9*(x, h)<=e.

On the other hand, if t>to,<(x, th)>&(x, th) and h*Ocb(x, th), then
h*Oc(x,O) (otherwise we would have <9(x, th)=ck(x, th)) and hence &(x, 0)+
<b*(x, h*)>-e. Using routine convergence arguments (and taking into account that
c9*(x,h*)=(h*,th)-4(x, th)), we shall establish the existence of such an h2*
0<9 (x, toh) that <9 (x, 0) + <*(x, h 2* => e. Then a convex combination of h * and h 2* will
satisfy (2.3).

It follows from (2.3) that

e-(h*, t0h)= &(x, O)-cb(x, toh),

which together with (2.2) implies that

(h*, toh)>-f(x + toh)-f(x)+ e- Ttollhl] > e-(k + 7)to}lh]l.
As for 0 < to < 1 and Ilhll-<- --< /(2k), it follows that

Ilhl[-l(h *, h)>-(tol[hll)-le -(k +n)
e-(k+n)>-k-n.

Finally, since h* Ock (x, toh) (indeed, h* Ock(x, toh) and h* Ock(x, 0)),

& (x, h )+ qllhll >= d (x, toh )+ rtllhll + (1- to)(h *, h)

>- 4) (x, toh ) + rt Ilh / (1 to)(k rt )lib
>- d (x, toh ) + rl }lh >- f(x + toh ),

which completes the proof.
Here are two simple propositions reflecting elementary properties of the LMO-

approximations.
PRO’OSITION 2. If Cb (X, h) is an LMO-approximation for f at z, then

0(h)= b’(z, 0; h)= lim t-l(c(z, th)-cb(z, 0))
t$0

is a first order approximation ]’or at z.
PROPOSITION 3. Let fl,’’’,]’n,]’ be Lipschitz in a neighborhood o" z, and let

cbl,’", ok,, 4) be LMO-approximations for t, 1, " at z. Then the following are
true:

(a) k4) is an LMO-approximation ]’or k] if k >-0;
(b) +. + b, is an LMO-approximation ]:or f +" + f,
(c) maxiz4i(x) is an LMO-approximation for maxli__<,C’i(x), where I=

{i e {1,..., n }1’i (z) maxl__<i_<_, f.(z)}.
To conclude the section, we extend the notion of LMO-approximation to sets.

Let, as before, z S c X, and let x--> W(x)cX be a closed-convex-cone-valued
multifunction defined in a neighborhood of z. We shall say that W is a tangent
LMO-approximation for S at z if

lim inf

hO, h W(x)

Ihll-(ds(x)-ds(x + h))=O.
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PROPOSITION 4. The following two conditions are equivalent:
a) W is a tangent LMO-approximation for S at z;
(b) W(x)= {h X[(x, h)_-< (x, 0)}, where 4) is a LMO-approximation for ds(" )

at z such that any function h --> &(x, h)-&(x, 0) is sublinear.
Proof. Obviously, (b) implies (a). If (a) is true, we set

6(x, h)= ds(x)+ 2dw()(h ).

Fix r >0. According to the definition, there is a t>0 such that ds(x +u) <-
ds(x)+ ?llull whenever [[x

Then, given hX,xX such that []x z < 6, ][h < 6/2, we can find u W(x)
such that [[u[[-< 21]h[[ < t, [[h ul[ _-< 2dw(x)(h). We have

ds(x + h)<-ds(x + u)+ ][h -ul]
<-_ ds(x)+ 2dw(x)(h)+ nllull 6(x, h)+ wllh II.

3. Dualization of the minimality condition. Let &(x, h) be an LMO-approxima-
tion for f(x) at z. Consider the function (/> 0 fixed)

Cn(x) -man {&*(x, h*)l Ilh*ll < }
(minimum is obviously attained.) This function has a very simple meaning. Let

p(x, h )- 6(x, h)+ llhll.
Then (by elementary properties of Fenchel conjugacy)

(3.1) n(x)= inf Pn(X, h).
hX

In this section, we prove the following crucial fact.
PROPOSITION 5. Let f be Lipschitz in a neighborhood of z, and let (x, h) be an

LMO-approximation for f at z. Then the following conditions are equivalent:
(a) f attains local minimum at z;
(b) 0 O4)(z, O) and for any r > 0, Cn attains local minimum at z
(c) 0 O4)(z, O) and n attains local minimum at z for some 1 > O.
Proof. Note to begin with that

(3.2) f(x)=6(x, o)_-> (x)

since *(x, h*) + (x, 0) >- 0 (the Young-Fenchel inequality).
(c)::)> (a): Since 0s O(z, 0), we have

.(z)-> -*(z. 0)= (z. o)=f(z).

which together with (3.2) implies (a).
(b) :=)> (c) is trivial.
(a) =:)> (b)" The fact that 0e0(z, 0) follows from Proposition 2 and from [3,

Prop. 1 ].
Fix r/> 0. According to the definition, there is a 8o > 0 such that

4,(x, h + (/2)[]hll >- f(x + h >- f(z

whenever ]Ix- z <--8o, I[h ll-<-80. For such x and h

(3.3) pn(x, h)>-f(z)+(n/2)llhll>- f(z).
Take 0 < t <_- to to ensure

(3.4) f(x)<-f(z)+(n/2),o, if Ilx-zl]< .
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For such x,

p,(x, O)= f(x)<- f(z)+(rl/2)o.

If in addition, ][hll 60, then by (3.3)

p,(x. h)>=f(z)+(rl/2)llhl]= f(z)+(rl/2)6o.

Since p(x, ) is convex, the latter two inequalities show that

inf p, (x, h) inf p, (x. h),
h X Ilhll--<--,o

whenever IIx- ell--< Thus (3.1)-(3.3)imply for such x that

.(x)>-f(z)>-.(z).

Remark 2. As it follows from the proof, b(x, h) need not be continuous in h; it
suffices to assume that b(x, is lower semicontinuous and proper (nowhere equal to- and not everywhere equal to ).

4. The main theorem. Examples. We proved in [3] that under certain mild
assumptions, z is a local minimum for

M,(x) max Ifo(x)-fo(z), max fi(x)l + r(llF(x)]l+ ds(x))
l<=i<=n

,.’f it is a local solution to (1.1)-(1.3). We showed also that conversely, if Mr attains
strict local minimum at z for some r>0, then z is an isolated local solution to
(1.1)-(1.3). In this section we make use of LMO-approximations to derive a dual
equivalent to the just-quoted theorem. As a result, we describe a general way to built
functions other than Mr but having the same properties.

From now on, we assume that

fo(z)=O(4.1)

and hence

Mr(x)= max fi(x)+ r(llF(x)ll+ ds(x)).
O<=in

If bo, , b,, , p are LMO-approximations for fo,""", f,, [IF(" )[[, ds(" respec-
tively at z, then

g,(x, h) max bi(x, h)+ r(4,(x, h)+ p(x, h))

is an LMO-approximation for Mr at z by Proposition 3.
Fix r/>0, and let F, denote the collection of all (2n+4)-tuples

(Ao, An, ho* h* h* *),u such that

Ai->0, i=0,...,n; Afi(z)=O, i=l,...,n;
(4.2)

Ao+...+A, 1;

(4.3) h0*,." h* h* * X*,U E Aih+h*+u*
i=0

If z is a local solution to (1.1)-(1.3), then Theorem 2 of [3] and Proposition 3

imply the existence of A0,’’", An satisfying (4.2) and r > 0 such that

(4.4) OE AiOqbi(z, 0)+r(0(z, O)+Op(z, 0)).
i=0
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Let

M*r(x)=-min ( Aic*i (x, h.*, )+r(O*(x, h*/r)+o*(x, u*/r))).
F =0

Remark 3. Strictly. speaking, we should write F,(40,"" ,&,,0,0) and
M*r(c,"., n. , p,X), which, however, would be too awkward. Hopefully, our
simplified notations will lead to no confusion.

Applying Proposition 5 to Mr and gr and using standard formulas for composite
conjugate functions (which justify in particular writing "minimum", not "infimum" in
the definition of M*r), we come to the following characterization for solutions in
(1.1)-(1.3).

THEOREM 1. Let bo,’’’, 4),, d/,p be LMO-approximations for fo,"" ,f,,
IIF(" )11, ds(" respectively at z. Then the following two assertions are true.

(a) Let z be a regular point off relative to S. If z is a local solution to (1.1)-(1.3),
then for any q >0 and any sufficiently large r >0, the function M*r attains local
minimum at z.

(b) Iffor some *7 > 0, r > 0, there are Ao, An such that (4.2) and (4.4) hold and
M*r attains strict local minimum at z, then z is an isolated local solution to (1.1)-(1.3).

This theorem is of course an exact dual equivalent to the reduction theorem of
[3]. It allows us, however, to develop various conditions, say, by choosing various
approximations, and should be considered more suitable for applications thereby.

Example 6. The function M*r assumes especially simple and natural form if we
consider approximations as in Example 4.

Let Ao,.. ", An, C,D be locally effective sets for fo,’" ,fn, IIF(" )11, ds(" )
respectively at z. Then

(4.5)

)i(X, h) f(x, h )+ s(h, Ai),

O(x, h)=llF(x)ll+s(h, C);

p(x, h )= ds(x)+ s(h, D)

i-0, , n;

are LMO-approximations for the corresponding functions. We have

(4.6) 4* (x, h*)= {-fi(x), if h* Ai,
o, otherwise,

etc. Therefore in this case

m*nr(X)-- max Aifi(x +r(llF(x)ll+d(x)),
Oor

where (R)r Consists of all vectors (Ao," , An) satisfying (4.2) and

(4.7) O AAi+r(C+D)+Bn.
i=0

Here B, denotes the ball of radius r/around the origin.
Example 7. The result of the previous example can be further simplified in the

case dim Y m < oo. In this case, we can identify Y with R" and set

(4.8)

(4.9)

F(x)=(fn+l(x), f,+m(x))

IIF(x)11 Ifn +1 (X)l d" - Ifn+m (X
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If Ai is locally effective for l, then -Ai is obviously locally effective for -/], hence

g,i (x, h)= max {/’(x) + s(h, ai), -f(x)+ s(h, -ai)}

is an LMO-approximation for I/’] at z, hence

g,(x, h)= g,,+l(x, h)+... + O,+,,,(x, h)

is an LMO-approximation for IIF(" )11 at z. We have

g,* (x, h*)= min {-af(x)+(1-a)f(x)l, 0 <- a <- 1, h* aa- (1- c)A}

(setting Ix 2c 1)

=min {-Ixf(x)[ [ix -< 1, h*

It follows that

0*(x, h*)= min g,* (x, h*) h* h*
i=n+l i=n+l

min Ixifi(x) Ixi] - 1, h* e
i=n+l i=

Thus in the case being considered,

(4.10) Mr max (Ao, ", A,+m, x) + rds(x ),
r

where

(ao,..., :t,+m, x)= aofo(X)+... +

is the Lagrangian of the problem and fI,r contains those collections of multipliers
(Ao, , A,+m) which satisfy (4.2), IAil <= r for n + 1, , n + m and

(4.11) Oe AiAi+rD+B,
i=0

(D and B, being the same as in Example 6).
Example 8. Another important particular situation arises in the case of F being

strictly differentiable at z. In this case the most natural LMO-approximation for F(. )
is (Example 3)

so that

4,(x, h)= IlF(x)+ F’(z)hll

g,*(x, h*) -max {(y*, F(x)) I[y*ll_-< 1, F’*(z)y* h*}

and M*r assumes the form

M*r(x)= max ((y*, F(x))- 2 Aick’(x, h* )-ro*(x, u*/r)),
Ar =0

where Ant is the collection of (2n +4)-tuples (Ao," , A,, h,. , h, y*, u*) such
that I1*11 r and (o,"" ,,, h,..., h,F’*(z)y*, u*) F.

If in addition, 6 and p are given by (4.5), then Mr is defined by formula (4.10),
just the same as in the previous examples, but with

(Ao, ", A,, y*, x)= Ao/(X)+’’’ + A,f,(x)+<y*, F(x))
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and "r consisting of vectors (ho, , A,, y*) satisfying (4.2), I[Y*II <---- r and

-F’*(z)y* A 1Ai + rD + B,.
=o

Example 9. Consider again the foregoing situation assuming for simplicity that
S =X, so that ds(x)=-O and p(x, h)=-O, and apply approximations i, etc., described
in Example 5. We have

* (x, h*), if h* Oi(x, 0),
* (x, h*)=

oo, otherwise.

Therefore only those Ai, h, y* are needed to calculate M* which belong to

Anr(X)={(Ao,’’’,)t,, h, h, y*, u*)e An, lu* O, hf eod)i(x, 0), 0,..., n}

(o*(x, h*) differs from infinity only if h* =0 and O*(x, 0)=0, hence we can take
u* 0). Thus

M*nr(X)= max (y*, F(x))- E i(X, h’i)
Ar(x) =0

Here M*r depends on e too so that *M,r might be a better notation.
It remains to note that if F’(z) maps X onto Y (which implies regularity

according to the Lusternik theorem), any set A, (x)= A,(x) is compact in the weak*
topology and we may replace *Mner by

max ((y *, F(x )) Ai*(x, h/*)).
A (x) i=0

This is just the function introduced by Levitin-Miljutin-Osmolovskii in [7].
We conclude this section with several remarks concerning the theorem and the

examples.
Remark 4. As it follows from the Young-Fenchel inequality,

(4.12) M*r(x)<-_M(x), Vx.

Thus any series of functions disposed between M*r and Mr will discriminate solutions
as well. This suggests further possibilities to develop conditions for local minima. For
instance under suitable assumptions ensuring regularity, functions

max (Ao, x)+ rds(x )

can be considered in the situations of Examples 7 and 8.
Remark 5. As it follows from the proof, the theorem will still hold if we assume

that one of the approximations, say p(x, h), is not everywhere finite and continuous in
h. Indeed, the conjugate to the sum is still the infimal convolution of the conjugate
functions (with the infimum being attained) if one of the functions, not more, is not
continuous. The rest follows from Remark 2.

For instance, if we have a tangent LMO-approximation W for S at z, then we can
take

ds(x), h e W(x),
h)=

co, otherwise.
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Easy calculation shows that, in this case

-_rain ( ,4*, (x, h)+r4,*(x, h*/r)) +rds(x)Mn*r(x)
F(x) =0

where

,(x)={(Ao,." ,A,, h,..., h, h*)l(Ao,"’, h*, u*)F for some u* W(x)},
W(x) being the polar cone to W(x).

5. Normality. In both the reduction theorem of [3] and Theorem 1, one can
easily notice a gap between the necessity and sufficiency parts" the latter includes the
demand that z be an isolated local minimum for the corresponding function. To
remove this gap, additional assumptions connected with the concept of normality are
needed.

We shall say that the problem (1.1)-(1.3) is
(a) normal at z if Ao> 0 whenever Ao An satisfy (4.2), k > 0 and

(5.1) O
i=0

(b) strongly normal at z if there are sets Ao,’", A,, C, D which are locally
effective for fo,""", fn, [IF(" )11, ds(" respectively at z and such that Ao > 0 whenever
Ao,’’’, An satisfy (4.2), k >0 and

(5.2) O6 A,A, + k(C +D).
i=0

Let bo, ", bn, 4,, p be the same as in the preceding section. For any r/> 0, r > 0,
we consider the set N, containing all (2n + 3) tuples (A ,. ., An, ho*," , h,*, h*, u*)
which satisfy

(5.3) AO, Af,(z)=O, i=l,...,n;

(5.4) [[ho* +ahl* +’" +anh* +h*+u*ll<-n,

and the function

Dnr(X)-- -inf (4o* (x, ho*)+ A ltl(X, h 1")+""
/v.,,

+Anb*(x, h*)+r(b*(x, h*/r)+p*(x, u*/r))).

Consider also the function

Pr(X)--fo(X)’4-r(
i=l

where f+= max(f, 0).
THEOREM 2. Assume that z is a regular point for F relative to S and that the

problem (1.1)-(1.3) is strongly normal at z. Then the following conditions are
equivalent"

(a) z is a local solution to (1.1)-(1.3);
(b) Pr attains local minimum at z if r is sufficiently large;
(c) D,, attains local minimum at z for any 1 >0 and sufficiently large r >0,

whenever 4o," tbn, O, O are LMO-approximations for fl, fn, liE(" )ll, ds(" at z
and (5.1) holds for certain Ao," , An satisfying (4.2) and k >0.
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Remark 6. Results like equivalence of (a) and (b) were proved earlier (Howe [2],
Pietrzykowski [8], Zangwill [11]) for finite dimensional smooth or convex problems in
the presence of certain constraint qualifications.

Remark 7. Theorems 1 and 2 relate differently to the condition (4.1). Though it
yields no theoretical restrictions, any result depending on this condition is rather
difficult to use in practice because a priori knowledge of the minimal value of the
function to be minimized is needed. Theorem 1 as well as the reduction theorem of [3]
relies essentially on (4.1). On the other hand, Theorem 2 does not depend on the
convention because both D,r and Pr are linear in/Co.

Proof of Theorem 2. (a)=> (b): Let the sets Ao,’’’, An, C, D be locally effective
for Co,""", [n, liE(" )11, as(, respectively at z. Since our problem is strongly normal,
there is another collection of locally effective sets, say A’o, , An, C, D, such that
Ao>0 whenever (4.2) and (5.2) (the latter for primed sets) are satisfied. Taking, if
necessary, Ao (3 A,. instead of Ao, we can assume that Ao c Ao etc.

Define &i, g’ and p by (4.5). Since (a) holds, the function

M*nr(X)=max hifi(x)+ r(llF(x)ll+ ds(x))
0. i=O

attains local minimum at z (Example 6) for any r/> 0 and sufficiently large r > 0.
It is easy to see that Ao> 0 whenever (4.2), (4.7) are satisfied and r/is sufficiently

small. Moreover, we can find r/> 0 and e > 0 such that A0 -> e whenever Ao,""", An
and r satisfy (4.2), (4.7).

Fix some x. If Co(X)=> 0, then

If Co(x) < 0, then

M*nr(x)<- fo(x)+max hif(x)+ r([[F(x)l[+ ds(x))
O.r i=

<=fo(X)+ f (x)+ r(llF(x)l[/ ds(x)).
i=1

M*nr(X)<: F_.fo(X)q- max E tifi(x) r(llF(x)ll/ ds(x))
O.r i=l

<-_ fo(x)/ f-? (x)/ r(llF(x)[l/ as(x)).
i=1

These two inequalities immediately imply (b)since Pr(z)= M*nr(Z)= O.
(b): (c): Let I={i {1,... ,n}lfi(z)-O}. Clearly,

Qk(X)"- fo(X)-- k(ilf: (x)--IIg(x)[[- ds(x)) Vk(X)

in a neighborhood of z. Therefore Qk attains local minimum at z if (b) holds.
By Proposition 3

g(x, h): &o(X, h)+ k(ii? (x, h)+ O(x, h)+ p(x, h))
is an LMO-approximation for Qk at z if so are &o, , p for Co, , ds(" ).

By Proposition 5

(.) o og(z, o)
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and for every r/> 0

q,(x) =-min {g*(x, h*)lllh*ll < n}

attains local minimum at z.
We have for e I

O+(z,, 0)= {/xx*lO<z= =<1, x* e O(z, 0)};

hence (5.5) implies the existence of such/x e [0, 1], L that

which implies the second part of (c).
Furthermore

([)*(x, u*) min {/x&* (x, h*)10<-_ <- 1, txh* u*};

hence

g*(x, w*)--min I’(x, h*o )+k I*i (x, v*i /k)+k(O*(x, h*/k)+p*(x, u*/k))}
iI

with the minimum being calculated over the set of all , v* (i I), h*, u* satisfying

0<--b6i =< 1, h + Y’. lziv f + h * + u * w *
iI

Taking ,i ktzi, hi v*i/k for L ,i 0 for i L we see that ,(x) is just Dnk(x).
This proves (c).

(c):ff (a): First we note that Dnr(z)=fo(Z) (by virtue of (5.1)). On the other hand,
if fi(x)<= O, 1, , n, F(x)= 0, x e S, then

Dnr(x)<- fo(x)+ Aiff (x)+ r(llF(x)l]+ ds(x))= fo(x);
i=1

hence fo(X)>-_ fo(Z) for all admissible x lying in a neighborhood of z.
To conclude the section, we shall demonstrate that strong normality is not an

exotic property" for the cases Y being finite dimensional or F being strictly differen-
tiable it coincides with normality if suitable criteria for regularity are fulfilled. On the
other hand, normality follows from simple constraint qualifications extending such a
renowned condition as that of Slater.

PROPOSIrION 8. Let Y be finite dimensional so that F is defined by (4.8). Assume
that

-4-

(5.6) O Y’. AOf(z)+Ns(z) implies An+l An+m=0.
i=n+l

Then the problem (1.1)-(1.3) is strongly normal at z if it is normal at z.
Proof. Note to begin with, that the set conv (A t_J (-A)) is locally effective for If[ if

A is locally effective for f. Therefore

C Z conv (Ai U(-Ai))
i=n+l

is locally effective for IF(. )[ whenever the A are locally effective for fg.
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Take nonincreasing sequences {Aok},""", {An+re,k}, {Dk} of sets locally effective
for fo," , fn+,,, ds such that

(5.7) (3 Agk Ofg(Z), 1,. ., n + m, Dk Ods(z),
k =0 k =0

and set

n+m

(5.8) Ck E conv (Aik (-J Agk)).
i=n+l

Then the Ck are locally effective for [IF(" )11 at z.
Assume that the statement is false. Then for any k 1, 2,. , there are numbers

A lk --> 0, , ,nk --> 0, rk > 0 such that

0 AikAik + rk (Ck + Dk), Aik 1.
i=1 i=1

By virtue of (5.8), this means that for any k 1, 2,..., there are x A,,,i=
1, n -- m,/./,ik (1, -< 1), n + 1, , n + rn and u* 6 Dk such that

rt-b

0 2 ,,,x,, + ru ’i=1

where ,gk rk/xgk for n + 1, , n + m.
Any of the sequences {x/}, {u} is bounded, hence weakly* precompact, and

limit points of the sequences belong to Ofg(z), Ods(z) respectively, in view of (5.7).
By definition, the sequence {Aik} is bounded if i<-n. If this is true for any

1, , n + m, then the sequence of

n+m

rkU’ AikX*ik
i=1

is also bounded. In this case, no loss of generality will follow if we assume that for any
1,. , n + m, ,gk converges to some ,g as k o. Let x* be a limit point for the

sequence {x/}, and let u* be a limit point for {rkU’}. Then

(5.9) O= AgXg* +u*.
i=1

But Ai->_0 for 1,. , n, A1 +" + An 1, x Of(z) and u* Ns(z) (because of the
last equality in (5.7)). Thus (5.9) contradicts the fact that the problem is normal at z.

It follows that we must assume that

=max[Aikl ifkc.

Denote ik Aik/yk, tk rk/’yk. Then

o E .,x + tu
i=1

(5.10) [tZik[----<l, Vi=l,’’’,n+m, Vk=l,2,’’’,

/Xgk0 askoe, fori=l,...,n.
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As above, we may assume that for n + 1,..., n + m, Zik also converges to
some zi. Obviously,

(5.11) max {[txi [[ n + 1 _-< -< n + m} 1.

Again we see that the sequence {tkU’} is bounded. Let x* be a limit point for {x},
i= 1,..., n + m, and let u* be a limit point for {tkU’}. Then x* Ofi(z), u*e Ns(z)
and (5.10) implies that

0= 2 x*+u*,
i=n+l

which together with (5.11) contradicts (5.6). Q.E.D.
PROPOSITION 9. Let F be strictly differentiable at z. Assume that there is D c X

which is locally effective for ds(" at z and such that

(5.12)

where

C(F’ (z), KD) sup inf {]lh [Ilk KD, F’(z)h y } c <,
Ilylll

K {h X I(x*, h)-->0, Vx* 6D}.

Then the problem (1.1)-(1.3) is strongly normal whenever it is normal.
Proof. Since F is strictly differentiable at z, the set

C {x* X*]x* F’*(z)y* for some Ily*ll 1}

is locally effective for IIF(" )11 at z.
Let Aik, Dk satisfy (5.7) and, in addition, Dk c D.
If the statement is false then we can find sequences {A/k}, {x*i}, {r}, {y}, and

(i 1,..., n, k 1, 2,...) such that

hik ->0, . hik 1, Ilyll rk, k 1, 2,...,
i=1

X Aik, U Dk, Vi 1,’’’, n, Vk 1, 2,...,

and

(5.13) 0 AikXik + (z)y + rkUk.
i=1

If the norms of y are bounded, such hi >- O, Yi=l hi l, x* Ofi(z),y*Y* and
u * Ns(z) exist that

0 E h,x/* + F’*(z)y* + u*,
i=1

which is in contradiction with the normality assumption. (The proof is exactly the
same as above.)

Hence this is not the case and we must suppose that [ly[[-o. Denote /Zk-
;t,/lly II, v y/llyll, tk rdllyll. Then

h* *k [ikX ik
i=1
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norm converges to zero, I[v 1 and

0 F’*(z)v* + tku + h’
or in other words,

IIF’* (z )v’ + tku O.

On the other hand, u D c D, because of which (u, h >_- 0 for any h Ko. Therefore
by (5.12)

liE’* (z )v ; + tu I[--> sup {<F’* (z)v *, h )t Ilh <-- 1, h Ko}

sup ((v, F’(z)h )l [Ih <- 1, h Ko}

> IIv*ll 1

2C(F’(z), KD) 2c

and our hypothesis that Ily II--’ oo also proves to be wrong. This completes the proof.
Note (see [4]) that (5.12) is surely satisfied if the null-space of F’(z) meets the

interior of Ts(z), the tangent cone to S at z, and the set-valued mapping x Ts(x) is
lower semicontinuous from the norm topology into the norm topology.

The concluding result, to follow, gives an elementary but, hopefully convenient,
sufficient condition for the problem to be normal.

PROPOSITION 10. Assume that z is a local solution to (1.1)--(1.3) and there is an
h X such that

//(z,h)<0, ’or l n,

liE(. )l[(z, h)= O, ds(Z, h)= O.
Then the problem is normal at z.
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NECESSARY AND SUFFICIENT CONDITIONS FOR A LOCAL MINIMUM.
3: SECOND ORDER CONDITIONS AND AUGMENTED DUALITY*

A. D. IOFFE

Abstract. The paper contains second order necessary and sufficient conditions for a minimum, exact
smooth penalty theorems and augmented Lagrangian duality theorems which cover the case when more
than one collection of Lagrange multipliers exist and the second order quadratic function can be lower
estimated only by norms weaker than that in which the cdst function and constrained mappings are
differentiable.

1. Introduction. In what follows, X, Y, Z,... are Banach spaces, f, g,... are
functions and F, G,... are mappings. By (., we denote the canonical pairing
between a Banach space X and its topological dual X.* If F: X -> Y is a mapping, then
F’(x) will denote the Frech6t derivative of F at x, F"(x) will denote the second Frech6t
derivative at x and F"(x)(u, h) will be the corresponding bilinear mapping from X X
into Y. If F depends on more than one variable, say F F(x, u), then the first and
second derivatives of F with respect to x will be denoted by Fx and Fxx respectively,
etc.

As it follows from the title, our purpose is to discuss second order conditions for a
minimum and augmented duality theorems. This paper is almost independent of the
first two parts of the work [5], [6]. The core of the approach developed here is,
however, the same" variational analysis is applied first to an unconstrained problem
which contains those arising after the reduction of the constrained problem we want to
study.

The basic problem which will be studied here is

(1.1) minimize f(x)= g(G(X)),

where g is a sublinear function on Y and G: X--> Y will be assumed continuously
differentiable in a neighborhood of a given point z X as many trimes as necessary for
each particular result.

We shall see in 7 that this class of problems contains those unconstrained
problems which appear after the reduction theorem of [5] has been applied to smooth
problems with equality and finitely many inequality constraints.

To outline the nature of the results presented in the paper and to discuss briefly
interrelations of the results with those already known, we consider for a while the
problem

(1.2)

subject to

(.3)

Let

minimize fo(X)

fi(x) <- O, 1,. , n.

-9(X, ho,""", An)’-- Aofo(X) q- h lfl(x)q-""" q- hnfn(x).

* Received by the editors January 16, 1976, and in revised form January 11, 1978.

" c/o R. T. Rockafellar, Department of Mathematics, University of Washington, Seattle, Washington
98195.
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The "standard" second order sufficient condition for a point z 6X to be a local
solution for (1.2), (1.3) (see [3]) is that there are k > 0 and Ai _<-0 such that

(1.4) A0>0, hifi(z) 0, i=l,...,n;

(.5) of;(z)+... + .f’.(z)= o
(first order conditions) and

2xx (z, h 0, , A,,)(h, h) ==_ k Ilh 2(1.6)

for all h Xsatisfying

where

and

(fl(z),h)<-O, ieI1,

(fl(z), h)=O, I2,

I1 {i {1,’.., n}lfi(z) 0, Ai-- 0},

/2 {i {1,""", nI[fi(z) O, /i 0}.

(If X is finite dimensional, one can replace "_->/llhl]z’’ by "> 0" in the right-hand part
of (1.6).)

This condition has two serious defects. The first is that it is far from being
necessary. More precisely, after replacing kllhll: by 0 in the right hand part of (1.6), we
shall not have, as a rule, a necessary condition, In fact, it will be necessary if only one
(up to a multiplicative constant) collection of multipliers satisfying (1.4), (1.5) exists.
But to guarantee the uniqueness of such a collection a priori, additional strong
regularity assumptions are needed [3].

Another defect is that inequalities like (1.6) do not typically arise in many infinite
dimensional problems. A typical situation is that the functions fi are differentiable in
X, but possible lower estimates for the second derivative of the Lagrangian function
involve only a weaker norm in which the functions are not differentiable. (For
instance, in calculus of variations, functionals are differentiable in the C-norm, but
their second derivatives can be estimated from below only with the help of the
L:-norm.)

It was in the work of Levitin, Miljutin and Osmolovskii [7] that a sufficient second
order condition free from the first defect was originally found. Situations similar to the
two-norm discrepancy described above are often encountered in closely related areas
such as variational inequalities, etc. (see [8]), and, no doubt, many specialists in
extremal problems are aware of them. But we do not know a work containing a
general second order result which would cover such situations.

Our first purpose is to give, for (1.1), a second order condition free from both
defects. Note the role of the distance estimate (4.3), which alone makes such a
condition possible. Observe also that the method of proof of the sufficient condition
(Theorem 2) goes back to [7].

This condition is applied afterwards ( 6) to derive nonconvex duality with

nonlinear augmented Lagrangians. The form of the Lagrangians models the form
suggested by Rockafellar [10]. We establish also an exact smooth penalty theorem
generalizing an earlier result of Arrow and Solow [2].

In 7, 8 we apply these results to the ordinary problem with equality and
inequality constraints (with a possible infinite number of the first) thereby extending
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results of Arrow, Gould and Howe [1], Rockafellar [10], and Mangasarian [9]. The
first two sections following the Introduction are devoted to necessary conditions,
mainly to demonstrate that the sufficient conditions established thereafter are "almost
necessary". Technically, the necessary conditions are direct corollaries of those given
in [6].

In what follows, we denote

r(x, y*)= (y*,

and call this function the Lagrangian of the problem (1.1). We shall see that the role of
this function is quite the same as the role of ordinary Lagrangians in constrained
problems.

2. A general necessary and sutlicient condition. If f(x) attains local minimum at z
then 00f(z); in other words, there is y*eg(G(z))such that G’*(z)y* 0. This is
obviously the same as

(2.1) y* e Og(G(z)); N(z, y*)= 0.

The set of all y* satisfying (2.1) will be denoted by fo.
Let r/>0, e >0 and

f, -{y* Y*lllG’*(z)y*ll<-n; y* Og(G(z))},

where Og(y) is the e-subdifferential of g at y:

0g(y) {y*ly* 0g(0), (y*, y)-g(y)>_--e}.

In particular, we get rio if r/= e O.
Consider the function

0, (x) max {Lr(x, y*)ly*

The maximum is obviously attained, since ,, is a closed subset of a weak* compact
set Og(O).

It is easy to see that

(2.2) o implies qn (z) f(z), Vle.
Indeed, since f. c 0g(0),

q%(z) -< max (y*, G(z))= g(G(z)).
y*0g(0)

On the other hand, if y* e fo then y* e fn and y* Og(G(z)), that is,

g(G(z))= (y*, G(z)) <- (, (z).

PROPOSITION 1. Let G be strictly differentiable at z. Then the following conditions
are equivalent"

(a) f(x) attains a local (resp. strict local) minimum at z;
(b) rio and qn attains a local (resp. strict local) minimum at z, for any rl > O,

e>0;
(c) o # and, attains a local (resp. strict local) minimum at z [or some 1 > O,

e>O.
Proof. For any e > O, the function

p(x, h)= g,(G’(z)h +G(x))
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where g (y sup {(y *, y)ly*Og(G(z))} is an LMO-approximation for f at z [6,
Examples 2 and 5]. Apply Proposition 5 of [6].

3. A second order necessary ondit|on. From now on, we assume that G is twice
continuously differentiable near z.

THEORIZM 1. Iff attains a local minimum at z, then

(3.1) max {Lxx(Z, y*)(h, h)ly* 0} >- 0,

whenever h X satisfies
(3.2) g(G(z)+ G’(z)h) <- g(G(z))

Proof. By Proposition 1 and (2.2), f0# and q,(x)>-q,(z)=[(z) in a neigh-
borhood of z for any r/> 0, e > 0. Let h X be given. We have (since f, is compact)

f(z)<=p.(z + th)= max {(y*, G(z + th))ly*

=max y*, G(z)+tG’(z)h+-Nx(z, y*)(h,h) y*fL +o(t).

If 0_<-t _-< 1 and h satisfies (3.2), then (since f c Og(O))

(y*, G(z)+ tG’(z)h} <- g(G(z)+ tG’(z)h)<-f(z).

These two relations yield

(3.3)

for h satisfying (3.2).
By definition,

max {,(z, y*)(h, h)l y* f,} >-- 0

N f. =fo .
e:>0

Since every f. is weak* compact, it follows that for any y Y

lim max {(y*, y)ly* e f,} max {(y*, y)ly* e f0}.
0

It remains to combine this equality with (3.3).
The convex cone Kc generated by the set

{h lg(G(z )+ G’(z)h ) <= g(G(z ))}

will be called the critical cone (for f at z) and its elements will be called critical vectors.
Clearly, in Theorem 1, condition (3.2) can equivalently be replaced by h eKe.
Observe also that

g(G(z)+ G’(z)h)>- g(G(z))+(y *, G’(z)h)= g(G(z))

if y* fo. Hence if f0 # , the critical cone is defined by

K={h eXIg(G(z)+tG’(z)h)= g(G(z))forsome t>0}.

Remark 1. It is not difficult to verify that K cannot be replaced by
{hlg’(G(z), G’(z)h)<=O}.

Remark 2. The "standard" second order necessary condition for our case would
be: there is a y* e 12o such that

N,(z, y*)(h, h)_->0, Vh K.
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For this condition to hold, additional regularity assumptions are needed which imply
in particular that Do contains exactly one element. It is not difficult to find an example
in which this condition fails to be valid whereas the conclusion of Theorem 1 holds.

Let X R 2, x

ql(X) (1)2 (2)2 q2(x) 1 (2-- 1); q3(x) 1(1 "t" 2)

and

f(x ) max qi (x ).

It is easy to see that f(x)-> f(0)= 0. We have

so that

and

g(Yl, Y2, Y3) max Yi, G(x)= (q,(x), q,(x), q(x))

Og(O)-- {(ul, u2, u3)lui 20, u + u2 +/g3-- 1}

G’(0) 0.

It follows that Do 0g(0). On the other hand G"(0)(h, h)= G(h) so that

max N,x (h, h) f(h) >-_ 0

for all h. On the other hand, the quadratic form

Ulql(X)+ u2q2(x)+ u3q3(x)

(Ul-- U2-- U3)(l)2- U1(:2)2-1- (g2 lg3)1 2
assumes negative values either at (1, 0) or at (0, 1) whenever ui->0, u + u2+ u3 0.

4. A second order sufficient condition. It is reasonable to expect after Theorem 1
that the condition" there is k > 0 such that

max {x, (z, y*)(h, h)ly* e no}_>- kllhlla, Vh eKe
is sufficient for z to be a local minimum for f (together with the first order condition
Do 3). This is certainly the case, but as we have already mentioned in the Intro-
duction, in many important problems, such conditions do not typically hold. Usually
second order derivatives can be estimated by norms of certain other Banach spaces,
not X.

Let W be another Banach space with the norm denoted by [I]" ]]]. We shall say that
X is densely imbedded into W if there is a linear continuous one-to-one mapping
i: X -+ W such that i(X) is dense in W. For notational simplicity, we shall identify X
and i(X) and write [[Ix[l[ instead of IIIi(x)ll[ so that

(4.1) I[Ix Ill [Ix
for some > 0 independent of x.

THEOREM 2. Assume that X is densely imbedded in another Banach space W in
such a way that

(i) IlG"(z)(x, h)[lclllxlllll[hlll, Vx X, VhX
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for some c > 0 independent of x and h, and

(ii)
lim IIIhlll-21]G(z + h)-G(z)-G’(z)h -1/2G"(z)(h, h)ll= O.

IIx-zll-0

Assume also that fo # and there are k > O, kl > 0 such that

(4.2) max {Y{xx(Z, y*)(h, h)ly* fo}_->klllhll[=, ’q’h Kc,

(4.3) p(x, Kc)<-kl(g(G(z)+G’(z)x)-g(G(z))), /x sX.

Then z is an isolated local minimum ]:or f(x ).
Here p(x, K) is the distance from x to Kc in the II1" Ill-norm, that is

p (x, Kc) inf {lllx u III lu gc.

Proof. We set, for notational simplicity,

A=G’(z), B=G"(z).
According to (ii)

(4.4)

Let

We shall show that

f(z + h)= g(G(z)+Ah +1/2B(h, h))+o(l[lhll[2).

a lim inf Illh III-2f(z + h)-f(z)).
Ilhll--,0
h0

271

[Ihm[l0, h 0, I[[hlll-=(f(z +hm)-f(z))-a.
First we shall verify that

(4.5) lim Illh,,lll-l(g(G(z)+ Ah,,)- g(G(z)))= O.

Indeed, insofar as g is sublinear and in view of (4.4),

a => lim
g(G(z)+Ah,,)-g(G(z))-(1/2)g(B(hm, h,,))

But the quantity Illhlll-B (h, h) is bounded on X by (i) and

g(G(z)+Ah)-g(G(z))>=O, VhX

since fo # . Therefore

0 -< lim sup Illhlll-=(g(O(z)+ Ah,,)-g(G(z)))<,
which immediately implies (4.5) because Illh,,lll o.

By (4.3), for any m, there is v,, K such that

(4.6) IIIv hlll <-- k (g(G(z ) + Ah,,)- g(G(z ))).

2a => inf Illh III -2 max {Nxx (z, y*)(h, h)ly* fo}.
hKc

Along with (4.2), this will prove the theorem.
If a , there is nothing to prove. Suppose that a <, and let the sequence {hm}

be such that
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This yields (together with (4.5) and (4.1))

(4.7) lim II[h,lll-llllv hlll 0,

that is,

(4.8)
lim

Denote u,, h,,- v,,. Then

B(h.,, h,,,) b(v.,, v,.,)+B(v,,,, u.,)+B(u.,, v,,,)+B(u.,, u.,).

Condition (4.8) combined with (i) and (4.7) implies the equality

lim I[[hl[I-2B(v, u,)--lim I[Ih,lll-2B(u, u,)--O.

Therefore (since (y*, G(z)) g(G(z)) and A’y* 0 for any y*

a lim I[Ih.,lll-[g(G(z)+Ah,. +al-B(h, h,))-g(G(z))]

>_-1/2 lim [[Ihm[]]-2 max {(y*, B(h,,, h,,))ly*

=1/2 lim II[h,ll[-= max {(y*, B(v,., v,)>ly* s fo}->-k/2.

Remark 3. Conditions (i), (ii), do not mean, of course, that G is twice Fr6chet
differentiable at z with respect to the II1" Ill-norm. Moreover, G can be even dis-
continuous in this norm. Consider for instance the following simple example: X
C(0, 1), W L2(0, 1), z(. )= 0 and G: X R is defined by

G(x(" ))= IO X4(t) dt.

Then G is twice Fr6chet differentiable on X and (i), (ii) are obviously satisfied for
i: X W being the natural imbedding. Here II1" 111 is the L2-norm and, clearly, G is
nowhere continuous on X with respect to this norm.

However, in the case when I1" and II1" III are equivalent, conditions (i), (ii), follow
automatically from the second order differentiability of G, and (4.2) coincides with the
expected sufficient condition mentioned in the beginning of the section.

Remark 4. Condition (4.3) can be considered to a certain extent as a regularity
condition. The nature of this condition will be clearer in 7, where we consider a
problem having a more customary form. We shall see also that, as a regularity
assumption, (4.3) is very weak.

It is important to note that condition (4.3) holds for all vectors tx (t > 1) if it holds
for x. Indeed,

O(tX, K)= tp(x, K)<= kt(g(G(z)+Ax)- g(G(z))).
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If > 1, then

t(g(G(z)+Ax)-g(G(z)))= tg(G(z)+Ax)-(t- 1)g(G(z))-g(G(z))

<- g(tG(z)+ tAx -(t- 1)G(z))-g(G(z))

g(G(z)+A(tx))-g(G(z)).

It follows that (4.3) need only be verified for those which lie in a neighborhood of the
origin.

5. A theorem on exact smooth penalties. A nonnegative function p(y) will be
called a penalty function if it is equal to zero and strictly differentiable at G(z) and
there are c > 0, e > 0 such that

(5.1) p(G(z)+G’(z)h)>=cp2(h, Kc), if ][h[[_-< e.

Let p(y) be a penalty function. Consider the function

(x, y*, m)= 5(x, y*)+ mp(G(x)),

which will be called the penalty Lagrangian. Formula

(x, ll, m)= max (x, y*, m)

extends the penalty Lagrangian to the set of all triples (x, lq, m), where 1) is a
weak*-compact subset of Y*.

THEOREM 3. Assume that X is densely imbedded in another Banach space W so
that conditions (i) and (ii) of Theorem 2 are satisfied. Let o , and let lq be a closed
subset of lqo such that ]:or some k > 0

(5.2) maxxx(Z, y*)(h,h)klllhl[[2, Vh Kc.

Then ( fl, m) attains a local minimum at z whenever p(y) is a penalty function and
m is sufficiently large.

COROLLARY 3.1. Assume the conditions of the theorem and (4.3). Then the
function

(5.3) max (x, y*)+ m (f(x )-f(z ))2

attains local minimum at z if m is sufficiently large.
Proof. The function

p(y)=(g(y)-f(z))2

is nonnegative and strictly differentiable at y G(z), and (5.1) follows from (4.3).
This corollary looks especially nice if l) is a singleton. In this case the initial

problem appears to be reducible to the minimization of a differentiable function. But
also in general case, (x, D,, m) is "smoother" than f(x) if fl is less than lq0.

The proof of Theorem 3 will follow from two lemmas.
LEMMA 1. LetX be a normed space (not necessarily Banach ), and let B: X X

Y be a bounded bilinear mapping. Assume that a weak*-compact set lq c y* and a
closed cone K X are given such that

(5.4) max (y*,B(h, h))>-kllhll, VhK (k >0).
y*f
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Then

(5.5) max(y*,B(h, h))+mp2(h,K)>-3-kllhll2, VhX

ifm is sufficiently large.
Proof. Given h X, we can choose x(h)GK such that I]h-x(h)l[<=2p(h,K). Since

I) is norm bounded and B is a bounded bilinear mapping, there is y > 0 such that

On the other hand

max (y*, B(x(h), x(h)))>= kllx(h)ll2

by (5.4). Therefore

max (y *, B (h, h )> +mp2(h, K) >= max (y *, B (h, h )) + (m/2)llh x (h)11

max [(y*, B(h -x(h), h -x(h)))+ (y*, B(h -x(h),x(h)))

+(y*, B(x(h), h-x(h)))+(y*, B(x(h), x(h)))]

+ (m/2)llh x(h)112
>- (m/2 r)llh x(h)112- 2r[[h x(h)[[ IIx(h)ll / kllx(h)112.

If m is sufficiently large, this quantity is not less than

3k
(llh-x(h)ll/llx(h)ll) >kllhll2 Q.E.D.

4
LZMMA 2. Under the assumptions o]: Theorem 3, the [unction

a(x)= max ?(x, y*)+ mo2(x -z, g)-(k/2)lllx- zlll2

attains a local minimum at z if m is sufficiently large.
Proot Let y * l)0. Then

Therefore

f(z, y*)= (y*, G(z))= g(G(z)); G’*(z)y * 0.

(z + h, y*) =/(z)+(y*, G"(z)(h, h))+ (y*, R(h)).

According to the condition (ii) of Theorem 2, and since f is bounded, we may be sure
that

I(y*, e (h))l--< (k/4)ll[hlll

if h is sufficiently small.
On the other hand, applying Lemma 1 to X endowed with the Ill" Ill-norm, we get

from (5.1) that

max xx(Z, y*)(h, h)+ mp2(h, Kc)>=-lllhll[2

if m is sufficiently large. Hence

a(z + h)-a(z) max ((y*, G"(z)(h, h))+ (y*, R(h)))+ moZ(h, gc)-(k/4)[llhll[2 >=0
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for all h sufficiently [1. [I-close to zero if m is sufficiently large.
Theorem 3 follows immediately from Lemma 2. Indeed, p’(G(z))= 0 since p(.

is a penalty function and hence

p(G(z + h))=p(G(z)+G’(z)h)+o(lllh[ll2).
Therefore

p(O(z + h))>=co2(h, gc)-(k/(4m))lllhlll

if h is sufficiently small and hence

(z +h, f, m)>=(z, f, m)+(k/4)lllh][[2

for all h close to the origin in the II" II-norm if m is sufficiently large.
Remark 5. Observe that f(x) does not necessarily attain local minimum at z if

(., f, m) does. A sufficient condition for this is for instance that there is a />0
such that

p(y)_-< y(g(y)-f(z))2.
Indeed, in this case

(x, 1"), m)<f(x)-f(z)+ m(f(x)-f(z))2+f(z)
f(x)-f(z) + o (If(x)- f(z)l) +f(z).

6. Augmented Lagrangians and duality. In this section, we shall assume that f(x)
has the form

(6.1) f(x ) fo(x + fl (x),
where fo is twice continuously derivable,

(6.2) fl(x)=q(S(x)),

S:X U, q: U R have the same properties as G and g and

(6.3) fx(z)= 0.

This assumption involves no limitation in generality, since we can rewrite g(G(x))
in the form (6.1)--(6.3) by taking f0(x)= (yo*, G(x)), where y is an arbitrary element
of Og(G(z)), S(x)= G(x) and

q(y)= max {(y* Yo*, Y)IY* 0g(0)}.

On the other hand, any function f satisfying (6.1)-(6.3) can be reformulated
equivalently as g(G(x)): it suffices to take G(x)= (f0(x), S(x)), y (ce, u) and g(y)=
a + q (u). This reduction allows one also to reformulate all the preceding notations and
results without any difficulties.

The Lagrangian function has the form

e(x, u*) fo(X)+ (u*, S(x)))

and

where

no {(1, u*)l u* e No},

No {u* U*{u* Oq(S(z)), f’o(Z)+ S’*(z)u* 0}},
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so that

max x(Z, u*)(h, h)= f’(z)(h, h)+ max (u*, S"(z)(h, h)).
o u* No

The critical cone is generated by the set

{h Xl(f) (z), h)+ q(S(z)+ S’(z)h)<= 0}.

Before stating the main result of this section, we shall introduce several notations
and definitions.

For a given set Q c U and a function p(. on U, we shall define the Q-conjugate
to p(. by setting

p(u, u*) sup ((u*, v)-p(u -v)).

In what follows, Q will be a closed convex set containing 0 and S(z) and such that
q(S(z)+ u) <- 0 whenever u Q. Such sets Q will be called admissible. We shall also
say that p(. is an augmentation function if p(. is nonnegative, p(0)= 0, p(. is
strictly differentiable at the origin and Ilull-->0 if p(u)-)O. Such is for instance the
function p(u)= ([[ul]), where 4 is C2, nonnegative and convex &(0)= 0 and 4"(0) > 0.

Consider also the function

(x, u*, m)= (x, u*)-mp)(S(x), u*/m),

which we call, following Rockafellar, the augmented Lagrangian. (The notation
(x, u*, m, Q, p) might be more precise but it is too awkward to be used.)

If N c U* is weak*-compact, we can also define

(x, N, m max (x, u *,,m).
u*N

PROPOSITION 2. Let Q be an admissible set, and let p(. be an augmentation
function. Then (x, u*, m) is nondecreasing in m and

(z, u*, m)= fo(z) if u* Oq(S(z)).

Proof. To prove the first part, it suffices to note that

mp)(u, u*/m)=sup ((u*, v)-mp(u -v))

and that p(. is nonnegative.
If u* Oq (S(z)) and v Q, then

(6.4) (u*, v) <=q(S(z)+v)<=O.

Therefore p(S(z), u*/m)<=O (again because p(. is nonnegative). But taking v
S(z), we have

(u*, S(z))- rap(0) q(S(z))= O,

hence p (S(z), u * /m 0 and hence by (6.3)

(z, u*, m) (z, u*) fo(z).

In what follows, we shall usually consider those admissible sets and augmentation
functions which satisfy the following compatibility condition" There is a real-valued
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function y(m) such that y(m)- if m - and for any m starting with some mo

(6.5) mp(S(z)+ S’(z)h, u*/m)+ y(m)pZ(h, Kc)-<0

for all h belonging to a neighborhood of the origin (which may depend on rn), and for
all u* No.

THEOREM 4. Assume that X is densely imbedded into another Banach space W so
that the conditions (i), (ii) of Theorem 2 hold. Let No (, and let N c No be weak*-
compact and such that

(6.6) maxSxx(Z, u*)(h, h)>=klllhlll2, Vh Kc (k >0).
N

Suppose also that we are given an admissible set Q and an augmentation function p (y)
which satisfy the compatibility condition. Then the function (. N, m) attains a local
minimum at z if rn is sufficiently large.

Proofi To prove the theorem, it suffices to show that for any u* Oq (S(z)),

(6.7) (z +h, u*, m)>=fo(z)+1/2xx(Z, u*)(h, h)+y(m)p2(h, Kc)+r(m, h)lllh[ll2,

where, for any m, r(m, h) 0 if [[hl[ 0.
Indeed, applying Lemma 1 to the right-hand part of (6.7), we see that for any

sufficiently large m, there is e=e(m)such that (z /h,N,m)>=to(Z)/(k/2)ll[hlll2 if

IIh II--< (m). On the other hand, (z, N, m) fo(Z) by Proposition 2.
To prove (6.7), we shall show that, uniformly in u* No,

(6.8) mp(S(z+h),u*/m)-mp(S(z)+S’(z)h,u*/m)=ra(m,h)[llh[l[2,
where rl(m, h)O if Ilhll- 0 for any fixed m >0. On the other hand,

(6.9) (z + h, u*)= fo(z)+1/2xx(Z, u*)(h, h)+ r2(h)lllhlll2

for any u*No which follows from the condition (ii) of Theorem 2. We can also
rewrite (6.5)as follows"

(6.10) mp(S(z)+ S’(z)h, u*/m)>- y(m)p2(h, Kc)+ r3(m, h),

where r3(m, h)= 0 if h is sufficiently small. Combining (6.8)-(6.10) and setting

r(m, h) rl (m, h)+ r2(m, h)+ r3(m, h),

we come to (6.7).
It remains to prove (6.8), which is equivalent to the fact that for all rn and u* No.

mp(S(z +h), u*/m)-mp(S(z)+S’(z)h, u*/m)
(6.11) lim -0

Ilhll-o IIIhlll2

uniformly in u* No.
Assume that (6.11) does not hold. Then there are e >0 and sequences {hn}

(hn 0) converging to zero and {u*}c No such that, say,

(6.12) b.
mp(S(z + h,,), u*./m)- mp(S(z)+ S’(z)h., u*./m)

< e

(or -> e, which case can be considered exactly in the same manner).
For any n 1, 2,. we can find v, Q such that

(6.13) mp(S(z)+S’(z)h., u*/m)<=(u*, v.)-mp(S(z)+S’(z)h,,-v.)+e
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According to the definition,

(6.14) mp(S(z +hn), u*/m)>-(u*, v,,)-mp(S(z + hn)- v),

and by (6.13), (6.14),

p(S(z)+S’(z)h. -v.)-p(S(z + h.)-v.) e
(6.15) b. -> m

IIIh,, III= 2"

We have, furthermore,

mp(S(z)+ S’(z)h., u*/m)>=-mp(S(z)+ S’(z)h.)-.O

since 06 (2). Together with (6.4) and (6.13), this shows that

(u*, v.)-mp(S(z)+S’(z)h.-v.)-.O.

This in turn (again in view of (6.4) and the fact that p(. )->_0) implies that p(S(z)+
S’(z)h. -v.)-O and hence v. -. S(z), according to the definition of the augmentation
function.

Insofar as p(. ) is strictly differentiable at the origin, IIh,[[0 and v, S(z), we
have, thanks to the condition (i) of Theorem 2, that

p(S(z)+ S’(z)h. -v.)-p(S(z + h.)-v.)

o(S(z + h.)- S(z)- S’(z)h.)= o(l[Ih.lll2),
which shows together with (6.15) that lira inf b. >= -e/2 in contradiction with (6.12).
This completes the proof.

Remark 6. A sufficient condition for (6.5) to hold is that

inf p(S(z)+S’(z)h-v)>-cpZ(h,K) (c >0)

(because (u*, v)-< 0 for v (2, u* Oq(S(z))). The latter inequality means that

inf p(S(x)-v)

is a penalty function, hence by Theorem 3,

(x,N, m)=fo(x)+max (u*,S(x))+m inf p(S(x)-v)
u*N

also attains local minimum at z.
Remark 7. As in the preceding section, the fact that (x, N, m) attains a local

minimum at z does not imply by itself that fix) also attains a local minimum at z. A
sufficient condition for such a conclusion to be valid is that there are 3’ > 0 and m0 > 0
such that

mp2(y, u*/m)+ y(q(y)-q(S(z)))2>--O

for all u*N and all y lying in a neighborhood of mS(z). The demonstration is
exactly the same as in Remark 5.

What really follows from z being a local minimum for W(x, N, m) is that fo(x)
attains a local minimum subject to the condition $(x) Q. Indeed, if S(x) Q, then

mp)(S(x), u*/m)= sup ((u*, v)- mp(S(x)-v))>= (u*, S(x));
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hence

(x, u*, m)= fo(X)+ (u*, S(x))- mp(S(x), u*/m <= fo(X),
that is, (x, N, m)<-fo(X). On the other hand, (z, N, m)= f0(z) by Proposition 2.

Theorem 4 can be reformulated as a saddle-point result which might be useful for
computational purpose.

THEOREM 5. Let the assumptions of Theorem 4 hold. Then the inequalities

(x, N, m)> (z, N, m)>-(z, N + u*, m)

hold for all x z lying in a neighbo.rhood of z and all u* U* if m is sufficiently large.
Proof. Theorem 4 justifies the left-hand inequality. To prove the right, we note

that for any u* e U*,

(z,u*,m)<-fo(z),
due to the fact that S(z) 0 (see Remark 7 above). The result follows now from
Proposition 2.

7. Smooth problems with equality and inequality constraints: second order
conditions. In this section, we shall apply the foregoing results to the problem studied
in the first two parts of our work:

(7.1)

subject to

(7.2) f,(x)<=O,

minimize fo(X

i= 1,..., n; F(x)= 0,

where fi" X R and F" X- Y. But in contrast with [5], [6], here we shall assume, fi
and F twice continuously differentiable. We shall also suppose that z satisfies (7.2)
and

(7.3) fo(z) O.

This condition was discussed in [6]. Here we only note that it involves no theoretical
restriction.

By the assumptions, the functions fi and the mapping F are locally Lipschitz and
hence the reduction theorem of [5] is applicable to the problem. This theorem says in
particular that z is an isolated solution to (7.1), (7.2), if for some r > 0 the function

Mr(x) max fi (x) + rllF(x)ll
O<_i<_n

attains a strict local minimum at z. But the problem of minimizing Mr is of the type
studied here. To see this, it suffices to set

G(x)= (fo(X),’’’, fn (x), F(x))" X - g /1. y,

and

gr(Olo,’’’, Ogn, y)’-" max Oi "+" rllYll.
O<_i<-n

Then

Mr(x)= gr(G(x)).

We see also that the Lagrangian function for Mr coincides with the traditional
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Lagrangian for the problem (7.1), (7.2)"

.q(X, Ao,’’ ",A,,y*)= E A,f,(x)+(y*,F(x)}.
i=0

Let us denote by o(r) the collection of all multipliers (Ao,’’’, A,,, y*) (A R,
y* Y*) such that

(7.4) Ai_-->O, 0,..., n; Ao+’’’ +A, 1, [tY*li--<-r;

(7.5) Aifi(z)=O, i=1,...,n;

(7.6) Aof(z)+’..+A,,f’,,(z)+F’*(z)y*=O.

We denote also

fo t3 fo(r).
r>O

It follows from [5] that under the additional assumption that F’(z) maps X onto all
of Y, the first order necessary condition ]’or z to be a local solution to (7.1), (7.2) is that
fo # .

In what follows, we shall assume that this condition is fulfilled.
PROPOSITION 3. The critical cone for M, at z does not depend on r for large r and

coincides with the set

where

{h 6Xl(z), h)<-O,i I; F’(z)h =0},

I={i{0,’’’ n}lfi(z)= O}.

(Note that 0 I by (7.3).)
Proof. Since [Io: , there is an ro such that D,o(ro)# . Let (Ao,’’’ ,A,, y*)e

o(ro). Then by (7.4)-(7.6),

max (fi (z) + (f (z), h )) + rollF’(z)h

(7.7) >- A,(f(z)+(fl(z), h))+ rollF’(z)hll
i=0

>- E Af(z)+ <Af(z)+F’*(z)y*,h)=O
=0 =0

for any h e X.
Let r > r0. The critical cone for Mr is generated by the set

{h XI max (fi(z)+ (f (z), h ))+ rllF’(z)hll -< 0}.
O<=iNn

In view of (7.7), for any h belonging to this set, (r ro)llF’ (z )h <= O, hence IlF’(z)h]l 0
and hence fi(z)+(f(z), h)<=O for all i. If h is sufficiently small, this condition is
equivalent to (fl (z), h)<-0 for all e L The rest is trivial.

From now on, we shall denote by K the critical cone for all M, corresponding to
large r.

Applying Theorem 1, we get:
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THEOREM 6. A second order necessary condition ]’or z to be a local solution to (7.1),
(7.2) is that (under the assumption that the range of F’(z) is all of Y)

max x,,(z, Ao,’’’, A., y*)(h, h)_>-O,

whenever h Kc.
This is the condition discovered by Levitin, Miljutin and Osmolovskii.
From now on we shall assume that X is densely inbedded in another Banach

space W and conditions (i), (ii) of Theorem 2 are satisfied. We shall omit reformulat-
ing these conditions for the concrete situation being considered, which is quite trivial
to do.

PROPOSITION 4. Assume that o and that the range of F’(z) is a closed
subspace of Y. Then there are m > 0, r > 0 such that

p (h, Kc)<= re(max (f: (z), h)+ rllF’(z)h II)
iI

for all h X.
Proof. As follows from the Hoffman theorem [4] and from Proposition 3 (see also

(4.1)), there is a 3/> 0 such that

(7.8) p(h, Kc)<- y(, (f(z),h)+ +llF’(z)hll), Vh X.
iI

Let ro be so great that l)0(r0) . If

then also

max (fl (z), h) ->_ 0
iI

1
n + 1 ir v(z)’

hence

It remains to take

r max { 1 / (n + 1), y + ro},

max (fl (z), h)+ ro[IF’(z)hl[>=O;
ieI

p(h, Kc)-<_ max Q’ (z), h)+(y + ro)llF’(z)hll.
ieI

m max {1, y(n + 1)}.

(7.9) max (f (z), h) ->
iI

Combining (7.8) and (7.9), we get

o(h, Kc)<-y(n+l) max (f’ (z), h) +,,, IIF’(z)hll
iI n+l

If maxir(fl (z), h)<0, then by (7.8),

o (h, gc)_-< vllF’(z)h II,
But, according to (7.7),
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Thus, under the assumptions of Proposition 4, the regularity condition (4.3) is
satisfied for our problem.

Applying Theorem 2, we get"
THEOREM 7. Under the assumptions that fo # and the range ofF’(z) is closed,

the second order sufficient condition for z to be an isolated local solution to (7.1), (7.2) is
that there are r > O, k > 0 such that

(7.10) max xx (z, Ao,’’’, An, y*)(h, h)_-> klllhlll=
o(r)

for all h K.
This condition depends on the parameter r which is unknown beforehand and

absent in the original staterrient of the problem. In certain situations, however, it is
possible to replace o(r) by Do, as follows from the proposition below.

PROPOSITION 5. The statements
(a) there are k > O, r > 0 such that (7.10) holds;
(b) there is k > 0 such that

(7.11) sup xx(Z, Ao,’’ ", A,,, y*)_-> klllh[llz, Vh 6 Kc

are equivalent under any of the following conditions:
(i) X is finite dimensional;
(ii) F’(z ) maps X onto Y;
(iii) the range of F’(z) is closed and the quantity in the left-hand part of (7.11) is

finite for any h Kc.
(Since 1o can be unbounded, we must write supremum in (7.11). In fact, as we

shall see, the second two of the list conditions permits replacing supremum by
maximum. Note also that "k" in (a)can differ from "k" in (b).)

Proof. First we observe that (a) implies (b) since fo(r)c D,o. Thus only the inverse
implication is to be verified.

Assume that dim X <, (b) holds but (a) fails to hold. Since dim X <, Kc is
closed by Proposition 3 and D,o(r) is compact, (7.10) is equivalent to

(7.12) maxSfxx(Z, Ao,...,An, y*)(h,h)>0, VhKc, h#O.
o(r)

Insofar as (a) is not true, it follows that, for any r > 0, there is an hr Kc such that

Ilhll-- 1 and

(7.13) max xx(Z, Ao," ", An, y*)(hr, h) <- 0.
o(r)

With no loss of generality, we can assume that h converges to some h. Obviously,
Ilhll- 1 and h Kc. Since (b) holds, there is a (Ao,’’’, An, y*) D,o such that

(7.14) xx(Z, Ao,’’’, An, y*)(h, h)>0.

By definition, there is an ro>0 such that (Ao,’’’ ,,n, y*)6l)o(r) for r>ro. On the
other hand, it follows from (7.14) that

xx(Z, Ao,’’’, An, y*)(h,, hr)>0

if r is sufficiently large, which contradicts (7.13). Thus (b) actually implies (a) if (i)
holds.
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Assume now that F’(z) maps X onto all of Y. Then F’*(z) in one-to-one and
there is , >0 such that [IF’*(z)y*ll_-> Y[lY*[[ (see, for instance, [6, Prop. 4]). The set

A=lx*X*]x*=- hifl(z),hiO, 2 hi =1}
iI iI

is a compact polyhedron, hence ao max (llx*lllx* A}< c. Take ro so great that
yro>ao. Then F’*(z)y* cannot be equal to an element of A whenever Ily*ll_>-ro. It
follows that fo o(ro).

Assume finally that

(7.15) a(h)=supLxx(Z, ho, h,, y*)(h, h)< c
fo

for all h 6Kc. It follows that h Kc and F’*(z)u* =0 imply that (u*,F"(z)(h, h)) 0.
Indeed, if (Ao, , An, y*) 2o then (ho, , An, y* + tu*) 1)o for any 6 R. There-
fore if (u*, F"(z), (h, h)) 0 we would have

a(h)>-xx(Z, ho, ,,n, y*)sup(tu*,F"(z)(h, h)) ,
in contradiction with (7.15).

Since the range of F’(z), denoted by V, has been assumed closed, it follows that
F"(z)(h, h) belongs to V when h Kc. This allows us to consider V instead of Y as the
range space, whereby the problem appears to be reduced to the case when F’(z) maps
X onto the range space.

8. Smooth problems: penalty functions and augmented Lagrangians. Clearly,
there are many penalty and augmentation functions and admissible sets for each
particular problem. But we consider only one class of penalty functions, one class of
augmentation functions and one class of admissible sets when studying the problem
(7.1), (7.2). These classes are very natural as we shall see.

Everywhere in this section, b(a) will denote a function on R satisfying the
condition

(C) b is convex nonnegative, twice continuously differentiable and b(0)=0,
"(0)> 0.

In particular, there is a 3’ > 0 such that

(8.1) b(a)=> Ta
2 in a neighborhood of zero.

PROPOSITION 6. Let c satisfy condition (C), and let the range of F’(z) be closed.
Then

P(OO,""", n, Y)’--
i=0

is a penalty function for Mr if r is sufficiently large.
Proof. We have: p(...)=>0, p(fo(z),"’, f,(z),F(z))=O (because of (7.3))and p

is continuously Fr6chet differentiable of the origin. It remains to verify that p satisfies
(5.1).

If r is sufficiently large, then the critical cone for Mr is defined by Proposition 3,
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and according to (7.8), there is d > 0 such that

O (h, gc) <-d ((fl(z),h)+)2/]lf’(z)hl]2

<-d( ((z)+(f(z),h))+)2+llF’(z)hll2),
i=0

which together with (8.1) shows that

(8.2) p2(h, Kc)<-d( &((fi(z)+(f’i(z),h))+)+4)([IF’(z)h[I))
\i=0

for all h in a neighborhood of the origin. Q.E.D.
Applying Theorem 3, we get
THZOREM 8. Assume that o , the range o[ F’(z) is closed and there is a

weak*-compact set o such that

(8.3) maXxx(Z, Ao, ,A,, y*)(h,h)>-klllhlll2, Vhg

(k >0). Assume also that the function d(a) on R satisfies (C). Then the function

(x, fL m)= max (x, Xo,... ,A,, y*)+
II i=0

attains strict local minimum at z if m is sufficiently large.
Denote by R_ the nonpositive half-line.
PROPOSmON 7. If 4) satisfies (C), then

(a) 4

_
(a, sup (/3 b (a -/3))

(b)

={-6(),
*_ (, o) 6 (a +).

(Here b* is the Fenchel conjugate to &).
Proof. Fix a and A and denote s(fl)= A- cl,(a-). This function is concave by

(C). Therefore either s(/3)> s(0) for some/3 < 0, in which case

sup s(/3) sup s(/3) Aa + *(-A),

or s(/3)=< s(0) for all/3 < 0 and hence

sup s (/) s (0) b (a).
/3_--<0

Since 4’(a) is nondecreasing, the necessary and sufficient condition for s (/3) -< s (0) for

all/3 <0 is that s’(0)>= 0, which is the same as A + b’(a)=> 0. This proves (a); (b) can be
verified by a direct calculation.

Let

a(ao,..., a,, y)= 6(a,)+6(llyll)
i=0
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and

(8.4) 0 ={(ao," , a,, y)la <=0, 0," , n; y 0}.

It is not difficult to see that a(...) is an augmentation function if d satisfies (C) and
that Q is an admissible cone.

We have (according to part (b) of Proposition 7);

inf{s(a0-/3o,..., an--/3n, y-v)[(/3o,’’’, n, v) Q}=p(ao, an, y).

By virtue of Remark 7 and Proposition 6, it follows that a(...) and O satisfy the
compatibility condition which allows one to apply Theorems 4 and 5.

To state the corresponding result, let us denote, for notational simplicity, the
vectors of multipliers, (A0,’’’, An, y*) by to, so that

(x, o)= (x, o,’’’, ,, y*),

,(x, w, m)=W(x, w)-m qb_ (f(x),Ai/m)+mqb(llF(x)ll),
i=0

(x, , m)= max (x, w, m).

THEOREM 9. Let the assumptions of Theorem 6 hold. Then

(x, f, m)> ot’(z, f, m)>-(z, f+w, m)

]:or any x z lying in a neighborhood of z and all to Rn+ax Y, provided m is
sufficiently large.

9. Smooth problems: augmented duality in presence o| normality. Observe that
Theorem 9 differs from the corresponding results of Rockafellar [10] and certain
others even if is a singleton. In all those results, the cost function f0 enters the
augmented Lagrangian in another way than do the inequality constraint functions,
whereas our theorem relates equally to the cost function and the constraint functions.

Here we shall prove a result which will coincide with that of Rockafellar in the
case where f is a singleton. This result, however, needs an additional assumption
which is automatically satisfied if D contains exactly one element, but which is
unnecessary for Theorem 9.

Consider the function

Pr(x)=fo(x)+r(i=’1

Clearly, z is a local solution to (7.1), (7.2) if P attains local minimum at z (even if
(7.3) does not hold). Observe also that P has just the form (6.1)-(6.3), indeed, Pr will
have been written in this form if we set

q(a, ten, y)= r(a + +.., /.../a. /lly

and

(9.1) S(x)= ffl(X),""", fn(X), F(X)).

We shall denote (n + 1)-tuples ( 1,""", An, y*) by t, and the Lagrangian function
for Pr by

(x, v)=(x, A,,... ,An, y*) =/0(x)+YT= Ad’i(x)+(y*,F(x)>.
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and

Let

Nr-’-{/2---(/1,’’’ ln, y*)loA, r, Ad’,(z)--o, lly*llr; &(z,

r>0

Just in the same way as in Proposition 3, we can verify that if No # , the critical
cone for Pr at z does not depend on r, for large r, and coincides with that for

g= {hl(f (z), h)<= O, I; F’(z)h 0},

where

I {0} UIo, Io ={i e {1, ,n}lfi(z)=O}.

Let a function b on R be given. We set

(x, v, m)=(x, u)-m 4)*_(x),Ai/m)+m4)(llf(x)[[),
i=1

(x, N, m)= max (x, u, m).
vN

TI-IEOREM 10. Assume that the range of F’(z) is closed and there is a nonempty
weak*-compact set N c No such that

(a) maxvu&x(Z, v)(h, h)>-klllhll[2, Vh Kc (k >0);
(b) there is an e > 0 such that hi >- e > 0 whenever v (hi, , An, y*)e N and

Then z is a local solution to (7.1), (7.2). Moreover, whenever b(a) satisfies (C) and
m is sufficiently large, the inequalities

&(x, N, m)> (z, N, m)>-(z, N + u, m)

hold for all x z lying in a neighborhood of z (which may depend on 4) and m) and all
uRnxy*.

The additional assumption mentioned in the beginning of the section is just the
condition (b). Clearly, it is automatically satisfied if N consists of a single element.
There is one more case when this condition need not be verified.

Recall that the problem (7.1), (7.2) is called normal if Ao>0 whenever
(Ao,’’’, An, y*) rio. If No # and F’(z) maps X onto Y; this is equivalent to No
being the convex closure of a finite set N. This set obviously satisfies condition (b). But
any linear functional has the same maximum on N as on No. Hence we have

COROLLARY 10.1. Assume that No , F’(z) maps X onto all of Y and the
problem (7.1), (7.2) is normal. Assume also that there is k > 0 such that

max ..(z, u)(h, h) >- klllhlll2, Vh Kc.
No

Then the conclusion of the theorem holds ]’or N No.
Proof of Theorem 10. Let us set

a(al,’’’,an, y)= 6(ai)+
i=1
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To prove the theorem, we have to verify that O is an admissible set, a(...) is an
augmentation function (both are trivial) which satisfy the compatibility condition. The
second part of the theorem will follow then from Theorem 5, and the first part will
follow from the second in view of Remark 7. (Indeed, conditions (7.2) are equivalent
to $(x) O, $ being defined by (9.1).)

In our situation, the compatibility condition can be reformulated as follows" there
exists a function 3,(m) such that ),(m) oo if rn oo and

(9.2) rn *n_(fi(z)+(f(z),h),,ffm)-m([lF’(z)hll)+3,(m)oZ(h, Kc)<-_O
i=1

for all sufficiently large m, for all v 6 N and all h in a neighborhood of the origin
(maybe depending on rn).

Fix some v N and let L {i IolAi > 0}. Consider the set

K,,={h X ](f(z), h)<_-0, Io\/;

(f(z)h)=O, I;F’(z)h =0}.

We claim that K cKc. To see this, it suffices to verify that (f[(z), h)=0
whenever h K. But since u No,

(9.3)

(f(z), h)= E A;(f(z), h)-(y*, F’(z)h)=O.
il

By the Hoffman theorem [4], there is a el > 0 such that (see (8.1))

p2(h, Kc) <- p2(h, K)

<- c[ E
Io\I,

Io\I,,

(ql(z), h)+)2+ E (fl(z), h)2+llF’(z)hl]2]
I,,

((fl(z), h)+)+ E ((fl(z), h))+(llF’(z)hll)]"
ie I,,

for all h in a neighborhood of the origin.
If Io\L, then fi(z)= 0, Ai 0 and by the part (b)of Proposition 7

(9.4) -ck((z), h)+)= *n_(f(z)+(f(z), h), Affm).
If i I0, then f(z)+ (f (z), h )<-0 for all h in a neighborhood of the origin (which

can be chosen the same for all i I0) and again A 0. Hence for such and h

(9.5) 0= -&([fi(z)+(fl(z),h)]+)=*n_(fi(z)+(f(z),h),Ai/rn).

Finally, if e L, then, according to the condition (b) of the theorem, ,->_ e and by
Proposition 7

(qt (Z ), h ))= 49

_
(fi(z )+ (fl (z ), h ), Ai/m ),

whenever h is such that

(9.6) e >= m’((fl (z), h)).

Since ’(0)= 0, the latter inequality also defines a neighborhood of the origin
depending on m but not depending on u.

Substituting (9.4)-(9.6) in (9.3) and taking T(m)=mT/cl, we get (9.2). This

completes the proof.
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INVERTIBILITY OF NONLINEAR CONTROL SYSTEMS*

R. M. HIRSCHORN"

Abstract. This paper gives necessary and sufficient conditions for the invertibility of nonlinear control
systems of the form A(x)+uB(x); y=c(x), where the state space is a real analytic manifold. For
invertible systems we construct nonlinear inverse systems. These results are used to study the question of
functional controllability for nonlinear systems. The class of real analytic functions which can appear as
outputs of a given nonlinear system is described, and a prefilter is constructed to generate the required
control.

1. Introduction. A control system is invertible when the corresponding input-
output map is injective. Thus given an output function one can, in theory, recover the
control which was applied. There is a considerable amount of literature dealing with
invertibility of linear control systems (cf. [2], [4], [5], [6], [7]). The purpose of this paper
is to generalize some of these results to nonlinear systems.

We consider here systems of the form

(t)=A(x(t))+u(t)B(x(t)); x(O)=xoM,
(,)

y(t)=c(x(t))

where the state space M is a connected real analytic manifold, A, B are real analytic
vector fields onM, x--c(x)= (cl(x), cz(x)," , Cl(X))isa real analytic mapping fromM
into R, and u R, the class of real analytic functions from [0, oo) into R, the real
numbers. One could let c: M N be a real analytic mapping of manifolds, and our
results remain valid (use coordinates in a nbhd (neighborhood) of c (Xo) in N to reduce
to the above case). If xoM and u 0//, we denote the resulting solution of the
differential equation (.)by x(t, u, Xo) and denote c(x(t, u, Xo)) by y(t, u, Xo). We remark
that x (t, u, x0) may not be defined for all as A, B may not be complete.

Here A, B V(M), the vector space over R of real analytic vector fields on M. If
(V’, xl, xz,. , x,,) is a coordinate system on M and X V(M), then locally

x lv,= ai
i=1 cXi

where a1,’", a, are real analytic functions on V’. If f C(M), the ring of real
analytic functions on M, then Xf Coo(M) is defined on each coordinate system
(V’, Xx," ", x,,) by Xf(p)=Y.i= ai(p)(af/axi)(p) for p V’. Thus V(M) acts on
Coo(M). We give V(M) the structure of a real Lie algebra: if X, Y V(M) the Lie
bracket of X and Y is the vector field [X, Y] and for each f E Coo (M), p E M,

[X, Y]p(f)= Xp(Yf)- Yo(Xf) (cf. [14])

and we set adcY Y, ad.Y [X, ad-1Y]. Let denote the Lie subalgebra of V(M)
generated by A and B (cf. 11 ], 16], 17]).

The class of systems we consider includes single-input linear, bilinear, and right-
invariant systems, and has received considerable attention in the control literature (cf.
[1], [3], [8], [9], [10], [11], [12], [13], [16], [17]). The main result on invertibility is
Theorem 2.1. This theorem asserts that the above system is invertible if and only if
(ad,B)(ci) 0 for some integer k -> 0 and some component cj of the output map (here

* Received by the editors March 15, 1978, and in revised form July 7, 1978.
f Department of Mathematics, Queen’s University, Kingston, Ontario, Canada K7L 3N6.
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cj C(M), adB V(M), and 0 refers to the zero function in C(M)). For single-
input, single-output time-invariant linear systems this reduces to the standard criteria
for invertibility (see Example 1). Theorem 3.1 considers the related problem of
functional controllability, and the class of possible output functions is explicitly
described.

2. Nonlinear invertibility. In this section we derive necessary and sufficient
conditions for the invertibility of the nonlinear systems (,). The standard linear result is
worth noting. Consider the system

Ax + bu; x (0)= Xo R",

y =CX

where A is an n n matrix over R, c is a 1 n matrix, and b an n 1 matrix. This system
fails to be invertible if :lul u2 such that the corresponding outputs are identical. Using
the variation of constants formula, this condition becomes

fA

Jo
O-s)Abu (S tAx0 eC e Xo + c e ds c e + c )Abu2(s) ds,

or cetAb=--O. Thus the system is invertible if one of cb, cAb, cA2b, cA’-lb is
nonzero. Conversely, if cA kb- 0 for k-0, 1,..., n- 1, then y(t)= c e’Axo for any
choice of u; hence the system is not invertible. The relative order ce is defined to be the
least positive integer k such that cA-lb # O, or ce =oo if cAkb --0 for all k _->0. Thus in
the linear case a system is invertible if and only if ce < oo. We note that invertibility does
not depend on the initial state x0. For nonlinear systems this is not the case. Consider the
linear system , Ax + bu; x(0)-Xo with nonlinear output y c(x), where

x0 x= A= b=
q x2 0 0’

Solving the differential equation one finds that

y(t) eapa + v(t)+ qa + 2qv(t)

where v(t)= u(s) ds. A straightforward computation shows that for different controls
ul ua one gets the same outputs if and only if ul -u and p 0. Thus the system is
invertible for all initial states in the state space R which do not lie on the line x 0.
Since the line xa 0 is a subset of R of Lebesgue measure zero, one could argue that,
for practical purposes, this system is invertible. Further, if the system is invertible for xo,
then there exists an open nbhd of x0 such that the system is invertible for all initial states
in this nbhd. This motivates the following definitions:

DEFINITION. The nonlinear system (,) is invertible at Xo
07/are distinct controls,

y(t, Ul, X0) y(t, u2, x0).

DEFINITION. The system (*) is strongly invertible at Xo if there exists an open nbhd
V of x0 such that for all x V, the system is invertible at x.

DEFINITION. The system (,) is strongly invertible if there exists an open and dense
submanifold Mo of M such that for all x0 M0, the system is strongly invertible at x0.

We remark that for linear systems all of the above definitions are equivalent to the
condition
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To define the relative order a for nonlinear systems, we note that the output map
c(x)=(Cl(X),..., ct(x)) has the property that ci(.)C’(M) for O<-i<-l, and if A,B
are the vector fields which describe the nonlinear system (.), then adB e V(M) for all
k_>-0. Thus (adB)(ci)eCo’(M) for k >=0, O<=i<-_l, and we let 0 denote the zero
function in Co" (M).

DEFINITION. The relative order a of the nonlinear system (.) is the least positive
integer k such that (ada 1B)(ci) : 0 for some 0 -< =< l, or a co if (adB)(c) 0 for all
k ->_ 0, 0-< =< I. If a < co set is to be the least integer/’ such that (ada )(cj) : 0.

It turns out that a < co is a necessary and sufficient condition for strong invertibility
in the nonlinear case. Since the proof of this result (Theorem 2.1) involves the
construction of a left-inverse system we define inverse systems before proving Theorem
2.1.

Given an invertible system with output function y(., u, Xo)one can, in theory,
recover the control function u(.). A left-inverse system is a nonlinear system which,
when driven by appropriate derivatives of y, produces u(.) as its output. Thus a
left-inverse system provides a practical method for finding the input u(.) given
y (., u, x0). In the time-invariant linear case an obvious choice for a left-inverse system
is the system with transfer function 1/G(s) where G(s) is the transfer function for the
original system. Since 1/G(s) will not be a proper rational function it is necessary to
input derivatives of y to add integrations to the inverse system (cf. [4], [5], [6]).

We now define a left-inverse system in the nonlinear case:
Consider the system

=F(z)+vG(z); z(O)=zoN,

w=h(z)+vk(z)

where N is a real analytic manifold; F, G e V(N); h, k e C (N), and v e a//. This system
is called a left-inverse for the system (.) if for some 0 -< -< l,

W(’,y, Z0)= U(’).

That is, if the input v to the inverse system is chosen to be the ath derivative of some
component of the output y(., u, x0)of the original system, the left-inverse system
produces u (.) for its output.

Note that the inverse system fails to be of the form (.) because of the presence of
the control in the output. The results of this section can easily be modified to allow
systems with outputs

y(/)= c(x(t))+ u(t)d(x(t))

where d:M R is real analytic. The changes in the definition of relative order are
analogous to those in the linear case, and as in the linear case, when d is nonzero the
problem of invertibility becomes trivial.

If a nonlinear system is invertible then a < co, (ad,-1B)(c,,)# 0, and

M, {x Ml(ad,-XBci )(x) # 0}

is nonempty. Since f adA Bcg is a nonzero real analytic function it cannot vanish on
any open subset of m and from the continuity of f it follows that M,, is an open dense
subset of M, and hence a submanifold of M.

DEFINITION. If the system (,) has a < co the open dense submanifold M,, of M
described above will be called the inverse submanifold for the system.

The submanifold M,, will provide the state space for an inverse system.
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THEOREM 2.1. The nonlinear system (.) is strongly invertible if and only ira < o.
COROLLARY. Suppose that the nonlinear system (.) is strongly invertible with

relative order a, initial state Xo M, and inverse submanifold M,. If Xo M, then the

2 =F(z)+vG(z); z(O)=xo,
(**)

w=h(z)+vk(z)

where z eMs, v e all, k(z)=l/(BAS-lci)(z), h(z)=-k(z)(ASci)(z), F(z)=
A(z)+ h(z)B(z), and G(z)= k(z)B(z), acts as a left-inverse]or the original system (,).

Before proving Theorem 2.1 we establish the following result"
LEMMA 2.2. Consider the system (,) with a <, and let Ms denote the inverse

submanifold of M, where Ms={xMl(adA-1Bci)(x)O}. Then for all k
{1,..., a-2}, {1,..., l}, (Bak)c =0, and for all pMs, (BaS-lci)(p)O.

Proof. Suppose a < c. Then (ad,B)ci 0 for 1, 2, , I, k 0, 1, , a 2,
by definition of a. A simple argument shows that in general,

adkABci (--1)k (-I)p(kp)APBA k-Pci (cf. p. 108 of [15]).
O<_p<=k

If a 2, Bci O. If a > 2, Bci O. If a > 2 then a simple induction argument, using the
above formula, shows that (BAk)ci =0 for k O, 1,..., a-2 and 1,..., I. Using
this fact, we have

(ad-lB)ci,,, (_1)s-1 (-1)’(a 1)(A,BAS-l-p)ci,
0p--<s--1 P

=(-1)s-l(BAS-1)ci.
Since ((ad,-IB)ci)(q)# 0 for all q Ms, the proof is complete.

Proof (Theorem 2.1). Necessity" Suppose that a c. Let u l, u2.6 q/ be distinct
controls and let Xo M be any initial state. Let At Xo be the integral curve for the
vector field A passing through Xo. Then x(t, ui, Xo) I(o, A, Xo) for 1, 2, and those
R for which the two trajectories are defined. Here Wo is the Lie subalgebra of V(M)

generated by {ad,B[k-0, 1,...} and I(o, A,. Xo) is the unique maximal integral
submanifold ofM for the distribution determined byo which contains A, Xo (cf. [8],
11], 13]). It suffices to show that a implies that the output map c is constant on the
submanifolds I(o, p) where p M, since this implies that y(t, u, Xo) c(x(t, ux, x0))
c(x(t, u2, Xo)) y(t, u2, Xo) for sufficiently small. Since these curves are real analytic
functions of t, y(., Ul, Xo) y(’, u2, Xo), and the system is not strongly invertible. Now
u implies that (ad,B)(ci) 0 for 1, 2, , and k 0, 1, , and it follows
that c((adB), p) is a constant curve in R where p 6 M, and (adkAB)t p is an
integral curve for adkAB. Since S {adkABIk 0, 1,. .} is a set of generators for the Lie
algebra o, it follows from Chow’s theorem (cf. [8], [11], [13], [16]) that for each

2 k Xq I(o, P), q X
2 k 2 kc(X X,2 Xt p)= c(X,2 X,. p) c(p).

Sufficiency. Suppose a < and Ms is the inverse submanifold for the system (,).
Since Ms is an open dense submanifold of M the system is strongly invertible if it is
invertible for all Xo

Choose xoMs, u and set y(t)= y(t, U, Xo). Then

dyy}a)(t) --(t)= (Aci)(x(t))+ u(t)(Bci)(x(t))

system
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and if a > 1, (Bci)-" 0 for 1,..., and

y2) (t)= (A2ci)(x(t))+ u(t)(BAci)(x(t)).

If a > 2 then BAci 0 for all 1, , by Lemma 2.2 and continuing this process we
find that

( c,o)(x(t)),Yi, (t)= (A ci)(x(t))+ u(t)(BA-1

where (BA’-lci)(p) 0 for all p M from Lemma 2.2. Since x0 M,, :le > 0 s.t. (such
that) x(t, u, Xo)M for [0, e). We now construct a system which acts as a left-inverse

()for the original system. This new ystem, when driven by y i (t), will produce as its
output u(t) for [0, e). Since u is real analytic, we will have a one-to-one cor-
respondence between input functions and output functions, and the proof will be
complete.

Consider the system (**) described in the Corollary to Theorem 2.1. Since
(BA"-lc) is a real analytic function onM which does not vanish on M, and sinceM is
open in M, the system (**) is described by real analytic vector fields on M,. To complete
the proof we must show when v(t)= y2)(t), the output w(t) of (**)is u(t). Suppose we

(’(t). The resulting differential equation ischoose v(t) y

("(t)G(z(t)); z(0)= x0.(1) z" (t) F(z(t))+
(aIn equation (1) we use the above definition for yi)(t) and the definitions for the

vector fields F and G, and observe that when z(t)= x(t) equation (1) becomes

2(t)= A(x(t))+ u(t)B(x(t)); x(O)= x0.

(,)Thus z(t)= x(t) is the solution to (1) when v(t)= Yi (t), and with this choice of v(. ),

()(t)k(x(t))w(t)=h(x(t))+yi

()(t)k(x),-k (x)(A"ci)(x) + y i

where k (x) 1/(BA- c)(x). Using the above expression for i (t), we have w(t)=
u(t) and the proof is complete.

Proof (Corollary). Follows from the second half of the above proof.

3. Functional controllability. In this section we are concerned with determining
the functions f(t) which can be realized as the output of the nonlinear system (,) driven
by a suitable input function. For linear systems this classification problem was solved by
R. W. Brockett in 1965 [4]. He also showed that if f(. y(., u, x0) for some control u,
then the required control can be generated as the output of the left-inverse system
driven by an appropriate derivative of f(t). In this case we say that the left-inverse
system acts as a right-inverse for the original system. We will show that the left-inverse
system described in 2 is also a right-inverse for nonlinear systems. We will restrict
ourselves to single output systems (l 1). The generalization to vector-valued output
maps is straightforward.

THEOREM 3.1. Consider the nonlinear system (,) with relative order a.

If a oo then for all initial states Xo Mand lu all,

y (t, u, Xo) =- c (At" Xo).

If a < 00, Xo M, and f C (R) then u ll such that y (. u, Xo) f(" ) if and only if
f(k)(o) (A kC)(Xo) for k O, 1,..., a 1.
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Proof. Suppose c oe. In the proof of Theorem 2.1 we showed that a oo implies
that y(. ,Ul, Xo)=y( u2, xo) for all Ul, u2e ?/, VxoM. Set u_=0 so for all u,
y(t, u, Xo)= y(t, O, Xo) c(x(t, 0, Xo)) c(At Xo), and this completes the first part of the
proof.

Suppose that a < oo, Xo M,,, f C (R) and f(. y (., u, Xo) for some u .
Following the proof of Theorem 2.1 we differentiate y (t, u, Xo) with respect to and find
that f(0)= C(Xo), f(1)(0) (Ac)(xo)+ u(O)(Bc)(xo)= (Ac)(xo) if a > 1,..., f(-l)(0)=
(A-Ix)(xo), as required.

Now suppose that a<oe, fCo,(R) and f(k(o)=(Akc)(Xo) for k=
0, 1, 2,. , a 1. If Xo M,, we can find u such that y (., u, Xo) f(" using the
left-inverse system described in the Corollary to Theorem 2.1. Since f("(. ) q/we can
let v(t)= f("(t) be the input to the inverse system (**), and set z(t)- z(t, f(, Xo), and
w(t)= h(z(t))+f()(t)k(z(t)). If we can show that y(., w, xo)=f(.) the proof will be
complete, since u w is a control which produces f(. ) as the output of the system (,).

When u(t)= w(t) we know that x(t)= x(t, w, Xo) satisfies the differential equation

(2) ./= A(x)+ wB(x); x(O)= Xo.

Claim. z(t) satisfies (2)" differentiating z(t) we see that

2(t)= F(z(t))+f()(t)G(z(t))
{A(z(t))+ h(z(t))B(z(t))}+f()(t)k(z(t))B(z(t))
A(z(t))+{h(z(t))+f()(t)k(z(t))}B(z(t))

and z(0)= Xo.

A(z(t))+ w(t)B(z (t)),

Now set y(t)= y(t, w, Xo). Since y(t)= c(x(t)) we have

y(O)=c(xo)

y(a)(0) (Ac)(xo)

y(a-1)(0) (A"-Ic)(Xo)
y(’)(t) (Ac)(x(t))+ w(t)(BA-lc)(x(t))

where w(t)= h(z(t))+f()(t)k(z(t)). Since x(. )= z(. ),

y(’)(t) (Ac)(x(t))+{h(x(t))+f()(t)k(x(t))}(BA-lc)(x(t)).
Using the definitions for h and k,

h (x)+f()(t)k (x)}(BA" c)(x )

{-k(x)(Ac)(x)+f(")(t)k(x)}(1/k(x))
-(A"c)(x)+f()(t), and y()(t)= f()(t).

Thus f(")(t)=y()(t) and y(k)(0)=f(k)(0) for O<-k<=a-1. Integrating, we find that
y(., w, Xo) f(. ), and thus f(t) is the output of the original system if we set u(t) w(t).
This completes the proof.

We remark that in proving this theorem we have shown that if f(t) can be realized
as the output of a nonlinear system for some control u, the required control can be
generated as the output of the system (**) driven by f()(t). We state this as a corollary.
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COROLLARY. Suppose that the nonlinear system (.) has a < and initial state
Xo M,. Then the left-inverse system (**) acts as a right-inverse system. In particular if
f(t) C’(R) can be realized as y(t, u, Xo) for some control u all, then f(t)= y(t, ur, Xo)
where u;(t) w(t, ), Xo).

4. Examples.
Example 1. Consider the linear system

2(t)= Ax(t)+ bu(t);

y(t)=cx(t)

Xo R n,

where the state space is th.e real analytic manifold M R n, and A, b V(M). For each
x M, Ax Ax and bx b, where, as usual, Tx (M) is identified with R for all x M.
With this identification, Vf C (M), (Af)(x) df(Ax) where df
((OffOXl)(X),. ., (Of/Ox,)(x))and (bf)(x)= dry(b). Also, ad,b =(--1)kAkb, a constant
vector field. Since c" R’- R is linear, dc c and thus (adkAb)(c)(x) (--1)kcAkb. In
this case the relative order a is the least integer k such that cAk-lb O, or ce cx3 if
cAkb 0 for k 0, 1, 2, , n 1. This agrees with the definition of relative order in
the linear case, and Theorem 2.1 generalizes the standard linear result. If a < and the
system is invertible, then M, -M, since cA-lb is independent of x. The left-inverse
described in 2 will be a linear system, and is the standard linear inverse system.

Example 2. Consider the bilinear system

2(t)= Ax(t)+ u(t)Bx(t); x R 3,
y(t)=cx(t)

where M R3, U 0"//, C" R3R is linear, and

c=[1 0 1], A-- 0 0 B= 0 1 0

0 0 0 0 0

and

[xa1X X2

X3

Here

0 0 0

[A,B]=BA-AB= 0 0 1

0 0 0
adB =0,

and [B, [A, B ]] -[A, B ]. Thus has a basis {A,B, adAB} and 0 has a basis
{B, adaB}, and is not Abelian. In this example, (Bc)(x) CBx 0 for all x, so a # 1, and
(adAB)(c)(x) c adaBx 0 for all x e R 3. Since adB 0, the relative order a oo and
this system is not invertible. In fact, if Xo has components (a l, a2, a3), then the system
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equations become

1 Xl, xI(O)-" al,

22 x3 + ux2; x2(O)

.3 0; x3(0)= a3, and

X3(t) a3, Xl(t) ale’, x2(t)= a2 eI’u(s)as + a3 e I’"(’)as dr.

In this case, y(t)= cx(t)= a3 + ale’, and is independent of u for all x0. This illustrates
Theorem 2.1--A noninvertible system has an output which is unaffected by the control
which is applied.

Example 3. Consider the nonlinear system

2 =A(x)+uB(x),
(s)

y =c(x)
where M R3 A(x)= A(xl x2 x3) (xx2, x, x), B(x) (x, O, O) and c(x) e
Here we identify the tangent space T(R 3) with R 3, so for all f C’(R), and for all
X, Y V(R3), Xx (al(x), a2(x), a3(x)), Yx (hi(x), b2(x), b3(x)) and (Xf)(x)=
E=I ai(x) cf/Oxi(x). Thus

(IX, g]f)(x)--[X, glxf-- ci(x) Of (x)
i=1

where IX, Y]x=dYxXx-dXxYx=(Cl(X),C2(X),C3(X)), dXx is the Jacobian matrix
(Oai/Oxi(x)), and dYx (Obi/Oxi(x)). By direct calculation we find that

(adaB)x (2XlX2--X, --X, O)
and

(adB)x (2x21 2XlX-X, xa-4XlX2, x).
n+2Continuing we find (ad,B)x contains x2 in its first component, so that0 is an infinite

dimensional Lie algebra. Computing a we find that

(Bc )(x dcxB O,

(adaBc)(x) dc adaBx 0 for all x M,

and (adEABc)(x)= x e O. Thus a 3 and this system is invertible. Since adEABc does
not vanish on {x (x, x2, x3)[x2 7 0}, the inverse submanifoldM is the complement of
the plane x2 0 in R 3, and is an open dense submanifold of R 3. If x(0) XoS M,, we can
construct an inverse system of the form (**) and for this example (BAEc)(x) x2 x3e

F(z)= (-z3- 3ZlZ2, Zl, Z2),

and

G(z)= (e -z, O, 0),

4Z1h (z ) -(z2 + -2 /

k(z)=
ez3

2

From the proof of Theorem 2.1 we would expect that when

v(t)= y")(t) y3)(t) (A3c)(x(t))+ u(t)(BAec)(x(t))
(4XlX2 -t- x) e3 + (x22 eX3)u(t),
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we have z(., y("), Xo) x(. u, Xo)and w(. y("), Xo) u(. ). We leave the verification
of the last equality to the reader and show that when z (t) x (t) the differential equation
defining the inverse system is satisfied:

F(x)+ y(3)(t)G(x)= I--X--3X1X21Xl + (4XxX2 +X+ UX) ex

X2

XIX2-[- UX221XI =A(x)+uB(x)=2,
X2

Ieil
as required, and since x(0)= z(0), x(. u, Xo) z(. y("), Xo).

Finally, if we suppose that Xo (ax, a2, a3)E Ma we can describe the range space of
the input-output map defined by the system (s). From 3 we know that f E C’(R 3) is
y(t, u, Xo) for some u 0-// if and only if f(0)= C(Xo), f(1)(0)= (Ac)(xo), and f(z(0)=
(A2c)(xo). For this example, we can conclude that f(t) is an output of the system (s) for
some u q/if and only if f(0)= e ’3, f(l(0) a2 e a3 and f(2(0) (ax + a2) e a3. In parti-
cular the output of this system can be made to track any polynomial function of the form

2 3do + dldot + 5(dl + dz)dot + d3 + dnt4 +" + dnt
where do, dl 0 and x0 is chosen appropriately.

One can verify that the system (**) acts as a right-inverse for the system (s).
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COLLOCATION AT GAUSS POINTS AS A DISCRETIZATION IN
OPTIMAL CONTROL*

G. W. REDDIEN

Abstract. Collocation at Gauss points is shown to be a high order accurate discretization of certain
unconstrained optimal control problems. Best possible convergence rates are established along with
superconvergence results.

1. Introduction. The technique of replacing a continuous optimal control problem
by a discretization in order to obtain a finite dimensional approximation problem for
computational purposes is an old one. For some recent results on the convergence of
such methods, see Budak, Berkovich and Solv’eva [3], Daniel [5], Mathis and Reddien
13] and Hager [8]. In a different direction, new high order and efficient methods for the
numerical solution of two-point boundary value problems have been developed based
on collocation using polynomial splines; see for example Russell and Shampine 16] and
Lucas and Reddien 12] among many others. Particularly attractive among collocation
methods are those involving collocation at Gauss points, e.g. DeBoor and Swartz [6],
Cerrutti [4], Russell [17], Wittenbrink [20] and Reddien [14].

In this note we will study collocation at Gauss points as a discretization in optimal
control. Such discretizations have apparently not been considered before, and, as we
shall show, can be high order accurate methods. Discretizations using polynomial
splines have been considered via the Ritz-Galerkin method, e.g. Bosarge et al. 1] and
Falk [7], and the related Ritz-Trefftz principle, e.g. Bosarge et al. [2], Schultz 19] and
Hager [9]. However, these methods generally require the use of a numerical quadrature
in actual computations. The influence of such errors on high order estimates has
apparently not been considered. However, see the important paper of Daniel [5] where
convergence results are obtained. In a certain sense, the collocation methods given here
can be viewed as quadrature approximations to the Ritz method.

In 2, the problem and method to be studied will be defined and in 3, basic
convergence results will be given. We consider in 3 essentially the same class of
problems that was studied in [1], including the important linear-quadratic state
regulator problem. In 4, under additional assumptions, we improve the results given
in 3 and establish superconvergence results. Convergence rates given here are higher
than those predicted using the same class of splines and the Ritz method 1], [7] or the
Ritz-Trefftz method [19]. Our computational experience [15] indicates that the con-
vergence rates established in those papers are not best possible. Indeed, we have been
able to improve the bounds for the Ritz-Trefftz method. These results will appear
elsewhere.

(P)
2. Problem and method. Define J(u)= j g(x, u, t)dt. We consider the problem

(a) min, J(u), u in L2[0, 1 ],

subject to

(b) (t) f(x, u, t), x(0) Xo, in [0, 1],
where u(t) is an r-dimensional vector, x(t) is an s-dimensional vector, [(x, u, t) is an
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s-dimensional vector, and g(x, u, t) is a scalar valued function. Let W [0, 1 denote the
usual Sobolev space of functions [1] with u a positive integer. We will omit range
designations for these functions as the range will be clear in the context used.

We will say that the problem (P) is in C if and only if f(x, u, t) and g(x, u, t) are
u + 1 times continuously differentiable in x and u and u times in t. The Lagrangian for
(P) is

L(u,x,A, y)= J(u)+ (--+[(X,U,t))TAdt+(x(O)--xo)Ty

where is in W and y is a vector in R ".
We now state three assumptions which will remain in effect throughout this paper:

(A1) Problem (P) is in C, u _-> 1. (A2) The Lagrangian L is extremized at the four-tuple
(u*, x*, X*, 3’*) satisfying the conditions

(a)
0g* (0[* 7"

-t- h * 0,
Ou \ Ou ]

(b) X*+(Of*]h*+Og---*=O, A*(1)= 0,
\ Ox I Ox

(21)

(c) -i* +/(x*, u*, t)= 0, x*(0)= x0,

(d) y* =-X*(0),

where the superscript * indicates the functions involved are evaluated at u u* and
x x*. Define the operator H by

H(u, x, A): [gu, +/,%A.
gx, +

We assume (A3) that

T

g x+f  x]T

where 8u u -/ and 6x x with (fi, , ) in some bounded convex neighborhood N
of (u*, x*, A*) in the usual product norm on W W W for some constant or>0
and uniformly in t, 0 _-< t-< 1. (A3) implies that the second variation of L with respect to
(u, x) is strongly positive in N.

Remarks. Assumptions (A1), (A2) and (A3) constitute a set of local sufficiency
conditions for the existence and uniqueness of a solution for problem (P). (See 1].) We
will eliminate the multiplier 3’ from the Lagrangian by considering only variations which
satisfy (2.1) (d).

The solution to (P) will be approximated using continuous polynomial splines. Let
A,,: O=to<tl<...<t, 1 be a partition of [0, 1] with [Anl--maxi (ti-ti-,). Let
S(A,, p) denote the s-tuples of continuous polynomial splines of degree p over
(piecewise polynomials of degree _-< p on each subinterval). Let C(A,, p) denote the
r-tuples of continuous polynomial splines of degree p over A,,.

In the ith subinterval [ti-1, ti] of A,, let seq, j 1,..., p, denote the quadrature
points for p-point Gaussian quadrature over [ti-1, ti] and let wq, j 1, , p, denote the
associated weights. With these notations, the method we study is defined as follows:
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(a) minimize
u,, i=1 ]=1

(2.2) (b) subject to ,(scq) f(x,(jq), u,(Csq), q), i= 1,..., n;

i =l,-..,p, x,(0)=Xo,

where x, is in S(A,, p) and u, is in C(A,, p). In order to further simplify notation we let

The dimension of S(An, p) if s 1 is np + 1. A Lagrange basis can be constructed as
follows. Find np functions b,,a, a .-- 1, , n, fl 1, , p so that b,, (s%)= 6,,q where
6,,q 1 if a and fl j and is zero otherwise and b,(1)= 0. Adjoin to this set a
function b0 so that b0(1) 1 and b0(scq) 0. For C(An, p) with r= 1, we can use this
same set as a basis. Now to form a basis for the s-tuples of splines in S(An, p), define

k( q (qek where ek [0 0 0 1 0" 0] and the one is in the kth position. In order to
simplify notation, we will omit the superscript k and write, for example, if ,,, S(An, p)
satisfies An(l)= 0, then An Y,I EjP--10lijtij for some set of real coefficients cq. Iden-
tical simplifications will be used for the basis for C(An, p).

3. Convergence results.The first convergence results of this paper will follow from
the necessary conditions for (2.2)which we now derive.

THEOREM 3.1. Let u *, and x *, be a solution to (2.2). Then there exists a function A *, in
S(An, p) so that

(3.1)

(a)

(b)

(c)

(d)

(e)

Proof. Equation (3.1) (a) can be written first as

q(q)f(xn(q), Un

for each i, j and then using the fact that q(j)= 6q,p as

Thus the Lagrangian for (2.2)can be written as

Define An Y’."-- iP=l Aq4,q. Note this implies A(1)= 0 from the way that the bq’s were
constructed. Then Ln may be written as

TL,(un, xn, An)=2 g(xn, un, t)+E’ An(--Xn+f(Xn, un, t)).
i,j i,j

ToNote that A nXn is a piecewise polynomial of degree 2p- 1 on each subinterval of
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T. j01 T.Thus the quadrature formula will be exact so that
Th,x. dt + A.(O)x,(O). The discrete necessary conditions are given by

(3.2) (b) =0,
OXn

(c) OL---2" O.

From (3.2) (a)one gets back (2.3) (b). Equation (3.2) (b) gives

E’ ck (gx(X., u., t)+ (. +f(x., u., t)h,,)= 0,
r,s

(3.3)

and (3.2) (c) gives

(3.4)

]=l,...,p,

T Tq(g.(x., u., t)+ f.(x., t)h.) 0,
r,s

i-1,...,n, j=l,...,p.

Again using the fact that the() 6,, equation (3.3) gives (3.1) (c) and (3.4) gives (3.1)
(e), completing the proof.

We next want to establish the saddle point behavior of the discrete Lagrangian at a
solution (u,*, x*, A,*) in N. This result will imply the equivalence of dealing with the
approximation problem through its formulation as a minimization problem in (2.2)or
through the discrete necessary conditions in (3.1). However, this still leaves the
question of existence of (u,*, x,*, A *) in N. For the remainder of this section, we will
assume (A4) that (2.2) has a solution in N. Sufficient conditions for existence are given
in {}4.

We remark that the equivalent form generated in the proof of Theorem 3.1 for the
Lagrangian is what would result if Gaussian quadrature were used to implement the
Galerkin method.

THEOREM 3.2. Let (A1)-(A4) hold. Then for all h in S(A, p) satisfying h(1)= 0,
all x. in S(A., p) satisfying x.(0) Xo, and all u. in C(A.. p) so that (u., x., h.) is in N,

L.(u*., x*., A.)= L.(u*. x*., A*. )<L.(u., x.,

Proof. The equality follows directly from (3.1) (a). Write Au,,= u.-u*, and
Ax. x.- x.* and expand L.(u, x., *. ) to obtain

L.(u., x., *. )= L.(u*., x*, h *. )+ Y’ gx(X*., u*., t)Ax. + E’ gu(x*, u*., t)Au.
i,j i,j

+El Io {gxx(X*. +sAx., u*, t)Ax2. +g.u(x*., u* +sAu., t)Au2,}(1 -s)ds

(3.5) +E’ A.*7"(- hx. +[x(x*, u.,* t)Ax. +fu(x*., u*., t)Au,,)

+E’ A*7"(fx(x-* +sAx., u*., t)Ax 2 +f.(x*., u* +sAu., t)Au2)(1-s)ds
id

+ E’ (g.(x* + sAx., u*. + sAu., t)Ax.Au.
id

+h*.Tfxu(X*. +SAX., U*. +sAu., t)Ax.Au.)(1-s)ds.
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Now using A3 and arguing as in the proof of Theorem 3.1, (3.5) becomes

i,j

(3.6)
+’ gx(X*, u*, t)Ax,, + 2’ g.(x*, u*.,

id i,j

id

+2’ A,*r(L(x-*, u*, tlAXn + f,(x*, u*,, t)Au,,).
i,j

Then using (3.1) (c) and (3.1) (e) we obtain

(3.7)

completing the proof.
Now if u, and x, are candidate solutions to the discrete problem (2.2), i.e. (2.2) (b)

is satisfied, then L,(u,, x,, ,*)= ’i, g(xn, u,, t). If tn and , (with some A,)satisfy the
necessary conditions (3.1), then using Theorem 3.2 we have ,ig(n,n,t)<=
Y,ig(xn, Un, t), i.e. (,, fin) solves (2.2). Thus (A3) implies the sufficiency of the
necessary conditions. Moreover, from (3.7) it follows that the values of xn and u,, are
unique at the collocation points s%. Since xn(0)---x0, x, is unique.

Now that we have shown the equivalence of dealing with the discrete problem
either directly or through the discrete necessary conditions, convergence theorems can
be established by an analysis of (3.1) as a discretization of (2.1). This is done in section 4
with the aid of an additional assumption on the problem. Before doing that, we first give
a convergence theorem that shows optimal rates of convergence are obtainable without
any more assumptions other than smoothness.

THEOREM 3.3. Let (P) be in C2p and let (A2)-(A4) hold. Then

(a) E’ (u u*)T(u U*)--
(3.8)

i,

(b) Y/ (x*. -x*)(x*. -x*)=
i,/"

Proof. Using Lemma 4.1 to follow and standard differential equations arguments, it

follows that x* and A* have at least 2p + 1 continuous derivatives and u* has at least 2p
continuous derivatives.

From Theorem 3.2, it follows that for admissible u,, x,,

(3.9) L.(u, x, ) L.(u., x., ).

As in the proof of Theorem 3.2, we have for admissible A. that

(3.10)

/.(u.* x* x.)_-> .(u., x., a.)+ E’ (au
id

+ E’ (g(x., tn, t)+ fx (Xn, U,,, t)A,, +
i,j

+E’ (g.(x., u., t)+tu(X., u.,
i,j
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where AUn u.* -Un and Ax,, x.* -x.. Combining (3.9) and (3.10) we obtain

Et AA T(-x. +f(x., u., t))
id

(3.11) tr Y’.’ (Au. Au. +Ax.Ax.)<= -Z’ (g(x., u., t)+f.(x.,r U., t)A.
i,j i,j

-’ (g.(x., u., t) T+f. (X., U., t)A.)Au.

where Ahn h,*- An. Now choose u,, to be the best L%approximation of u*. The
estimate Ilun u*lloo O(]Anlp+ 1)follows from [18]. Now choose Xn to be the solution of
the equations

(3.12) -,,(q)+f(x.(sc:q), u.(q), ii) 0

for all i,/" and with Xn(O) XO. Using (2.1) (c) and the smoothness of f, the problem

i +f(x, un, t) O, 0 < < 1,

x(0)= x0 has a unique solution . satisfying [[,,-x*[[o O([AnIP+). The functions
will be in C because u,, is only continuous. However higher derivatives through order
2p + 1 will be piecewise smooth with jump discontinuities occurring only at the mesh
points. It thus follows using the theory of collocation at Gauss points as given in Russell
[171 that Xn is well-defined by (3.12)for all IAn[ sufficiently small and that [Ix,- nl[oo
O([AnIP+I). Using the triangle inequality, it then follows that [[x,,-x*[[oo O(IA,,[P+I).
Define An to be the solution of the equations

T t)A.le,, + (X., U., t)le,,- 0n (ij)-I- f (Xn, Un, gx

for all i, j and An(l) 0. Repeating the analysis above we have that A,, is defined for
sufficiently small and that IlAn A*[Ioo O([A.[P+’). Substituting u., x. and A. into (3.11),
the first two terms on the right hand side vanish and so

(3.13) r t)hn)AU,,.o" Y.’ (AuffAu,, +AxffAx,,)=< - (g.(xn, un, t)+f.(x., u.,
i,j i,j

T * U* =0. ThusRecall that g.(x*, u*, t)+fu(x t)A*

’(g.(x., un, t) 7"+ f. (Xn, U., t)h.)Au,,
i,i

2’ (g.(xn, u., t)-g.(x*, u*,/))Aun
i,j

+E’ 7- t) 7"((L (x., u., u ufu(x*, *, t))A,, T+ f,, (x*, *,/)(An A *))Au..
i,j

Using the estimates for u. u*, xn x* and An A* and the smoothness of f and g, we
thus obtain via the Schwarz inequality that the right hand side of (3.13) is less than or
equal to O(]AnIP+’)(,Au.Au.)/2. Applying this to (3.11)gives

(3.14) E’ AuT 2W+))..au.
id

Since 2[(un-u*)(u.-u*) O(IA.IZP+)), an application of the triangle inequality
with (3.14) gives (3.8) (a). Using (3.8) (a), (3.13) and the triangle inequality gives (3.8)
(b), completing the proof.
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Remarks. The bounds of Theorem 3.3 are given using a discrete L2-norm and are
one order higher than the analogous bounds of 1 for the Galerkin method. The bounds
of [1] are given in the L--norm. Theorem 3.3 does not contain a bound for the dual
variable. Using (3.1) (c) and collocation theory, convergence follows directly, but the
order of convergence in the L-norm will be less than the best bound because that is all
the bounds (3.8) (a)-(b) imply for the L-norm. It is possible with the ridded assumption
that the matrix -fff(x*, u*, t) is uniformly positive definite in to deduce an analogous
bound to (3.8) (a)-(b) for A, A*. The argument is similar to that given in Lasiecka 10].
(See also Lions 11 ].) We omit this here and in the next section give both existence and
improved convergence under slightly different assumptions.

Also, Theorem 3.3 does not contain statements of error bounds in the case the
assumed smoothness is lacking. The theory of collocation at Gauss points 17] requires
extra smoothness to achieve optimal convergence rates. Here this means (P) must be in
C2p. Otherwise, for the problem studied, theoretical rates drop to order p until the
smoothness of the solutions drops below Cp/I. Then convergence becomes of order
u-1 if the solutions are in CE These results are straightforward applications of the
collocation theory [17] and statements of all the various cases are left to the reader.

4. l-ligh order error estimates. We will assume throughout this section that
assumptions (A1)-(A3) hold. We first establish a lemma.

LEMMA 4.1. The equation g,(x, u, t) +], (x, u, t)A 0 can be solved uniquely for
u d(x, A, t) in a neighborhood N’ of (u*, x*,
P is in C, d has t, continuous derivatives.

Proof. This is a consequence of (A3) and the implicit function theorem.
Remark. In the case of quadratic-regulator problem

(4.1) min - (x fox + u rRu) dt

subject to

(4.2) 2 Ax + Bu, x(0)= Xo,

with R(t) positive definite, equation (2.1) (a) becomes

(4.3) Ru +B rA O,
Tand so u =-R-1B rA. The function g,, +[,,A in this case is simply R.

Using Lemma 4.1, the necessary conditions may be written as the two-point
boundary value problem

(a) * +f(x*, (x*, A*, t), t)rA* + g(x*, 4(x*, A*, t), t)=O,

(4.4) (b) -2 +[(x*, b(x*, A*, t), t)=0,

(c) x*(0) x0, 0.

Also using Lemma 4.1, the necessary conditions derived in Theorem 3.1 can be written
as

(4.5)

(a)

(b)

(c)

j=l,...,p,
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It follows that (4.5) represents the equations for collocation at Gauss points as an
approximation scheme for the solution to the necessary conditions (4.4). With one
additional assumption, we can now appeal to the theory of collocation methods for
vector systems as given in, for example, Russell [17] and deduce convergence and
convergence rates. We add the assumption (A5) that when (4.4) is linearized about
(x*, A*), the resulting variational problem is uniquely solvable. See [17] for details.

THEOREM 4.2. Let hypotheses (A1)-(A3) and (A 5) hold. Then solutions x*., A*. to

(4.5) exist and are unique in a neighborhood of (x*, A*) for all partitions A. with IA.I
sufficiently small.

ff (P) is in C2p, then

Ix* (t,)- x*(t,)l

where ti A,.
If we define u,, b(x,*, A*, t), it follows from Theorem 4.2 and Lemma 4.1 that

u,- u* will satisfy the bounds of Theorem 4.2. Of course u is not identically u*, but
u,(:0) u* (0), i.e., they agree at the collocation points.

Remark. Theorem 4.2 does not actually require the full strength of assumption
(A3). What is actually required is a condition allowing the implicit function theorem to
be used so that Lemma 4.1 holds. Then with (AS), existence, uniqueness, and
convergence of the approximate solutions to (4.5) follows. The extra smoothness
assumption of Theorem 4.2 leads to the high order rate. Note also that in contrast to
Theorem 3.3, the bounds of Theorem 4.2 are in the L-norm. Other convergence rates
follow in the L-norm if less smoothness is present.
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RITZ-TREFFTZ APPROXIMATIONS IN OPMAL CONTROL*

F. H. MATHISf AND G. W. REDDIEN

Abstract. Known convergence rates for the control approximations generated by using the Ritz-Trefftz
method on the state regulator problem are not optimal. Optimal rates are proven here using standard
techniques.

1. Introduction. The Ritz-Tretttz method using polynomial splines for the state
regulator problem has been analyzed by Bosarge and Johnson [1], Hager [3] and
Schultz [5]. The purpose of this note is to show that the convergence rates derived in
those papers for the control are not sharp, and that actually the method achieves the
optimal rate of convergence. The convergence rate known for the state is seen to be
sharp in the numerical examples presented here. Hager [3] considers state and control
constrained problems which we do not treat here.

For v >=1 let X denote the set of mappings x from [0, 1] to R so that x is
continuous and 2 exists and is continuous except for possibly finitely many points and
IIllz Ilz dt < c. Let A(t)be a v x v matrix and B(t)a v x r matrix for tin [0, 1], both
of which have entries which are continuous functions of in [0, 1 ]. Let O(t) and R(t) be
respectively a v v symmetric, positive definite and an r r symmetric positive definite
matrix, both of which are continuous functions of in [0, 1]. Then the state regulator
problem is to find a function u in X and afunction x in X which minimize

(1.1) J(u)==-- (xT’Ox + uT’Ru) dt

subject to

(a) 2 Ax + Bu,
(1.2)

(b) x(O)= Xo.

0-< t__-< 1,

Using known results of control theory [5], one can show that problem (1.1)-(1.2) is
equivalent to the problem of finding a function A inX which maximizes the Lagrangian

(1.3) L[u, x, A]= J(u)+ Io A 7"(- +Ax + Bu) dt + A 7-(0)[Xo x(0)]

subject to the constraint A (1)= 0 where u and x are defined by

(1.4) u(t) -R-’(t)B T(t)A (t)

and

(1.5) x(t) -o-l(t)(/(t)+AT’(t)A(t))
both for in [0, 1]. Substituting (1.4)-(1.5)into (1.3), we may express the Lagrangian in
terms of A alone. Define

(1.6) a(w, v)= I0 ((Q-vO+Q-ATw)T+(AQ-v+AQ-1ATw+BR-1BT’w)T))dt"

* Received by the editors October 27, 1977, and in revised form August 8, 1978.
f Mathematics Department, Auburn University, Auburn, Alabama 36830.
$ Mathematics Department, Vanderbilt University, Nashville, Tennessee 37235.
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Then

-L[u, x, A] 1/2a(A, A)- h (0)rXo de=. F(A).
The following characterization result is known [5].

THEOREM 1.1. The optimal Lagrange multiplier exists and is the unique solution in

Xo -= {& X: &(1) 0} of the generalized Euler equation.

(1.7) a(h, y)= y r(0)Xo, .for all y e Xo.
Let S be any finite dimensional subspace of Xo with basis {4}%. Then the

Ritz-Trefftz method is to find which minimizes F(A) over S. It follows from [3] that
the Ritz-Trefftz method is well-defined and solves (1.7) over S.

2. Convergence. Our convergence proof will be a modification of the argument
given in Chapter 7 of [5] for the convergence of the Ritz method applied to elliptic
boundary value problems. See also Chapter i of [6]. We need a few lemmas, the first of
which can be found in Hager [2].

LEMMa 2.1. There exist positive constants c and c2 so that for all w in Xo,

(2.1) CI[[W[[ _-<[[ro +a TW[[2 a(w, w) <- C2[[W[[12
where

Ilwll -/1 11 / Ilwll
Proof. Recall that w(1)= 0. If v +Arw, then using the Gronwall inequality it

follows that Ilwll--< cl/ll for some constant c > 0. Now

a(W, W): S01 ((O--1 I "[- O-1A Tw)TI + (AQ- vi, + AQ-1ATW +BR-aBTw)rw) dt

(2.2)

Io ((rO+Arw)rO-l(+Arw)+(BR-1Brw)rw)dt"

Using the previous inequality, the positive definiteness of O and R, and the assumed
continuity for A, Q, R and B in (2.2), (2.1) follows.

We next give a result which establishes the strong coerciveness of a(v, w) in the
sense of [5].

LEMMA 2.2. Let Q- andA be continuously differentiable. Forg inX, there exists a

unique function w in Xo satisfying

(2.3) a(w, y)= (y, g)-- Jo y dt

for all y in Xo. Moreover, there exists a constant c3 > 0 so that

(2.4) I111
where c3 is independent of g.

Proof. The existence and uniqueness follows using Lemma 2.1 from Theorem 1.1
of Lions [4]. It is easy to see that the solution w is also the unique solution to the
two-point boundary value problem

--j( A Tw -1 A T --1(2.5) Q-I+Q- )+AQ b+(AQ- +BR Br)w=g, O--<t_-<l,
dt
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with boundary conditions

(2.6) g,(0) + A(0)w(0) 0, w(1)= 0.

The estimate (2.4) now follows by standard Green’s function arguments.
We are now in a position to apply the analysis given for elliptic boundary value

problems and the Ritz method using the technique of Nitsche.
We first note that by combining the Euler equations for A and ,s (see (1.7)), we

obtain

(2.7) a(hs- h, bi) O, all $i in S.

We next give a lemma that is a consequence of Theorem 1.1 in Strang and Fix [6]. Note
from (1.6) that a(.,. ) is symmetric.

LEMMA 2.3. a(h-As, A-As)=infsa(A-s,A-s).
We next choose for S spaces of polynomial splines. Let A," 0 t < t’ <. < t,

1 be a partition of [0, 1] and let IA,lmax (t’-ti"_l). We let S(A,, p) denote the
v-tuples of polynomial splines of degree p => 1 over A,. Each function u in S(A,, p) will
be a v-tuple of polynomials of degree p on each subinterval of A, and u will have m
continuous derivatives over [0, 1] for some index 0 -< m-<p-1. We will omit the
designation of rn in our notation for S(A,, p) since it is irrelevant here. Let So(A,, p)
denote the functions u in S(A,, p)satisfying u(1)= 0.

This next lemma follows from the results of Bosarge and Johnson 1 ].
LEMMA 2.4. Let A solve (1.7), let A, be the Ritz-Trefftz approximation to A over

So(A,, p) and be in ck[o, 1], k -> 1. Then

I1 ,, +Ar(A x.)ll <-const. IAnl’}trnin(k-l’p).

It is now straightforward to combine the preceeding lemmas as on pp. 48-49 in [6]
and deduce the sharp bound.

THEOREM 2.5. Let A and A, be as in Lernma 2.4 and let the conditions ofLemma
2.2 hold. If A is in ck[o, 1 ], k >= 1, then

IIA ;t.II const. Imnl min(k’p+ 1).

Thus we have shown that the convergence rate for A- A, is best possible. Since
u u, -R-1BT"(A -A,), this error also converges at the best rate. The formula (1.5)
does not lead to an approximation to the state that achieves the best possible estimate
because of the A term. However, one could go back to (1.2)(a) given u, and compute an
optimal order approximation to the state if desired.

Example. We consider the simple scalar problem

min. - (xZ+u dt

subject to

=x+u, 0=<t_-< 1, x(0)= 1.

For the Ritz-Trefftz method using linear splines we obtained the results in the next
table. The convergence rate,/3, was computed based on the actual errors assuming the
error behaved like const. IA, t. All meshes used were uniform. In this example, A -u
and h. u,.
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TABLE

.997. 10-13 .264 10-2

.9931- .657. 10-3 2.006 .501. 10-1

2.071 .328. 10-11-3 .284 10-3 1.047
.9302--6 .164. 10-3 1.904 .251. 10-

In the next table, we present numerical results for the same problem, but using
C2-cubic splines.

TABLE 2

.101. 10-4 .267. 10-3

.434 10-5 3.80 .141 10-3 2.88

.214 10-5 3.88 .828 10-4 1.90

.118. 10-5 3.87 .529. 10-4 2.91
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STRUCTURE MÉTRIQUE DES ORBITES DE FAMILLES SYMÉTRIQUE S
DE CHAMPS DE VECTEURS ET THÉORIE DU TEMPS MINIMUM*

ANDREA BACCIOTTI t

Sommaire . L'étude des propriétés et de la structure des ensembles des états atteignables ou orbite s
d'une famille de champs de vecteurs sur une variété différentiable a appelé récemment l'attention de
plusieurs auteurs : il s'agit en effet d'une approche théorique très importante à la théorie des systèmes de
contrôle non linéaires . Il est connu que une orbite S d'une famille symétrique peut être munie d'une
structure de variété différentiable : dans cet article on montre que sous des conditions très raisonnables S
peut être munie d'une structure d ' espace métrique, qui induit sur S la même topologie de la structur e
différentiable . La fonction de distance qu'on va définir sur S est semblable à la fonction du temps minimum .
En utilisant cette distance on peut alors poser les bases pour une théorie du problème du temps minimum .

Introduction. L'approche géométrique à la théorie du contrôle, devéloppée à
partir des travaux de Hermann et Lobry [11], permet une étude très générale de s
propriétés de l'ensemble des états atteignables . Un des résultats les plus importants
jusqu'ici connus est le théorème de Sussmann et Stefan (voir la proposition 1 .2) qu i
montre comment l'ensemble des états atteignables par une famille symétrique d e
champs de vecteurs possède une structure naturelle de variété différentiable . Dans ce
travail on introduisit sur l'ensemble des états atteignables une structure d'espac e
métrique : l'idée est de mesurer les distances au moyen du temps qu'on employe à les
parcourir, le long des trajectoires de la famille donnée . Si nous n'avons pas à dis -
position des vitesses infinies, et si nous sommes en conditions convenables de autoac -
cessibilité (voir dans la suite) la topologie induite sur l'ensemble des états atteignable s
par sa structure métrique est équivalente à la topologie donnée sur l'espace des états .

La métrique introduite est strictement liée à la fonction du temps minimum : en
utilisant cette métrique on peut alors déduire d'un façon très naturelle les résultats qu i
sont à la base de la théorie du temps minimum, tels que la continuité de l'ensemble de s
états atteignables par rapport au temps, la continuité de la fonction du temps minimum e t
une condition d'extrémalité pour les trajectoires optimales . Malheureusement, nous ne
sommes pas en état d'achever notre exposition avec un théorème d'existence pour le s
contrôles optimaux, car en général, l'ensemble des points atteignables à un certain instant
T > 0 n'est pas fermé; et cela en tant que dans la théorie géométrique du contrôle on
travaille structurellement avec des contrôles bang-bang continus par morceaux . Lorsqu e
l'ensemble des points atteignables résulte fermé à tout instant T 0 (il est ainsi pa r
exemple pour certains systèmes linéaires ou bilinéaires, voir [5]), la théorie du temp s
minimum peut être tout à fait développée de notre point de vue .

Voilà le plan du travail : la § 1 contient le liste des notations et les rappel s
nécessaires ; la § 2 est consacré à la définition et à l'étude de la structure métrique su r
les orbites d'une famille symétrique de champs de vecteurs ; dans la § 3 on pose le
problème du temps minimum et l'on montre la continuité de la fonction du temps
minimum; enfin, dans la § 4 on achève l'étude de l'ensemble des états atteignables e n
démontrant, en particulier, qu'il dépend continûment du temps .

1 . Notations, définition et rappels . Dans ce travail nous utiliserons les notations
suivantes :

k, h, n, µ sont des entiers positivs .

* Received by the editors August 20, 1977, and in final revised form March 13, 1978 .
t Istituto di Matematica Applicata, Facoltà di Ingegneria, Firenze (Italia) Questo lavoro é stato svolto

nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni del C .N .R .
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Rn dénote l'espace des n-pies de nombres réels, x = (x i , • • • , xn ) et R n, dénote
l'ensemble {x = (xi , • • • , xn ) E Rn

: x i 0, i = 1, • • • , O . Si x = (x 1 , • • • , xn ) E lin , on note

iiii= ;'= 1 (xi I .
I est un ensemble de indices at 1' est l'ensemble des k-arrangements ave c

répétition d'éléments de I.
L'adhérence et l'interieur d'un ensemble A dans un espace topologique E son t

dénotés respectivement par adh E A et intE A ou, s'il n'y a pas de possibilité d e
confusion, plus simplement par adh A et int A ; la frontière de A est notée 0A .

M est une variété différentiable paracompacte de dimension n et de classe C'
+ 1

(1 p. ; cd) ; les points de M sont dénotés par m, p, q, • • • et l'espace tangent à M en
chaque point m est dénoté par TMm . On suppose M munie d'une structure Rie-
manienne définie par un champ de tenseurs G (de classe Cµ) deux fois covariants
(voir par exemple [3]): cela détermine, pour chaque m E M, la donnée d'une forme
bilinéaire G,n (• , • ) sur TMm x TMm symétrique, non dégénerée et définie positive .

D = (X'( . ))i E I est une famille de champs de vecteurs de classe Cµ sur M. Pour
chaque i E I on note (t, m) -'X(m)le groupe à un paramètre engendré par X' ( . ) . On
suppose que tous les champs de vecteurs de D soient complets : cela signifie que, pour
chaque i E I, le groupe X(m) est défini quel que soit (t, m) E 111 x M. Si m E M et

= (i i , • • • , ik ) E 1', on note pe,m (•) l'applicatio n

( 1 )

	

(t1,
. . . tk) - X tk

o . . . o X t~ (m ) : 1k -M

différentiable de classe C ' . L'ensemble de toutes les applications pe,m définies par (1 )
est noté par W.

Voilà maintenant quelques définitions et résultats classiques, que nous utiliseron s
dans la suite .

DÉFINITION . On dit qu'une famille D de champs de vecteurs est symétrique s i
pour tout X(• ) E D, -X(• ) E D .

DÉFINITION . Soient m, m ' E M. On dit que m ' est atteignable de m si existent
k, E l k et t = (t1, . . . , tk ) E

	

tels que pcm (t) = m ' .
PROPOSITION 1 .1 . Si la famille D est symétrique, la relation d'atteignabilité est un e

relation d'équivalence .
Démonstration . La démonstration est triviale . q
DÉFINITION . Les classes d'équivalence de la relation d'atteignabilité en M sont

appelées orbites de la famille D, ou bien ensembles des points ateignables .
PROPOSITION 1 .2 (Sussmann-Stefan). Soit S une orbite de la famille symétrique D

de champs de vecteurs . Il existe sur S une structure différentiable telle que :
(i) Pour chaque m E S, p ,m (• ) définie par la (1) est une application continue de

R k en (S, oW), quels que soient k et E lk .
(ii) (S, o-) est une sous-variété immerse en M.
Démonstration . Pour la démonstration voir [12], [13] . q

DÉFINITION . Soit T 0 et mo E M. L'ensembl e

(2 )

	

R (T, mo) = {m E M : 2k, e E lk et t E i t .q . m = p ,mo( t) et II01= T }

est appelé ensemble des points atteignables de mo à l'instant T 0 .
PROPOSITION 1 .3 . Soit D une famille symétrique de champs de vecteurs sur M e t

soit S une orbite . On a
(i) Si mo E S alors R (T, mo) c S à tout instant T ? 0 et S = U tao R (t, mo).
(ii) Si T2 > Ti > 0 alors R(T1 , mo) c R (T2, mo) pour chaque mo E M, et

R (T, mo) = Uo~r=TR (t, mo) .
(iii) Si m E R (T, m' ) alors m ' E R (T, m) quels que soient m, m ' E S et T > 0 .
Démonstration . Pour la démonstration voir [1] . q
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DÉFINITION . On dit qu'un point mo E M est autoaccessible à l'instant T > 0 pa r
rapport à la famille D si mo E intM R (T, mo) .

Des conditions d'autoaccessibilité sont données en [1] . Des conditions afin qu e
int R (T, mo) 0 0 sont données en [14] dans le cas analitique .

2 . Structure métrique des orbites. Soit S une orbite de la famille symétrique D .
Soient m, m ' E S et soit

d (m, m ' ) = inf IT >0 : m' E R (T, m)} .

La (3) définit une fonction de S X S en ll+ .
THÉORÈME 2 .1 . Quelle que soit la famille symétrique D de champs de vecteurs

complets sur M et quelle que soit l'orbite S, la fonction (3) satisfait les propriétés
suivantes :

(i) m = m ' d (m, m ' ) = 0 ;
(ii) d(m, m ') = d(m', m) ;
(iii) d(m, m ')+d(m', m ")?d(m, m " ) .

Selon la définition de [2, p . 1] la fonction (3) est donc un écart sur S .
Démonstration . La verification de (i) et (ii) est triviale ; (iii) est une conséquenc e

simple de (1), (2), (3) . q
DÉFINITION . On dit qu'une famille D de champs de vecteurs est localemen t

bornée quand, quel que soit m E M, il existe un voisinage U de m et un nombre réel
L > 0 tels que

(4)

	

Gq (X i (q),X l (q))< L

quels que soient q E U et i E I.
Soit (V, cp) une carte locale en m, et soient f; (q) les composantes du champ Xie )

en cette carte . En écrivant (4) dans le repère (V, cp) on voit que D est localement
bornée si et seulement si il existe un voisinage V' de m contenu en V et un nombre
réel L ' > 0 tels que

n

	

1/ 2

If(g )l 2

	

<L ' ,
j= 1

quels que soient q E V ' et i E I. La définition de famille localement bornée ne dépen d
pas donc de la structure Riemanienne de M.

THÉORÈME 2 .2 . Soit D une famille symétrique de champs de vecteurs complets su r
M, et soit S une orbite de D en M. Si D est localement bornée, la fonction (m, m ' ) H

d(m, m ' ) définie par la (3) est une distance sur S.
Démonstration . D'après le Théorème 2.1, il suffit de vérifier qu e

(6)

	

d(m, m ') = 0 m = m ' ,

	

m, m' E S.

Soit m ~ m ' . Puisque (S, a-) est un espace de Hausdorff, il existe un voisinage U de m
où (4) vaut, tel que m ' U.

Soit g(' , . ) da distance géodésique induite sur M par la structure Riemanienne G
(voir [3]), et soit e > 0 tel que {p E M : g (p, m) < s l = V c U. Soient = (i 1 , . . . , ik ) E lk
et t = (t 1 , . • • , tk ) E Œl tels que m ' = pcm(t) et posons

mo = m,

	

mh = Xrh ( mh-1),
h

ro – 0,

	

Th =

	

ti,
j= 1

(3 )

( 5 )

pour h = 1, • . . , k . On a Tk = Iltll l et m k = m ' . Soit encore 15. H y( 19-) : [0, Tk] ~ M la
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courbe définie par

(7) Y(0) = mo,

Telle courbe est continue, et ses extrêmes sont l'un en dedans, l'autre en dehors de V .
Donc il existe 1 T tel que si i < i , y (i) E V et y ('O) E a V ; on peut supposer i = Th,
pour un certain indice h < k . Soit Ili la longueur de l'arc décrit par la courbe i H y(~)
lorsque Th _ 1

	

Th ; il suit par la (4 )

Th

lh —

	

[G(,,)(X"(y(iJ)), X`h(y@)))]l'2

	

hL1J2 .
Th - 1

La longeur de l'arc déçrit par la courbe 1---> y(i) lorsque 0

	

Th est E;`_ 1 l; ? E . Par
(8) il suit alors e (E 1 t1 ) TkL, c'est-à-dire 11th1 E/L, pour tous k, e E Ik et t E IR +
tels que m ' = pE, m (t). En prenant la borne inférieure la (6) est démonstrée . q

Si la famille D n'est pas localement bornée, la (3) ne donne pas en géneral une
distance sur S : cela est montré par le simple exemple qui suit .

Exemple 2.1 . Soit M = l avec l'structure usuelle euclidienne . La famille D =
(aX (• ))a E R, où m HX(m) =1, est symétrique, mais non localement bornée ; en étant
(aX) t(0) = at, on voit aisément que d(0, 1) = O .

Dans les hypothèse du Théorème 2 .2 la distance (3) définit sur S une topologie
métrique que nous notons S. Le but de la partie finale de cette section est de compare r
la topologie S et la topologie naturelle de M. On commencera aussi à étudier le s
boules ouvertes ou fermées de 8 par rapport aux ensembles des points atteignables .

PROPOSITION 2 .1 . Soit mo e S. Dans les hypothèse du Théorème 2 .2 si Us est un
voisinage quelconque de mo en (S, o) alors il existe T > 0 tel que R (T, mo) c Us .

Démonstration . Soit Ds la famille des réstrictions des champs de D à la variété
(S, o-) : il est clair que Ds est encore localement bornée . Répétons la construction de l a
démonstration du Théorème 2.2 par rapport à un voisinage Us de mo en (S, o') et à
tous N, m E

	

et t E 11;R k avec Iltlli < E/L ; on a nécessairement y(i) E Us pour tout
1

	

11th1 . Donc R (e/L, mo) c Us. q
PROPOSITION 2 .2 . Soit mo E S et soit {m,,} une suite en S telle que lim d(m,,, mo) =

0. Alors {m„} converge à mo dans la topologie de cr.

Démonstration . Il est évident que, dans ces hypothèses, quel que soit T > 0 i l
existe v pour lequel m„ E R (T, mo) . L'énoncé suit alors par la Proposition 2 .1 q

PROPOSITION 2 .3 . Soit T > 0 et soit mo E S ; dans les hypothèses du Théorème 2 . 2
on a :

(i) {m E S: d(m, mo)< T}= Uost<TR(t, mo) ;
(ii) R (T, mo) c {m E S : d(m, mo) TI c adh (s, ,r) R (T, mo).

Démonstration . La (i) et la première inclusion de (ii) sont des conséquence s
immédiates des définitions . Pour démontrer la deuxiéme inclusion de (ii), soit m E
{m S : d(m, mo)T}. Si d(m, mo) < T, il est clair que m E adh R (T, mo) ; soit donc
d(m, mo) = T et soit {T„}, T„ > 0, une suite de nombres réels qui converge à zéro . Par
la définition même de la fonction d(• , • ) ils existent, pour chaque v, k„ E Ni, ev E 1 k- e t
t„ E R kv tels que m = p e,,.mo(t u ) et T Ilty Il i T + T,,. Répétons la construction de la
démonstration du Théorème 2 .2, pour obtenir, de l'application pe,,, ma , une courbe

►-* y,,@), définie par P. E [0, llt„I I 1 ] . Quel que soit v, on a m„ = y,,(T) E R (T, mo) et
d (m,,, m) (Itylll — T T,, . La démonstration est complète par la Proposition 2 .2 . q

Dans la Proposition 2 .3 paraissent les boules ouvertes et fermées de la topologi e
S : puisque les orbites sont des sous-variétés immerses en M, on peut affirmer à ce
point que la topologie ô est plus fine que la topologie naturelle de M.

y(~) —

	

(mh--1) Si Th —1 <

	

Th .

(8)
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THÉORÈME 2.3 . Soit D une famille symétrique et localement bornée . Si chaque
point de M est autoaccessible à tout instant T > 0, alors les orbites de D en Mcoinciden t
avec les composantes connexes de M et, sur chaque orbite, la topologie S est équivalente à
la topologie de M.

Démonstration . L'hypothèse de autoaccessibilité à tout instant T> 0 entraîne
que l'orbite que passe chaque point m E M a dimension n (voir [1] ; la première
affirmation du théorème est alors un corollaire de la Proposition 1 .2 (voir [131) . On
peut supposer maintenant pour semplicité que M soit formée par une composant e
connexe toute seule : par les Propositions 2 .1 et 2 .3, il suit alors que tout ouvert de M
contient un ouvert de S . Par contre, par la définition de autoaccessibilité, il est clai r
que, quel que soit T> 0, il un ouvert de M contenu en {m E M : d (m, mo) < T} =
U O < t< T R (t, mo). Le Théorème est donc montré . q

Si l'hypothèse de autoaccessibilité à tout instant T > 0 n'est pas vérifiée en tou t
point de M, la topologie ô peut être effectivement plus fine que la topologie de M,
même si M est formée par une orbite toute seule : cela est montré par l'exemple qu i
suit .

Exemple 2 .2 . Considérons en M =
l 2 les champ s

X l x = 1

	

X 2 x =(,Y)

	

0 ,

	

(,Y)

	

x
f( )

où f (x) est x 2 si x 0 et est zéro si x < 0 . Soit D = (±X 1 , ±X 2 ) . Cet exemple es t
développé en [1] . La boule ouverte de rayon 1 et de centre (—1, 0) dans la topologie S
est donnée par le segment -2 < x < 0, y = 0 .

Les exemples suivants sont en relation avec la Proposition 2.3 . On doit dire qu e
l'eexample 2 .4 n'est pas beaucoup approprié dans ce contexte, car on y utilise u n
champ non complet ; il me semble de toute façon interessant, parce que l'hypothèse d e
travailler avec des champs complets n'est pas considerée essentielle par presque tou s
les auteurs .

Exemple 2 .3 . Considérons en M = {(x, y) E R 2 : y > 0} les champ s

X I x — 1/Y

	

X2 x = 1/ Y
( ,Y)

	

1/Y
,

	

( ~Y)

	

- 1
/Y '

et soit D = (±X 1 , ±X2 ) . Soit encore b > 0, et soit n un entier positif . Du point (0, b)
on peut atteindre le point (1, b) en suivant la courbe intégrale du champ X 1 jusqu'au
point (1/(2n), b + 1/(2n)), puis la courbe intégrale du champ X 2 jusqu'au poin t
(2/(2n), b) et ainsi de suite . Le temps employé à la fin du chemin est égal à b + 1/(4n) .
On a donc d ((O, b), (1, b)) = b mais (1, b) R (b, (0, b)) .

Exemple 2 .4 . Soit M = R2 -101 et considérons les champ s

XI ( x , y) — (0) ,1

	

X2(x, y) =
f(x )

,

où
(x + 2) 2 six < -2 ,

f(x)= 0

	

si -2x 2 ,

(x—2) 2 six>2.

Soit D =(±X 1 , ±X2 ) . En tout voisinage de (—1, 0) il y a des points qu 'on peut
atteindre de (1, 0) à un instant T < 5, mais le point (—1, 0) n'est pas atteignable d e
(1, 0) quel que soit T < 5 . Il s'avère donc que l'inclusion {(x, y) : d ((x, y), (1, 0))-5—. 5} c
adh R(5, (1, 0)) est propre .
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3. La fonction du temps minimum . Soit D = (X i (• ))i E I une famille symétrique d e
champs de vecteurs complets Cµ sur M, et soit S une orbite de D en M. Il convient de
penser M comme l'ensemble des états phisiques d'un système guidable, dont le s
champs de D représentent les possibles évolutions . Nous dénotons par mo un point
fixé en S, qu'on assume comme "état désiré" par le système, c'est-à-dire l'état qu'o n
désire d'atteindre . Le problème du temps minimum consiste à déterminer (s'ils exis-
tent) pour chaque m E S donné, k E E I k , t E Rk qui minimisent la valeur de ({t{{1 ,
sous la condition que pcm (t) = mo . Soit T > 0 ; en étant D symétrique, l'ensemble des
points desquels mo est atteignable à l'instant T coïncide avec R (T, mo) défini par (2) .
Le problème du temps minimum a donc solution pour un point m donné en S, si e t
seulement si il existe T> 0 tel que

(9)

	

m E R(T, mo) et m R (t, mo), quel que soit t < T.

Il y a une vaste littérature sur le problème du temps minimum . Ici nous rappelerons
[4], [9], [10], où les résultats sont essentiellement fondés sur des théorèmes d e
compacité et de continuité des ensembles des points atteignables. On doit à Filippov
[7] le théorème d'existence de solutions du problème du temps minimum dans le ca s

=f(t,y,u),

	

t0, yE Rn, uESl,c R h ,

où f (t, y, u) est continue et différentiable par-rapport à y, Q est compact, t i-4 u(t) est
mesurable et l'ensemble V (t, y) = f (t, y, f.Z) est convexe . Un exemple en [6] (voir aussi .
[11]) montre qu'on ne peut pas se passer de cette dernière hypothèse .

La fonction

(11)

	

m H To(m) = d (m, mo) : S -* R +

où (m, mo)H d (m, mo) est donnée par la (3), s'appelle la fonction du temps minimum .
Les proprietés de la fonction du temps minimum sont étudiées en [8] par rapport à un
système linéaire de la form e

J' = Ay+Bu,

	

y E R n , u E SZOE Rh,

oû A et B sont matrices constantes, t ►—* u (t) est mesurables e t

(13)

	

Q={u=(u1, . . . ,uh)E R h : IuI

	

1, j = 1, . . . , h},

et par rapport à l'état désiré mo = 0 E Rn. Le résultat plus important que nous démon-
trerons à propos de la fonction (11) est le théorème suivant .

THÉORÈME 3 .1 . Soit D une famille symétrique de champs de vecteurs complets,
Cµ sur M. Si D est localement bornée et si chaque point de M est autoaccessible à tout
instant T > 0 par rapport à D, alors S est une composante connexe de M, et la fonctio n
du temps minimum (11) est continue dans la topologie de M sur S .

Démonstration . On déduit la première affirmation comme dans le Théorème 2 .3 .
Soit alors m i E S, soit E > 0 et considérons l'ensemble R (e, m i ) . Par l'hypothèse d e
autoaccessibilité il existe un voisinage U de m i en M contenu en R (E, mi) ; donc la
fonction m H d (m, m i ) de S en l +, est continue dans le point mi, quel que soit mi E S .
La continuité de la fonction (11) est alors une conséquence de l'inégalit é

I

	

To(m 1)I = Id (m, mo) — d (m1, mo)I d (m, m i ) . q

Dans le cas (12), (13) la continuité de la fonction du temps minimum est montrée en [8 ]
en utilisant le fait que, dans le cas (12), (0) l'ensemble R (T, mo) est fermé.

COROLLAIRE 3 .2 . Suppose de nous trouver dans les hypothèses du Théorème 3 .1 .
Supposons en plus que M soit connexe et que chaque sous-ensemble propre de M borné

(12)
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dans la métrique ô soit contenu dans un sous-ensemble compact de M (telle hypothès e
est verifiée par exemple lorsque M est compacte, ou lorsque M = Rn ) . Quel que soit
T1 > 0 tel que R (T1 , mo) soit un sous-ensemble propre de M, il existe m E R (T1 , mo) tel
que To(m) = T 1 .

Démonstration . On sait que, dans nos hypothèses, S = M. Soit T1 > 0 tel que
R (T1 , mo), et donc la boule 1m : d(m, mo) < T1 }, sont des sous-ensembles propres de
M. Démontrons d'abord que, quel que soit T > T1 , la boule 1m : d(m, mo) < T1 } es t
aussi un sous-ensemble propre de la boule {m : d(m, mo) < T} . A cette fin, allon s
observer que, en étant M connexe, la boule ouverte 1m : d(m, mo) < TI est un sous -
ensemble propre de son adhérence ; donc l'ensemble

a{m : d (m, mo) < T1 } c {m : d (m, mo) = T1 }

est non vide. Chaque point p tel que d (p, mo) = T1 est atteignable de m à tout instan t
T > T1 . En conclusion, p E {m : d(m, mo) < T} si T > T1 , mais p {m : d(m, mo) < T1 } .
Puisque la boule ouverte {m : d(m, mo) < T1} est bornée en (M, ô), il existe un compact
K qui la contient, et l'ensemble K\{m : d(m, mo) < T1 } est encore un compact de M:
puisque la fonction du temps minimum est continue, elle admet un minimum sur c e
dernier ensemble (voir par exemple [6, p . 64]) . Soit T* la valeur de ce minimum ; il es t
clair que T* T1 , et l'on voit par l'absurde que T* = T1 . En effect dans le cas
contraire on aurait, à tout instant T tel que T1 < T < T* ,

{m : d (m, mo) < T1 } = {m : d (m, mo) < T}.

	

D

Le Corollaire 3 .2 peut s'énoncer dans la manière suivante : dans les conditions posées
sur D, M et T1, il existe m E M tel que le problème du temps minimum avec le s
donnés m et mo a solution égale à T1 . On observe que l'hypothèse que M soit connexe
n'est pas essentielle : il suffit de nous rapporter aux composantes connexes de M.

4. Quelques propriétés de l'ensemble des points atteignables . Le résultat le plu s
important de cette section concerne la continuité de la fonction multivoque 1. 1—>

R(t, mo) . On dit qu'une fonction multivoque t HF(t) de variable réelle qui prend se s
valeurs dans un espace métrique E est continue au sens de Hausdorff si, quel que soit

> 0 il existe T > 0 tel que H(F(t), F(to)) < e toutes les fois que lt — toi < T. La "dis -
tance" H( . , •) que nous employons ici est définie comme en [6, p . 61] : on doit
observer que H(• , •) est une distance au sense propre seulement sur la classe des
sous-ensembles fermés de E .

THÉORÈME 4.1 . Soit D une famille symétrique et localement bornée sur la variété
M et supposons que chaque point de M soit autoaccessible à tout instant T > 0 pa r
rapport à D . Quel que soit mo E M, la fonction multivoque t H R (t, mo) est continue a u
sens de Hausdorff dans l'espace (M, ô) à tout instant t > O .

Démonstration . Supposons d'abord t > to > 0, de façon que R (to, mo) c R (t, mo )
et H(R(t, mo), R (to, mo)) = sup {d(m, R (to, mo)) : m R(t, mo))} . Soit m i E R (t, mo) e t
soient k, El k et t E Rk tels que m 1 = pe, ,,(t), avec ItII1 = t > to . Construisons la courb e

y('û) pour i E [0, t] comme dans la démonstration du Théorème 2 .2, (7) . Le point
m 2 = y(to) appartient à R (to, mo) et on a

d (m 1, m 2 ) -5—t — to .

Donc H(R (t, mo), R (to, mo)) t — to . On complète la démonstration en changeant le s
rôles de to et t . 0
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La continuité de la fonction t H R (t, mo) est montrée en [4] dans le cas linéair e
(12), (13) et en [9] dans les cas général (10), avec des hypothèses restrictives su r

f( t, y , u) .
Reprenons maintenant l'étude des ensembles des points atteignables par rappor t

aux boules ouvertes ou fermées de la topologie 8 .
PROPOSITION 4.1 . Soit D une famille symétrique et localement bornée, avec l a

propriété que chaque point de M est autoaccessible à tout instant T > 0 . On a alors, que l
que soit T > 0 et quel que soit mo M,

adhMR (T, mo) = {m : d(m, mo) T} = {m : To(m) T}.

Démonstration . Par la Proposition 2 .3 (ii), nous avons déjà l'inclusion
adhM R (T, m0) D{m T}. Il suffit donc de montrer que si d(m, mo) > T alors
m adhM R (T, mo). En étant m autoaccessible à tout instant, quel que soit e <
d(m, mo) — T il existe un ouvert U de M tel que me U c R (e, m) . S'il y avait en U un
point m ' de R (T, mo) on pourrait atteindre m de mo à travers m ' en temps T + e <
d(m, mo) : le résultat est donc obtenu par l'absurde . q

PROPOSITION 4.2 . Dans les hypothèses de la Proposition 4 .1, quels que soien t
T > 0 et mo E M, on a

aR(T, m 0 ) c {m : d(m, mo) = T} = {m : To(m) = T I .

Démonstration. Il est clair par la Proposition 4 .1 que aR (T, mo) c
1m : To(m) T} . Soit m E aR (T, mo), et supposons To(m) < T. Quel que soit e positif ,
par l'hypothèse d'autoaccessiblité il existe un ouvert U tel que m E U c R (e, m) : s i
l'on choisit e < T -- To(m), on a U c R (T, mo), c'est-à-dire m aR (T, mo). En
conclusion To(m) = T. q

Supposons encore de nous trouver dans les conditions de la Proposition 4 .1 :
l'inclusion

(14) {m : d(m, mo) < T} = lm : To(m) < T} c intM R (T, mo )
est triviale . Dans l'exemple suivant la (14) est une inclusion au sens propre : même
dans cet exemple on utilise un champ non complet .

Exemple 4 .1 . Soit M la surface comprise entre deux sections planes orthogonale s
d'un cylindre de l : nous dénotons les points de M avec des couples de nombre s
(x, y), -1<x 1 et -1 <y < 1 . Considérons les champs sur M

1

	

1

X 1
x = 0

	

X2x — 1 y

	

X3x

	

1+ y
(,Y)

	

1 ,

	

(,y)

	

0

	

,

	

(,y)

	

0

et soit D = (±X ' , ±X2 , ±X3 ). L'ensemble R(1, (0, 0)) est M tout entière, don c
int R(1, (0, 0)) = M, mais les points de la forme (1, y) ne sont pas atteignables à T < 1 .
On note que dans cet exemple, aR (1, (0, 0)) = 0 tandis que {m : To(m) = 1} =
{(x,y)EM:x=1} .

La proposition qui va suivre est une conséquence presque immédiate de s
définitions .

PROPOSITION 4 .3 . Dans les hypothèses de la Proposition 4 .1, on a

(15) in.t MR(T, mo)={m : To(m)< T}

si et seulement si aR (T, mo) _ {m : To(m) = T} .

Les propositions 2 .3, 4.1, 4.2 et 4 .3 donnent une généralisation du Corollaire 3 d e
[8] . En particulier, la Proposition 4 .3 donne une condition d'extrêmalité pour les
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trajectoires optimales (voir [4], [9], [10] pour l'idée d'extrêmalité) . Supposons en
effect que mo soit atteignable de m i en temps minimum T: si (15) est verifiée, on a qu e
m 1 E R (T, mo) (10R (T, mo) = R (T, mo)\{m : To(m) < TI. Dans le cas linéaire (12), (13 )
la (15) est toujours vérifiée (voir [8]) : il suit alors le théorème classique d'extrêmalité .

On remarque enfin que, dans l'hypothèse (15) une trajectoire extrêmale à u n
certain instant T > 0, est extrêmale même à tout instant t < T.

Remerciement. Je remercie Prof . C. Lobry pour son attention envers mo n
travail . Je remercie aussi Prof. H. Hermes, doct . Mme G. Stefani et doct . J . B . Costa l
pour leurs suggestions utiles .
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LIPSCHITZ-CONTINUITY FOR CONSTRAINED PROCESSES*

WILLIAM W. HAGERt

Abstract. We study Lipschitz continuity properties for "constrained processes". As applications of our
general theory, we consider mathematical programs and optimal control problems. We show that if the
gradients of the binding constraints satisfy an independence condition, then the solution and the dual
multipliers of a convex mathematical program are a Lipschitz continuous function of the data. Similarly, it is
proved that the optimal control and the dual multipliers for strictly convex control problems with convex
constraints on the state and the control are Lipschitz continuous in time. In both applications, estimates of the
Lipschitz constant are given.

1. Introduction. We show that a constrained process is Lipschitz continuous on a
convex domain if it is Lipschitz continuous on compatible pairs of elements in the
domain. As applications of this result, we prove that if the gradients of the binding
constraints satisfy an independence condition, the solution to a convex mathematical
program is a Lipschitz continuous function of its data, and the solution to a strictly
convex control problem with convex constraints on the state and the control is Lipschitz
continuous in time. In both cases, the Lipschitz constant can be estimated.

The control regularity results provide the mathematical foundation for estimating
the error in discrete approximations to control problems, and also give insight into the
practicality of approximation schemes. As is well known to numerical analysts, the
convergence rate for piecewise polynomial approximation is limited by regularitymif a
problem’s solution has only two derivatives in L2, there is usually no advantage in using
approximating piecewise polynomials of degree > 1 (unless the structure of the solution
is known). Also estimates of the error in approximation involve bounds on the
derivatives of the function being approximated. Hence the bounds given below for
the Lipschitz constants are a basis for a priori error estimates. Error estimates
for the Ritz-Trefftz method are derived in [4].

2. The abstract problem. Let 6e be a Banach space, be a convex subset of a
Banach space, and z" --> ,9be continuous. Moreover, let c" 21’" ",nr =power set
of {1,..., n} have the following property"

(2.1)
If {dk} c , dk d ffJ as k --> oo, and

I c c(dk) for all k, then I c(d).

In the applications, d represents the data of a program, z(d) is the associated
"solution," and c(d) gives the "binding constraints" for z(d).

We use the following notation: Given d, e , let (d, e) denote the ordered pair
and define the segment:

(2.2) [d, e] {(1-A)d +Ae" 0_<-A <_- 1}.

If (d,e)6x and k =[(1-Ak)d+Ake][d,e] for k= 1,2, we say that 61>62 if
A1 >A2. The data d, e is called compatible if c(d)=c(e) and c(6)c c(d) for all
6 6 [d, e]. Finally let 4 I be the number of elements in the set I.

* Received by the editors July 17, 1975, and in final revised form June 18, 1978.
f Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 15213. This

work was supported in part by the National Science Foundation under Grant MCS 75-09457, and in part by
the Office of Naval Research under Grant N00014-76-C-0369.
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THEOREM 2.1. If y satisfies

(2.3) IIz (d)- z (e)ll --< vlld ell

for all compatible data (d, e) x , then r satisfies (2.3) for all data (d, e) x .
The norm subscripts 6 and are generally omitted since the choice of norm

should be clear from context.

Proof of Theorem 2.1. Define the following set:

(2.4)
T,, {(d, e) x. There exists I c {1,. ., n}

with I _<- m and c(8)c I for all 6 [d, e]}.

Since To c T1 c T,, x , our goal is to establish the validity of (2.3) on T,,. All
pairs in To are compatible, so (2.3) holds on To. Proceed by induction and suppose that
(2.3) holds on Tin-1. Given (d,e) T,,, we shall construct a function G: [d,e] --> [d,e] with
the following properties: If s [d,e] and G(s), then

(i) either > s or s e,

(2.5) (ii) either c(t)= m or e,

(iii) IIz (t)- z (s)ll-<- "/lit-
Assuming the existence of G, the inductive step is completed as follows" First

construct sequences {Sk} .and {tk} starting with So d and for k >_- 1 setting tk G(Sk-I)
and

(2.6) Sk, sup {t: c(t) C(tk) and tk <= <-- e}

(conceivably Sk tk). Stop these sequences when Sk or tk reaches e. We now show that
these sequences have at most two elements.

Since c(t) ! for [d, e] and I _-< m, we see by (ii) that for s e [d, e], c(G(s))= I
if G(s)< e. Hence either c(q)= c(G(so))= I or tx e (and the sequence terminates). If
t < e, then by (2.1), I c(s); but c(s) L so we obtain c(sx) =/. If s e, the sequence
terminates. If s < e, then by the definition of s l, we have c(o-)#: I for all s < o-_-< e.
Therefore, by (i)we have t2 > sl, and by (ii)we conclude that tz e. Thus the sequences
{Sk} and {tk} have at most two elements as claimed.

By (iii) above, we have for all k:

(2.7) I[Z (tk)-- Z (Sk-1)[[--<-- y[ltk

Now consider the interval [tk, Sk] when Sk > tk. By the definition of sk, there exists a
sequence {o-i} [d, e] such that ri--> sk as/’--> and c(ri)=c(tk ) for all ] (conceivably
cri Sk for all ]). By (ii), we see that # c(tk) m # c (o-i) and by the structure of T,,, we
conclude that c(t) C(tk)= C(O’i) for all [tk, o’i]. Thus o-i, tk are compatible and
IIz(t)-z(r)ll <- "/[[/k ;11. Since z is continuous, we let]-->oo to obtain:

(2.8) IIz (t,)- z(s,)ll vllt s, II,
The triangle inequality, (2.7)-(2.8), and the ordering So_-< tl =<s =< t2 give us [[z(d)-
z(e)][-<_ ’lld- ell-the inductive step has been completed.

Now consider the construction of G. First set G(e)= e. Given s [d, e] with s < e,
we consider two cases"

Case 1. There exists {si}c [d, e] such that si--> s as ]-->oo, and for all ], both
c(si) m and Si+ < Si.
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In this case, define G(s) s 1. By the structure of T,,,, we conclude that s and si are
compatible for all/’. Therefore, IIz (s) z (sl)ll <-- lls s xll for all , and letting/" , we
have llz(s)-z(s )ll <  lls-sxll, Hence (i)-(iii)are satisfied for t= sl G(s).

Case 2. There exists an interval [s, p] such that s < p and # c(t)< m for all s < _<- 19.
In this case, define G(s)= where

sup {z: s < z < e, # c(00) < m for all 00 [s, z], 00 : s}.

Given - [d, e], let B(A, z) be the intersection between [d, e] and the ball with center -and radius A. Property (2.1) implies the existence of A > 0 such that c(o-) c c(z) for all
00 B(A, -). Since # c(z)< m for s < z < t, we have (001,002) T,,-1 if [001, o-] c
B(a, z). Applying the induction hylSothesis gives vll l- =11. Hence
for all Sl, tl satisfying s < sl < tl < t, there exists a finite covering of Is1, tl] using intervals
[00j, 00j+1] where Sx =001 <002 <00t tl and (00i, 00i+1) T,,-1 for all j. Applying the
triangle inequality across these intervals, we get IIz (Sl)- z (/x)ll--< ,lls txll. Letting s s
and tl t, we see that (i)-(iii) hold. 13

Remark 2.2. Suppose that Ildll Ildlll / Ildll= where I1" I1 and I1" I1 are seminorms. It
is easy to see that Theorem 2.1 remains valid if the right side of (2.3) is replaced by
’llld ellx + ,211d- ell2.

The assumptions of Theorem 2.1 can be weakened to the following:
THEOREM 2.3. Suppose that for some e > O, y satisfies

(2.9) Ilz(d)- z (e)lle <- ylld ell

for all compatible data (d, e) for which lid- ell --< e. Then 3’ satisfies (2.9)for all
data (d, e) x .

Proof. Let T,, be the set defined in (2.4). All pairs (d, e) To are compatible;
moreover, if [81, 82] c [d, e], then 81 and 82 are compatible. Thus [d, e] can be expressed
as the union of subintervals of length -< e and the endpoints of each subinterval are
compatible. Applying (2.9) to each subinterval, we see that (2.9) holds for all (d, e) To.

Proceed by induction and suppose that (2.9) holds for all (d, e) T,,-1. Given
(d, e) T, we observe that (81, 82) T, if [81, 82] [d, e]. Exactly as in the proof of
Theorem 2.1, (81, 82) T satisfies (2.9) if 1181- 821[_-< e. Expressing [d, e] as the union of
intervals with the length of each interval -<_ e, we see that (2.9) holds for all (d, e) T,,
the inductive step has been completed.

3. Quadratic programs. As an application of Theorem 2.1, consider the following
quadratic program:

(Qp)
minimize 1/2v 7"Rv + rv
subject to Av + a _-< O, Bv + b O, vR",

where all matrices and vectors have compatible size (capital letters denote matrices and
small letters denote vectors). If the gradients of the binding constraints for (QP) satisfy
an independence condition, we prove that both the solution and the dual multiplier are
Lipschitz continuous functions of the data (R, r, , b). The extension of our results to
more general convex programs is stated in Appendix D.

For related results, see papers [1], [2], [8] which differ from our results in the
following aspects: Daniel 1] does not obtain Lipschitz continuity and does not consider
the dual multipliers. Both Fiacco [2] and Robinson [7] require that strict complemen-
tary slackness and the second order sufficiency condition hold. We eliminate the former
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and relax the latter assumption. Finally our results are not local and the Lipschitz
constant is estimated.

We use the following notation: Let [l" denote the Euclidean vector norm; this
vector norm generates a matrix norm given by IIEII---max{lltzvll:llv[l= 1}. If S--
($1,""", S,) and T=(T1,-’-, Tn) are ordered n-tuples of matrices with each pair
(Si, T/) having the same dimensions, define S- T (Sl- T1," Sn T,), cS
(cS1," ", cS,), and Ilsll- IIsll + + IIsll, If J is a subset of the row indices of A, let Aj
denote the submatrix consisting of those rows corresponding to elements of J. Similarly
let vj denote the vector with components vj for j J.

Let d (R, r, A, a, B, b) be the data for (QP) and define

8(d)T (r T, a T, b T), and A(d)= (R, A, B, A T, B T). Our analysis is restricted to pro-
grams for which there is a unique solution u(d) and a unique dual multiplier h(d).
Letting J(d)denote the indices corresponding to binding constraints for u(d) (including
equality constraints), we define M(d)= M(J(d), d).

Let D be any convex set of data satisfying the following conditions:
A1. For all d D, there exists a unique solution u(d) to (QP).
A2. There exists Fx, F2 < oo such that IIRII< I’ and IIM(d)ll < I’. for all d D.
A3. There exist a,/ > 0 such that for all d D

v TRy >= allvl[2 for all v satisfying M(d)v O,

(3.2) IIM(d)TA >=/3[Ih for all a.

Defining K1 F1/ce, n:2 F2/fl, and 3 max {F1/fl, 1}, we shall establish"
THEOREM 3.1. There exists a constant p < such that for all dl, d2 D, we have"

(3.3) Ilu (d l) u (dz)ll and

o II6 (d,)- 6 (d=)ll + ozlla(d)- A(d2)11([18 (dl)ll + 116 (d=)[[).

-1 -1Moreover, P Prn
As a --)0 or fl 0, the bound p,,, for p has the correct asymptotic behavior. For

example, consider an unconstrained program with R positive definite. Let 8r be a
perturbation in r that is colinear with the eigenvector of R corresponding to the smallest
eigenvalue a. The perturbation in the solution of (OP)satisfies [[Su[[ a-[lSr[[; similarly

-1
Pm tX

On the other hand, suppose that the binding constraints are nearly dependent as in
the following program:

minimize 1/2[v +(v2-1)2]

where e 2 <= a <= O. The solution to (3.4) lies at the corner of the feasible set. If h 2 is the
dual multiplier associated with the second constraint, the perturbation 8A 2 correspond-

2 2ing to a perturbation 8a in the data satisfies 18A21 [Sa [/e Similarly O,, 1/e since
/3 e and R72/3 1/e 2.
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We apply Theorem 2.1 using z(d)T= [u(d), A (d)T] and c(d)= J(d). Hence we
must

(3.5) (i) establish the continuity of u(. and h (.) on D

and

(3.6) (ii) compute the constants 1 and
_

in Remark 2.2 where Ildlll 116(d)l[ and
Ildll-- Ila(d)ll,

(Since the constraints are continuous functions, (2.1)follows immediately from (i)). Let
us begin with the computational question. First observe that the necessary conditions
for (OP) can be expressed in the form:

(3.7)
N(d)(d)=f(d)

-f(d) a

u(d) ]where (d)=
A (d).r(d)

and
R M(d)w]N(d)=

M(d) 0 3"

LEMMA 3.2. For all d D, N(d) is nonsingular and [IN(d)-l[I-< p,.
Proof. Given d D, let M M(d) and let e and z be related by"

(3.8) e= [el]e2 =IMR MoTI[u]A and z= [].
Since [IN-1II 1/min tllNzll’llzll--1}, we must show that Ilellllzll/o for all e and z
satisfying (3.8).

Begin by expressing u u ’ + u +/- where Mu’ 0 and u +/- is perpendicular to the null
space of M. Since u +/- lies in the range space of MT, there exists y such that u +/-= MTy,
and

(3.9) Ilu +/-11 IIMTII IlYll FIlyII.

Using A3, it is easily seen that/3-<_ smallest eigenvalue of MMT’, therefore,
IIMMyll and by (3.9), we have"

(3.10) [le=ll- IIMu II--IIMu ll- IIMMyII-->/ [lY [lu +/-ll

or

(3.11) flu +/-11 =l[ell.

Multiplying the first equation in (3.8) by u ’ gives us

(3.12)
Ilelll Ilu[I -> (u)TRup +(U’)TRu z +(U’)TMTA

-> IluOl[2- Ilull IIR Ilu 11.
Dividing by I[ull and applying (3.11), we get

(3.13) Ilull (K 1K2 + c-l)llell.
Again the first equation in (3.8) implies that

(3.14) Ilell[--> IIA II- Fl(llu"ll + Ilu 11).
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Inserting (3.11) and (3.13) into (3.14) and noting that /1, /2, R3 1, we obtain

(3.15)

The proof is completed using the triangle inequality )lzll )luOll + Ilu’ll + Ila and the
relations (3.11), (3.13), and (3.15).

Observe that the mapping d + [u(d), a (d)] is well defined. That is, by A1, (OP) has
a unique solution u(d) and consequently the binding constraint set is uniquely deter-

Tmined. If a is any optimal dual multiplier, then r {u(d)r, a(d)] satisfies N(d)
f(d). By Lemma 3.2, this equation has a unique solution, and by complementary
slackness, the remaining components of a are zero.

To estimate y and 3’2, let el, e2eD be compatible data; hence J(el)=J(e2).
Defining Nk N(ek ), ?. (ek ), and fk f(ek ) for k 1, 2, we obtain

(3.16) 1 N-l[(f2-f)+(N N2)N-12 f2].

Taking norms and applying Lemma 3.2 gives us
2II=-ll -<pIIA-,II/p,.IIN-N=[I IIAII

(3.17)
-< o,,lla (e2)- a (el)ll + o.IlzX(e)-2 A(e2)ll IIAII.

For all e2e [dl, d2], observe that IIt’=ll-< II(d)ll/ II(d=)ll, If u(. )and h(. )are continu-
ous, the proof of Theorem 3.1 is completed by choosing [dl, d2] and combining
Theorem 2.1, Remark 2.2, and equation (3.17).

We conclude by proving (3.5). Defining C(v,d) gv TRy + rv, F(d)
{v :Av + a <- O, Bv + b 0} feasible set, and C(d) inf{C(v, d): v e F(d)} optimal
cost, we have

LEMMA 3.3. C( ), u ), and a(- are continuous functions on D.
Proof. By Robinson’s work [7] and (3.2), we know that:

(3.18) Given d e D, there exist constants c, c2, c3 > 0 such that for all v, dl, d2
satisfying Ildl-dll<-c>_-lld=-dll, VlF(dl), and (l+][Vlll)(l]dl-dl]+
IId=-dll)<-c=, there exists v2eF(d2) such that IIv-v=ll <
c311dl- ddl(1 / I1111).

Suppose that {dk}cD and dk--,d as k-+oo. By (3.18), there exists c>0 and
v F(d) such that Ilu (d)- vll--< ell& all as k -, oo, Thus Lim sup C(d)<= C(d). Since
Ila(d)ll is uniformly bounded, Ilu(d)ll<-_olla(&)ll is uniformly bounded. Applying
(3.18) again, there exists c>0 and weF(d) such that Ilu(&)-wll<-cll&-d[I as
k+oo. Hence c(wk, d)-C(u(d),d)-+O as k-+oo, LiminfC(d)>__C(d), and
Lim C(d)= C(d) as claimed.

Now suppose that u(dk) does not converge to u(d). Since [lu(&)[I is bounded
uniformly, there exists a subsequence {d} and v u(d)such that u(d’)+ v as k oo.
By (3.18), we see that v F(d) and by the continuity of C(. ), v is optimal in (QP).
Hence A1 is violated and u(d)+ u(d) as k -+oo.

Finally consider h(. ). Since u(. ) is continuous, J(d)cJ(d) for k sufficiently
large. Letting I J(d), and (Rk, r) be the first two components of d, the following
identity holds:

(3 19) [ Rk M(I,d) [u(d)]=[M(i,dk)u ]M(I,&) 0 a(d),

The right side of (3.19) converges to f(d) as k oo while the matrix on the left side
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converges to the nonsingular matrix N(d). Thus the solution to (3.19) converges to
(d)=N(d)-1 f(d); and in particular, a (d, ), - a (d), as k c. Since J(d,) L the
remaining components of A (d,) and A (d) are zero by complementary slackness and we
have A (d,) A (d) as k . 71

4. Optimal control regularity. As a second application of Theorem 2.1, we
consider the solution regularity for a strictly convex control problem. The following
notation is used for spaces of functions f" [0, 114 R n"

C(R)
A(R)
BV(R)
L(R)
L(R)

Functions with continuous derivatives through order p.
Absolutely continuous functions.
Functions of bounded variation that are left continuous on [0, 1).
Essentially bounded functions.
Functions with o [[f(t)ll"dt <.

The argument R above is omitted when the range is clear from context.
Consider the following problem:

(CP) minimize C(x, u)= (x(t), u(t), t)d

(4.1) subject to (t) a(t)x(t)+B(t)u(t) for almost every [0, 1],

Kc(u(t), t)<-O
for all t [0, 1]

Ks(x(t),t)<-O
x(0)=Xo, x A(R"), u LE(R"),

where Kc and Ks are vector valued with range in R "c and R "s respectively. (CP) is
assumed to satisfy conditions (4.2)-(4.4) below, but first some notation is needed:
Given two symmetric matrices M1 and M2, the statement M1 >M2 means that M1 M2
is positive definite. If g" R ’1 x R"2x x R "z R, we let Vjg and Vg denote the
gradient and Hessian respectively of g(yl, , y)with respect to yj where Yk R ’k for
k 1,..., I. We assume the following:

(4.2)

(4.3)

(4.4)

A and B are Lipschitz continuous while/e, K,
Ks, and VIKs (’,") are C2.
Both f(.,., t) and the components of Ks(’, t) and
K(., t) are convex for all [0, 1]. Moreover,
there exists a > 0 such that

Vf(x, u, t) > aI

for all x 6 R ", u R", and [0, 1].

There exists a continuous control ti, a corresponding
trajectory , and a constant r/< 0 such that

K(a(t), t)i < rt > Ks((t), t)i

for all t [0, 1], j= 1,. , m, and 1,. , ms.

Using classical techniques in convex analysis, (4.2)-(4.4) imply for (CP) the
existence of an optimal control u* L2 and a corresponding trajectory x* A, and all
optimal controls are equal almost everywhere. Furthermore, by Appendix A, u* L.
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The dual of (CP) is now introduced. Let (., denote the L2 inner product, and for
v BV(R"), define the function [v,. as follows"

Iv, g] J0 g(t)r dr(t)

for all g C(R "). The Lagrange dual function associated with (CP) is given by

(4.5)
,LP(p, A, v)= inf {C(x, u)+(p, ,-Ax-Bu)

+(A, K(u))+[v, K(x)]’x(O)= Xo, x A(R"), u L(R’)}

and the Lagrange dual to (CP) becomes"

(CD) sup{(p, , v)’(p, v)BV, , L1, A 20, v(1)= 0, v nondecreasing}.

Now recall our strong duality result [3] (which was actually proved under much
weaker assumptions than those given above):

THEOREM 4.1. If (4.2)-(4.4) hold, then there exist optimal solutions (x*, u*) to (CP)
and (p*, .*, v*) to (CD). Moreover, (x*, u*) achieve the minimum in (4.5) for (p, A,
v) (p*, *, v*) and the following complementary slackness conditions hold"

(a*, K(u*))= 0 [*, K,(x*)].

To obtain our regularity results, we strengthen assumption (4.4) and require
uniform independence for the gradients of the binding constraints"

(4.6) There exists/3 > 0 such that for all [0, 1] and all z, we have"

II[(t), B(t)TG(t)T]zIIIlzll

where Go(t) is the matrix whose rows are the gradients evalu-
ated at u*(t) of components of Kc(., t) corresponding to bind-
ing constraints for u*(t). The matrix Gs(t) is defined similarly.

Defining the variable q*(. )= VlKs(X*(" )," )Tb’*(" )--p*(" ), our principal theorem is the
following:

THEOREM 4.2. If (4.2)-(4.4) and (4.6) hold, then there exist an optimal control u*
for (CD), a corresponding trajectory x*, and optimal dual multipliers (p*, A*, v*) such
that (*, (t*, u*, A*, v*) are Lipschitz continuous on [0, 1).

Remark 4.3. Using Lemma 4.4 and Remark 4.10, the Lipschitz constant can be
estimated. The interval of Lipschitz continuity is [0, 1) since v may be discontinuous at

1. Theorem 4.2 is also valid when the system dynamics are only affine in the control
(not necessarily the state). See Malanowski [6] for the modifications.

To prove Theorem 4.2, we apply Theorem 2.1 using @=(0,1), z(t)r=
(,t *(t)r, v*(t)r), and c(t)= indices of binding constraints for x*(t) and u*(t). Hence we
must

(i) establish that both v* and A* are continuous on (0, 1) and
(ii) compute the constant 3’ in (2.3) for compatible data d, e (0, 1).

The regularity of u*, q*, and x* are obtained from the control minimum principle ((4.8)
below), the adjoint equation ((4.7), below), and the system dynamics (4.1). Our analysis
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of (i)-(ii) is based on the necessary conditions for (CP) [3]:

4*(t) -A(t)7(q*(t)- G(t)Tv*(t))+ (t)7"v*(t)
(4.7) -Vlf(x*(t), u*(t), t) for almost every [0, 1],

q*(1)=0 where G(.)=VIKs(x*(’), .),

V2f(x*(t), u*(t), t)+ B(t) (q*(t)- G(t)7"v*(t))
(4.8)

+ ViKc(u*(t), t)7"A *(t)= 0

A*(t)rKc(u*(t),/)= 0 for all [0, 1],(4.9)

and

(4.10)

and

for all [0, 1],

[*, K(x*)l 0.

Although the control minimum principle (4.8) usually holds for almost every [0, 1],
we show in Appendix B that by redefining (u*, ,*) on a set of measure zero, we get a
new optimal control and dual multiplier satisfying relations (4.8)-(4.9) and the con-
straints K(u*(t), t)=< 0 =<A*(t) for all t (0, 1).

We first consider the computational question (ii) above; henceforth, the super-
script "*" on (x, q, u, A, v) is omitted and all variables are assumed optimal. To simplify
the notation in the proofs, we assume that the cost functional is quadratic and the
constraints on the state and the control are affine inequality constraints. That is, the
following control problem is considered"

minimize [x(t)rOx(t)+ u(t)rRu(t)] dt

subjectto 2(t)=Ax(t)+Bu(t) for almost every e [O, 11,

(CP’)
Ksx(t)+b<-O for all [0, 1],
Ku(t)+bc<-O

x(0)= Xo, uL2(R"),
where R is positive definite and Q is semidefinite. In Appendix C, we consider the more
general problem (CP). Also note that in the context of (CP’), relations (4.7)-(4.8)
become the following

(t)= -A(q(t)-Kv(t))-Qx(t) for almost every t[O, 1],
(4.7’)

q(1)= 0,

and

(4.8’) u(t)=g-l[B(K(t)-q(t))-Kh(t)] for all [0, 1].

LEMMA 4.4. If (4.6) holds, (, l) are continuous and uniformly bounded on (0, 1)
and u is uniformly continuous on (0, 1), then there exists a constant 7 depending on I1[[.,
II ll  , (R, A, B, K, Ks), and such that

(4.11) Ilz (or)-- z 0")ll---< YlO’-- ’1

for all compatible data tr, z (0, 1).
Proof. Below we use "B" and "N" superscripts to denote binding and nonbinding

components respectively. Since Ks (t)x(t)+ bs (t)= 0 and is continuous, it is easy to
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see that

(4.12) KU, (t)i(t)= 0 gP (t)(Ax(t)+ Bu(t))

for all e (0, 1). Substituting in both the relations (4.12)and Kc (t)u(t)+b(t)=O for
u(t) given by (4.8’), we obtain the system N(t)zB(t)= ]’(t) where z r (i r, vr),

T B ],N(/)= M(t)R-1M(t)r, M(/)r [KB (t)r, -B Ks (t)r(4.13)

and

(t)R_lBr(q(t)_K (t)rvN(t))+ bB (t)
(4.14) f(t)=

-K (t)(Ax(t)+BR-1Br[q(t)-KN, (t)rvN(t)])
The matrix N(t) is nonsingular by (4.6), and if r, r e (0, 1) are compatible, we have

N(o-) N(r) and

(4.15) IIz(,r)-z(r)ll<--IIN(rFll

Moreover, by the definition of compatibility, state constraints nonbinding at o-, r
remain nonbinding on [er, r]. Therefore the complementary slackness conditions
(4.9)-(4.10) give us

(4.16) RN(o’)--" vN(’r) and AN(or)= hN(’r)-- 0.

Since x and q are Lipschitz continuous, (4.14)-(4.16) combine to complete the
proof.

The continuity of z is based on the following lemmas.
LEMMA 4.5. Let E c (0, 1) be the set of measure one on which both the system

equation (4.1) and the ad]oint equation (4.7’) are satisfied. Then (1, 2) have bounded
variation on E while u has bounded variation on (0, 1).

Proof. Combining relations (4.8’) and (4.9) and the condition Kcu (t) + bc <- 0 <-_ A (t),
we see that for all (0, 1), v u(t) solves the following program:

minimize A(v, t) 1/2 v rRv + r(t)Tv
(4.17)

subject to Kcv+ b <= 0
where r(t)= Br(q(t)-Kr,v(t)). Recall that the solution to (4.17)satisfies the following
variational inequality:

(4.18)
OA

(v u(t), t)(v u(t)) (Ru(t)+ r(t))r (v u(t)) >- 0
Ov

for all v such that Kv + b <-0. Substituting =m r and v u(r), u(r)into (4.18)and
adding the resulting inequalities, we obtain

[[u
(4.19)

<- cllq()- q ()ll + cll()-
where c the smallest eigenvalue of R, and c depends on c, Ks, and B. Since q and v

have bounded variation on [0, 1], u also has bounded variation on (0, 1) by (4.19). By
the system and adjoint equations, (,

LEMMA 4.6. Suppose that (Ksx(er)+ bs)j 0 forsome] and some r e (0, 1). Then we
have

(4.20) (Ks[Ax(o’)+Bu (cr)l)j _--> 0.
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Moreover, given e > 0, there exists 6 > 0 such that

(4.21) (Ks[ax(t)+ Bu(t)])i <= e forall e I =- E fq (r, r + 6)

where E was defined in Lemma 4.5.
Proof. By Lemma 4.5, (Ks)i has bounded variation (and hence right limits on E). If

the right limit is --<0, then (4.21) follows. Suppose that there exists A>0 with
(K(t))j > 0 for all e Ia. Hence we have,

o-+A

(4.22) 0 (Kx(cr)+ b)i (Kx(tr + A)+ bs)i- J (K(t))i at < 0

since Kx(cr + A) + bs)i <-- O. But (4.22) is impossible, so there exists a sequence {t} = E
with both t -+ o-+ as k -+ oo and (K(t))i =< 0 for all k. Thus the right limit of (Ks)j on E
is -< 0 at tr, and (4.21) holds.

Similarly the left limit of (K)i is _>-0 at o-. By Lemma 4.5, u has bounded
variation and consequently .(t)= Ax(t)+ Bu(t) is continuous from the left. Combining
these relations, we have (4.20).

LEMMA 4.7. The optimal control u is uniformly continuous on (0, 1).
Proof. By Lemma 4.5, u has bounded variation on-(0, 1); hence the right limit

u (tr+) exists. Subtracting (4.20) from (4.21) and letting e -+ 0, we get

(4.23) (KB 6u (o-)) -< 0 if (Kx (tr) + b) 0

where 6u (o’)= u (tr/) u (tr), the discontinuity at o-. Since R is positive definite, the
program (4.17) has a unique solution; consequently A(u(o’/), o’/)<A(u(o’), tr/) if
u (tr) #- u (tr/). Below we show that A(u (tr/), o"/) _-> A(u (tr), tr+). Therefore u (o"/)
u(tr) and u is continuous from the right. Since q and v are left continuous, (4.19)implies
that u is left continuous. Combining these results, u is continuous on (0, 1).

Using (4.18), observe that

OA(u OA
c3v

(o’), o’+)(6u(r)) ---v (u(r), o’)(6u(cr))+ (r(o’+) r(cr))r 6u(r)

(4.24)
_> (r(o.+)_ r(cr))r3u (r)

where r(r+)--r(r)=--BTKT(u(r+)--,(r)). Combining (4.23) with the conditions
u(o,+) >- u(r) and ui(o’+)> uj(r) only if (Ksx(r)+ b:)i 0, we obtain

(4.25) (r(cr+) r(r))T6u (r) >= O.
Relations (4.24)-(4.25) and the convexity of A(.,t) imply that A(u(r+),r+) ->

A(u (o’), r+); thus u (o,)= u (o’+), the desired conclusion. Since u is both continuous and
has bounded variation on (0, 1), we see that u is uniformly continuous on (0, 1).

COROLLARY 4.8. If (4.6) holds, then , and u are continuous and uniformly bounded
on (0, 1).

Proof. Combining (4.6) and (4.8)-(4.9), we see that eL. Given ere (0, 1),
suppose that (. ) is not continuous from the right at =or. Hence there exists a
sequence {t} and a limit tz such that both t-->r+ and A(t)-->tz as kc where

z # (o’). Since u and q are continuous on (0, 1), (4.8’) implies that
T(4.26) BTKT(U(O.+)_ ,(r))-K (z A (r)) 0.

By complementary slackness, ui(o"+) # ui(r) only if (Ksx(r)+ b)i 0. Similarly, by the

The notation t, r (or o’-) as k oo means that the sequence {tk} converges to r from the right (or
left).
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continuity of u and complementary slackness, /z : hj(r) only if (Kcu(o’)+bc)j =0.
Combining (4.6) and (4.26), we get u(o-+) u(o-) and Ix h (o-). Since u is already left
continuous and the above argument also applies to left limits of h, the proof is
complete.

Proof of Theorem 4.2. By Lemma 4.7 and Corollary 4.8, (u, A, u) are continuous
and uniformly bounded on (0, 1). Thus (2, 4) given by (4.1), (4.7’) are continuous and
uniformly bounded on (0, 1). Combining Lemma 4.4 and Theorem 2.1, h and u are
Lipschitz continuous on (0, 1) with the Lipschitz constant described in Lemma 4.4.
From (4.8’), (4.1), and (4.7’), we see that (u, 2, 4) are Lipschitz continuous on (0, 1).

Now consider the endpoints 0, 1". By changing the values of u or h at a point,
their optimality is not destroyed. Shace u and A are Lipschitz continuous on (0, 1), their
right and left limits at 0 and 1 both exist. Setting u and A at 0, 1 to be their
endpoint limits, we obtain optimal variables that are Lipschitz continuous on [0, 1].

By the form of the dual functional, a jump in u at 0 results in the following
contribution to the dual cost:

((0+) (0))(/*xo + b,).

Since Ksxo+bs <0 and v(0+) _-> v (0), this term is maximized only if v(0)= v(0+).
Consequently (2, ) are also continuous at 0.

Remark 4.9. The regularity stated in Theorem 4.1 is generally sharp. In [4],
examples are given with either control or state constraints such that the derivative of
(2, , u, h, v) is discontinuous whenever a constraint changes from binding to non-
binding.

Although Theorem 4.1 is valid for general convex control problems, the con-
straints must be sufficiently smooth. For example, the optimal control for problem
(4.27) below is Lipschitz continuous as long as//is essentially bounded on [0, 1]"

minimize Jo u(t)2 dt

(4.27) .subject to 2(t)= u(t) for almost every [0, 1],

x(O) x(1)= O,

x(t)>-a(t) for all [0, 1].

If a is continuous, piecewise linear with d (t -.5) discontinuous, the optimal control is
generally discontinuous at t- .5. The smoothness of a is needed in the development
above at (4.12) where the state constraint is differentiated. [3

Remark 4.10. In Lemma 4.4, we saw that the Lipschitz constant depended on the
following: the parameter/3, the matrices {R, A, B, Kc, Ks}, and the quantities II[[L and
[[2[[Loo. These last two quantities are now estimated. Let r/be the constant given in (4.4),
? be the cost associated with the control t, and a be the smallest eigenvalue of R. By the
structure of (CP’), we see that (a/2)llull22<-_, and by (4.1), Ilx[[o is bounded with an
expression involving t?, a, IIAII, and IIB[I. Since the optimal cost of (CP’) is nonnegative,
we set x 2 and u t2 in (4.5) to obtain

0_-<e(t,,, )--<e+n[, ].

But r/<0, v(1)=0, and v is nondecreasing, so we have v (t)[[ <- (total variation of
v) -< /Ir/[. Using (4.7’), we estimate IIq[[ with an expression involving [[A[[,
[[vl[o, and [[Ksrll. Hence (4.7’.) also gives us a bound for [141[Loo. Inserting v (t)into
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(4.18), we get an estimate for Ilu (t)ll in terms Ila(t)ll, a, and IIr(t)ll. Finally we bound
using the relation (4.1) 1-1

Appendix A. Essentially bounded controls.
THEOREM A.1. If (4.2)-(4.4) hold, and (X*, u*)e A x L2 are optimal in (CP), then

u*L.
Proof. Defining z*T (X* 7", U*T) and e? T (X*, a T) where (g, ti) were given in

(4.4), (4.3) implies that

(A.1) f(z*(t), t)>-f(2(t), t)+Vf(2(t), t)(z*(t)-5(t))+1/2a[[z*(t)-.(t)ll.
Integrating over [0, 1], we get:

(A.2) C(z*)>-_ c(e)-IIv,f(e(. ),. )ll,  llz* ell,. / 1/2 llz*-

Since fe C1, e C, and z*L2, (A.2) shows that C(z*)> -m. Therefore by [3, Thm.
2], there exists an optimal solution (p*, A*, v*) to (CD), (p*, A*, v*)= C(z*), and
(a*, K(u*)) 0 [v*, K(x*)l.

Now define the function " R"x [0, 1] R as follows"

(A.3)
q(u, t)= f(x*(t), u, t)+p*(t)r(2*(t)-A(t)x*(t)-B(t)U)

+A*(t)rKc(u,t).

We shall establish that

(A.4) q(u*(t), t)= inf{0 (u, t)" u R’}

for almost every e [0, 1]. Let E denote the set of measure 1 consisting of those s e [0, 1]
such that A*(s)rKc(u*(s), s)= 0, 2*(s)-A(s)x*(s)-B(s)u*(s)= O, and s is a Lebesgue
point of the functions {p*(. )r(.(. )-A(. )x*(" )), f(z*(" )," ), p*(. )rB(" ), A*(. )}.
Suppose that there exists s E and a R" with q(t, s)< o(u*(s), s)mwe show that
this is impossible, and hence (A.4) holds.

Define the interval

I {t 6 [0, 1].lt-sl<-6}.
Since s E, we see that

f,o(u*(t), t)dt= flf(z*(t), t)dt

(A.5) f(z*(s), s)meas (I)+ o(meas (I))

Similarly, we have

q(u*(s), s) meas (I8)+ o(meas (18)).

(A.6) Iis q(a, t)dt q(a, s) meas (Is)+ o(meas (Is)).

Since o(t, s)< o(u*(s), s), (A.5) and (A.6) imply that

(A.7) It, q(a, t) dt < Ils q(u*(t), t) dt

for 8 sufficiently small.
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Define the sets

and the control

I0 {t [0, 11 te Is, )u*(t)l =< k},

I [0, 1]- (I 1,3 Io)
{t [0, 1]’t Ia, lu*(t)[ > k},

t for Ia,

u u*(t) fortI0,
0 for I.

By the continuity properties of Lebesgue integrals, we know that

lim f [q(u(t), t)-p(u*(t), t)] dt
k-,oo jioUI

(A.8)
lim | [p(0, t)-p(u*(t), t)] dt 0
ko

since meas (I) --> 0 as k --> oo and (q (0,.), p (u * (.),. )) L1.Combining (A.7) and (A.8),
we see that for 8 sufficiently small and k sufficiently large

(A.9) Jo p(u(t), t)dt < Jo p(u*(t), t)dt C(z*)

by complementary slackness. Hence (A.9) along with the definition of’ implies that for
k sufficiently large

(A.10) AO(p., A *, t,*) -< Io q(u(t), t)dt + [p*, Ks(x*)] < C(z*).

This contradicts the strong duality result that (p*, h*, ,*)= C(z*), and (A.4) has
been established.

Define the function

(A.11) A(u, t)= f(x*(t), u, t)-p*(t)rB(t)u.
Since A *(t)_-> 0 _-> K(u*(t), t) and A *(t)K(u*(t), t) 0 for almost every [0, 1], (A.4)
and the convexity of (., t) give us

(A.12) A(u*(t), t) inf {A(u, t): u R ’, K(u, t) <- 0}

for almost every e [0, 1]. By the same reasoning used to derive (B.6) in Appendix B, we
have

(h.13) 1/2a[u*(t)- (t)[ <= [VxA(t(t), t)[
for almost every t[0, 1]. Therefore, u* s L since f s C, (x*, tT) C, and p*
BV.

Appendix B. Smoothing an optimal control. Suppose that both f" R x [0, 1 ---> R
and K’Rmx[0, 1]-->R are C 1, and the components of K(., t) are convex for all
e [0, 1]. Moreover, assume that

(i) there exists a > 0 such that

f(y, t)>-f(z, t)+Vlf(z, t)(y-z)+ally-z[[2
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for all y,z R" and t[0, 1] satisfying K(y, t)_-<0 and K(z, t)<-O,
(ii) there exists a s C(R") such that

K(a(t), t)<-O forallt[0,1].

LEMMA B.1. LetE c[0, 1] with measure (E) 1, r BV(R"), u: E R’, and h:
E R z. Furthermore suppose that for all E, we have

(B.1)

(B.2)

Vlf(U(t), t)+r(t)+ViK(u(t), t)TA(t)=O,
K(u(t), t)-<_ 0-<_ A(t), A(t)TK(u(t), t)=0,

and them exists a constant 3 > 0 such that for all E and all, z

(B.3) llVK(u(t),

where KB(u(t), t) denotes the components of K(u(t), t) corresponding to binding con-
straints in (B.2). Then there exists an extension of u and A to (0, 1) such that (B.1)-(B.2)
hold on (0, 1).

Proof. Relations (B.1)-(B.2) imply that for all teE, v u(t) solves the following
program:

minimize f(v, t)+ r(t)v
(B.4)

subject to K(v, t)_-< 0.

By (i)and (ii)above, we have:

(B.5) f(u(t), t)>=f(a(t), t)+Vlf(a(t), t)(u(t)-a(t))+a[lu(t)-a(t)[Iz,
for all e E. On the other hand, since f(u(t), t)<= [(a(t), t), (B.5) along with the Schwarz
inequality give us

(B.6) Ilu(t)-a(t)ll<-_llVlf(a(t),t)ll/a for all e E.

Therefore, Ilu (")11 is uniformly bounded on E.
Similarly, by (B.1)-(B.3) and the fact that both IIXT(u(.),.)ll and IIr(’)ll are

uniformly bounded on E, we conclude that (o)11 is uniformly bounded on E. Now
given o,e(0,1)/E, let {trk}CE be any sequence such that rktr- as k-oo.
Consequently, there exists a subsequence {try} and limits w,/x such that u (o-)- w and
A (o-)/x as k o. Defining u(tr) w and A (tr) =/x, (B.2) holds trivially at o- while
(B.1) holds since r is left continuous.

Allendix 12. Control regularity for (el). Under assumptions (4.2)-(4.4)and (4.6),
we now consider the proof of Theorem 4.2 for (CP).

I. Extension of Lemma 4.4. We establish the existence of constants e > 0 and
y < oo such that (4.11) holds for all compatible data o’, r (0, 1)satisfying Itr-’] _-< e.
Hence the proof of Theorem 4.2 can be completed using Theorem 2.3 instead of
Theorem 2.1. Suppose that tr, - e [0, 1] are compatible. Using the notation of Lemma
4.4 and assumption (4.6), we differentiate the state constraintK (x(t), t)= 0 to get the
following analogue of (4.12):

Gs(t)(A(t)x(t)+B(t)u(t))+K (x(t), t)=0.(C.1)
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Substituting tr, - and subtracting the resulting relations, we get

(c.2) O(l -

since x is Lipschitz continuous and (4.2) holds.
Similarly substituting tr, r in the relation Ka (u(t), t)= 0 and subtracting the

resulting relations, we obtain

(c.3)

where

(C.4) S= Jo VKcB ((1-s)u(o’)+suO’), o’)ds.

Combining (4.6) and (4.8)-(4.9), we see that A e L. Hence substituting r, in (4.8)
and subtracting the resulting equalities, we find that

(C.5) T(uO’)- u (o’)) + M(cr)r (zB 0")- zB (or)) O(Iz- cr[)

where

}o
(C.6) +VK((1-s)u(o’)+su(r), cr)T,(r)] ds and

M(o.)r [G(o-)r,-B(o-)rG,(o-)r].
From (4.3), the convexity of Kc, and the fact that h0-)>-0, we conclude that the

smallest eigenvalue of T is bounded from below by a. Substituting into (C.2) and (C.3)
for (u(’r)-u(tr)) given by (C.5), we obtain a relation of the form

(C.7) N(zB (z)-zB (tr)) O(Iz-
where N is nonsingular if I"- o’1 is sufficiently small. Combining (4.6), the observation
that T > aL and the assumption that u is uniformly continuous, we conclude that there
exists e > 0 such that IIN-Xll is bounded by a constant that is independent of o-, " if
Io"- zl <- e. The proof is completed as in Lemma 4.4.

II. Extension ofLemma 4.5. Program (4.17) is replaced by (A.12) and the bound
(4.19) for the change in solution in terms of the data is replaced by Theorem D. 1.

III. Extension ofLemma 4.6. Throughout the proof, Ks(t) should be replaced by

(c.8)

d (9
Ks(x(t), t)= G(t)(t)+-:-:K(x(t),t)d--

G(t)(A(t)x(t)+ B(t)u(t))+- K(x(t), t)

Hence (4.20) and (4.21) become respectively:

(C.9) G(o’)(A(o’)x(o’)+B(o’)u(o-))+K(x(o-), o’) _>-0,

(C.IO) G(t)(A(t)x(t)+B(t)u(t))+K(x(t), t) -e

for all 18 E (q (o-, tr + 6).
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IV. Extension o]’Lernrna 4.7. Relation (4.23) is replaced by

(C.11) G(tr)B (tr) 8u (o’)lj <- 0 if Ks (x (tr), r)i 0.

Relation (4.24) is unchanged; however, we now have

(C. 12) r(r+) r(r) -B(cr)TGs(o’)r (v(cr+) v(r)).

V. Extension of Corollary 4.8. Relation (4.26) is replaced by

B(o’)rG (r)7" (v(r+)_ u(o’))- 71Kc (u (o’), o’)T 0x A (Or)) 0.

VI. Proof o]’ Theorem 4.2. This proof is completely unchanged except that the
reference to Theorem 2.1 is replaced by a reference to Theorem 2.3.

Appendix D. Convex programs. Let D c R be a convex set of data and for given
d D, consider the program:

minimize /(v, d)
(P)

subject to A(v, d)<_- 0, B(v,d)=0, vRn,

where f: R" x R --> R, A R" x R --> R ’, and B R x R R le. Our analysis is
restricted to programs for which there is a unique solution u(d) and a unique dual
multiplier A (d). Defining

[VlA(u(d),d)](D.1) M(d)=
i_VB(u(d), d) m)

where J(d) denotes the indices corresponding to binding constraints for u(d), we make
the following assumptions:

(D.2) f, A, and B are C2, f(., d) and the components
of A(., d) are convex for all d 6 D, and B(., d)
is affine for all d D,

(D.3)

(D.4)

for all d e D, there exists a unique solution
u(d) to (P),

there exists a constant F such that Ildll and
Ilu (d)ll--< F for all d D,

(D.5) there exists a,/3 > 0 such that for all d e D,

Tv V2f(u(d), d)v >-allv[I2 for all v satisfying M(d)v O,

and
JIM(d)TAII >=/3[IA for all A.

Using techniques similar to those of 3, the following result can be established:
THEOREM D.1. I]" (D.2)-(D.5) hold, then there exists a constant p < oo such that[or

all dl, d2 D, we have:

IlU(dl)- U(d2)ll and
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FEEDBACK SYSTEMS DESCRIBED BY MONOTONE OPERATORS*

VACLAV DOLEZALf

Abstract. In this paper feedback systems described by nonlinear (possibly multivalued) monotone
operators are considered. We establish conditions for the existence and uniqueness of outputs corresponding
to a given pair of inputs, conditions for causality, Lipschitz continuity and stability. Also, feedback systems
over an extended Hilbert space are discussed. Finally, linear approximations to a nonlinear feedback system
are studied.

Introduction. In the last two decades a considerable amount of research has been
devoted to nonlinear feedback systems. Starting with the pioneering paper [19] by G.
Zames, the functional analysis proved to be a useful tool in the analysis and synthesis of
nonlinear systems. The early results concerning stability, Lipschitz continuity and
possible solvability ([19] through [23])were mostly based on the assumption that a
certain quantity is less than one. Later, refinements of these results led to various circle
criteria [16], [17] for systems, whose underlying space is the space L2[0, cx3).

On the other hand, it was soon recognized that the concept of causality is quite
natural and of extreme importance in the feedback system theory, [4], [5], [9], [11],
[13], [18]. In particular, a theorem of J. C. Willems [18] permits us to avoid a natural
setting of extended spaces for stability considerations and thus simplify the mathemati-
cal framework.

More recently, new results were obtained for feedback systems described by causal
C0-contractions or operators from a special class [10], [6], [7], and for systems over
particular spaces, [1] through [3]. Also, the circle criteria have been generalized, [14],
[15].

In this paper we are concerned primarily with a feedback system [A 1, A2] over a
Hilbert space H (see Fig. 1) such that the operators Ax+cexI and Az+a2I are
monotone for some a >_- 0 and az < 0, or a < 0 and a2 --> 0. Most of the results given

Ul el

FIG.

below are based on Rockafellar’s surjectivity theorem for maximal monotone, coercive
operators 12].

In the first part of the paper we give fairly general theorems on the existence and
uniqueness of the errors el, e2 (or the outputs yl, y2) corresponding to a given pair of
inputs (u l, u2). We assume that A1 and A2 are nonlinear, possibly multivalued
operators on a linear space H, which actually arise in practical engineering problems. It
turns out that the behavior of a feedback system is completely determined by a certain
mapping Ma (defined by equation (2)).
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Based on this, the second part deals with systems, whose underlying space is a
Hilbert space, and whose operators satisfy the requirements mentioned above. We give
simple yet effective conditions for normality (i.e., existence and uniqueness of errors e 1,

e2), causality, Lipschitz continuity and stability. Crudely speaking, these conditions are
given in terms of the "gain" and "minimal slope" of operators A1,

In the third part it is indicated, how the results obtained can be generalized for
systems over extended Hilbert spaces.

If the operators A 1, A2 are not linear, then expressing explicitly the errors e 1, e2 via
inputs ul, u2 amounts .to inverting a nonlinear operator M,2, (see formula (13)).
However, if an approximate solution suffices, inverting Mu2 can be avoided by lineariz-
ing the operators A and A2 in i vicinity of an operating point (assumed to be zero). This
problem is briefly discussed in the fourth part, where estimates for the quality of an
approximation are given.

1. General theorems. Let us begin with several definitions.
Let H be a linear (not necessarily normed)space, and let 2n be the collection of all

subsets of H.
Given a mapping A" H - 2n, we let

D(A)={x :x H, Ax qb},
and

AK (.J Ax
xK

for every K c H.
If, in particular, D(A) H and Ax is a singleton for each x e H, A will be called an

operator.
Moreover, a mapping A" H 2 will be called simple, if

X1, X2 H, x1 x2 (Ax1)(’ (Ax2) b.
(Clearly, if A is an operator and A is simple, then A is 1-to-1).

Now, if A 1, A2" H 2H, then the ordered pair [A 1, A2] will be called a feedback
system (further F.S.)over H.

Having the physical interpretation in mind (see Fig. 1), we introduce the following
definition:

DEFINITION 1. Let [A 1, A2] be a F.S. over H. If (u 1, u2) H2 H H, then a pair
(el, e2)H2 will be called a solution of [A 1, A2] corresponding to (ul, u2), if there exist
yl Alel and y2A2e2 such that

(1) el ul--y2, e2= u2+yl.

This fact will be symbolized by writing (Ul, u2)--(el, e2). Furthermore, the F.S.
[A 1, A2] will be called

(a) solvable, if for any
corresponding to (u a,

(b) unambiguous, if each solution is determined uniquely,
(c) normal, if [A1, A2] is solvable and unambiguous.
To state an assertion on solvability and unambiguousness, we introduce the

following mapping: For each a H, let Ma: H 2r be defined by

(2) M,x x + A2(a +A
THEOREM 1. Let [A 1, A2] be a F.S. over H; then [A 1, A2] is solvable :MaH H

for each a H.
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Proof. Let Mall H for every a e H. Choose (u, u2) e H2. Since M,:H H, there
exists at least one eH such that u eM:e, i.e., Ul e e +A2(u+Ale). Thus, there
exists y2 A2(u +Ae) such that

(3) ul el+y2.

Moreover, there exists e2Eu2+Ale, such that y2EA2e2; also, there exists
such that

(4) e2= u2+Yl.

Thus, there exists (el, e2)H2 and yleAlel, yEffAEe2 such that (3), (4) hold, i.e.,
(el, e2) is a solution of [A 1, A2] corresponding to (Ul, u2), Hence, [A 1, A2] is solvable.

(ii) Let [A 1, A2] be solvable. Choose a E H and show that Mall H. By solvabil-
ity, for any ul H there exists (el, e2)HE and yl A le, Y2 AEe2 such that

(5) el+y2=Ul, e2-yl =a.

Thus, uEex+A2e2, and e2=a+yxa+Ae; hence, uee+A2(a+Aex)=Mae.
Consequently, H c U znMaZ MH, i.e., H Mall.

THEOREM 2. Let [A 1, A2] be a F.S. over H.
(i) If [A 1, A2] is unambiguous, then Ma is simple for each a H.
(ii) If A1 is an operator and M is simple for each a eH, then [A1, A2] is

unambiguous.
Proof. (i) Choose a E H and assume that, for some el, e e H, (Me)fq (Me’) ,

i.e., there exists Ul ( H such that

(6)

and

(7)

ul M,el el + A2(a +A le)

u Mae =e +A2(a +Ale’x).

By (6), there exists y2E A2(a +Ale)such that

(8) ux=ex+y2.

Also, there exists e2a +Ale1 such that y2 A2e2, and there exists y Alex such that

(9) e2=a+y.

Hence, (8), (9) show that (el, e2)H2 is a solution corresponding to (ul, a). Similarly,
(7) implies that (e, e)EH2 is a solution corresponding to (u a, a). Consequently,
el e , i.e., M is simple.

(ii) Suppose that, for some (u, u2)H2, there exist solutions (el, e2)H2 and
(e, e)H2 corresponding to (Ul, U2). Thus, there exists Y2 A2e2 and y. E A2e2 such
that

el + Y2 Ul, e + y u,
(10)

e2-nlel u2, e2-Ale’1 =u2.

From the first pair of (10) it follows that Ul el +A2e2 and e2 u+Ael, i.e.,

(11) u el + A2(u2 +Ale) Me.
Similarly, the second pair implies that

(12) ua e’ + A2(u2 +A le’l )= Mu2e’l.
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Since Mu_ is simple, we have by (11), (12), el=e. Then (10) yields e2=e, i.e.,
(e, e2)= (e, e).

Hence, [A 1, A2] is unambiguous.
COROLLARY 1. Let [A1, A2] be a F.S. over H and let A1, A2 be operators;

then [A1, A2] is
(i) solvable the operator Ma is onto H]’or each a H,

(ii) unambiguous :> the operator Ma is 1-to-1 for each a H,
(iii) normal:M is invertible ]’or each a H.
In this case, for any (Ul, UE)6 HE, the solution (el, eE) H2 is given by

(13) (el, eE) (M-12Ul, u2 /A iM-lul).

Proof. Obvious.
COROLLARY 2. Let [A1, A2] be a F.S. over H, let A1, A2 be operators, and letA2 be

linear; then [A1, AE] is
(i) solvable: the operator I +A2A is onto H,

(ii) unambiguousr the operator I +A2A is 1-tO- 1,
(iii) normalrI +A2A is invertible.
In this case, for any (u 1, u2) HE, the solution (e 1, e2) H2 is given by

(14) (el, eE)=((I+AEA)-l(ul-AEUE),U2+Ax(I/AEA)-l(ul-AEu2)).
Proof. It suffices to realize that M, is onto H (1-to-1) for each a H,I +A2A is

onto H (1-to-1). As far as (14) is concerned, for the solution (el, e2) we have by the
definition,

(15) ex+A2e2=u, e2-Ael=u2.

Thus, el/A2(u2/Alel)--Ul, i.e., (I+A2Ax)ex --Ul-A2u2.
(I /AzA1)-I(Ul-Azu2). The rest follows from (15).

Hence, el

2. Feedback systems over a Hilbert space. In this part of the paper we will assume
that H is a real Hilbert space with inner product (.,.).

As known 12], a mapping A: H 2H is called monotone [strictly monotone],
if

whenever Xl, x2 H, y AXl, y2 G Ax2, [>0 whenever Xl, x2 H, X x2, y
Ax 1, Y2 G AX2].

LEMMA 1. Let A, B: H - 2n be monotone; if either
(i) B is strictly monotone, or
(ii) A is a strictly monotone operator, then the mapping N I +AB is simple.
Proof. Assume that for some Xl, x2 H we have (NXl)f)(Nx2)# q, i.e., there exists

y H such that y Xl + ABx1 and y x2 + ABx2. Then y Xl + Zl for some Z1 ABXl,
and y x2 / Z2 for some z2 ABx2. Also, there exists yl Bx such that Zl 6 Aye, and
there exists yE Bx2 such that Z2 AyE. From this we have

(16) XI--X2/Z1--Z2-’-O,

and consequently,

(17) Yl Y2, Xl --X2) /(Yl Y2, Z1 ZE) O.

Since both inner products in (17) are nonnegative by monotonicity of A and B, it follows
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that

(18) (yl-yz, Xx-X2)=O,

(19) (zl-z2, yl-y2) 0.

Now, if (i) holds, we have Xl x2 by (18). Otherwise, if (ii) holds, (19) yields yl Y2.
Thus, Ayl Ay2, and since both Ayl and Ay2 are singletons, we have zl z2. Hence,
by (16), X X2.

THEOREM 3. Let A 1, A2: H 2H be monotone, and let A be an operator. If either
(i) A is strictly monotone, or
(ii) A2 is a strictly monotone operator,

then the F.S. [A 1, A2] over H is unambiguous.
COROLLARY 3. If A1, A2 are monotone operators and one of them is strictly

monotone, then [A 1, A 2] over H is unambiguous.
Proof. Referring to Theorem 2, (ii), it suffices to show that Ma is simple on H for

each a H. To do this, note that the following is true:
If K" H 2t, a H and Ka" H - 2H is defined by Kax a + Kx, then K is [strictly]

monotone :>K is [strictly] monotone. Recalling (2) and Lemma 1, the proof follows.
The corollary is obvious.

At this point, let us introduce concepts that are needed for discussing causality.
For every T R 1, let Sr be an orthogonal projection from H into itself, and let

{St T R 1} be a resolution of identity in H.
Let A: H- 2; then A will be called causal [13], if

(20) x 1, x2 E D(A), Srx Svx2z SrAx STAX2.

It is easy to see that the following assertion is true"
Let A: H 2H and assume that SvD(A)c D(A) for all T R 1. Then A is causal

SvAx SvASrx for each T R and x D(A).
Also, we have:
Let A, B: H 2H be causal; then
(i) A +B is causal,
(ii) BA is causal provided AH D(B).
DEFINITION 2. Let [A 1, A2] be a F.S. over H.
(a) If (Ul, u*)--(el, e2), (u’, u*)--(e’, e’) and Svul SvU’ implies that

(21) STel Swe’ STe2 STe’
then [A 1, A2] will be called causal by the first input.

(b) If (ul, UE)-(el, e2), (u, u)--(e, e) and STUI STU’, STU2 STU implies
(21), then [A 1, A2] will be called causal.

We will need the following proposition"
LEMMA 2. Let A: H- 2H be causal and assume that STD(A) D(A) for each

TR1; if
(a) A is strictly monotone, then

(STy STY2, X X2) > 0

whenever xI, X2GD(A), STX1 STX2, Yl Ax1, y2 Ax2;
(b) A is monotone, then

(STy STY2, X X2) 0

whenever Xl, X2 D(A), Yl AXl, Y2 Ax2.
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Proofi (a) If ux, uz6D(A), ux U2, and vl Aul, tAzAU2, then

(22) (vl-vz, ul-u2)>O.

Let Xl, xzO(A) be such that, for some T eR , SrXl : Srx2; then (22) yields

(Z1--Z2, STXI--STX2)>O

for any Z AST.xI, Zz A$7-xz, i.e.,

(STZI- STZ2, Xx --X2) > O.
Thus,

(23) (WI--W2, XI--X2)>O

for SrXl Srxz and w SrASrXl, w2 SrASrxz. (Indeed, if wi STASTXi, then w
Srg for some g ASrx.) However, by the above assertion, SrASru SrAu for each
u D(A). Hence,

(24) (STYx- STY2, Xl- X2) > 0

whenever ST-x ST-xz, yi Axi, because ST-yi STAx ST-AST-xg.
(b) For any Xl, XzD(A)and TR we have

(25) (Z1-- Z2, STXI-- STX2) ’’O
whenever zi A$.x. Thus,

(26) (ST-z $7.zz, x x2) => 0,

so that

(27) (wa-wz, xl-x2)>-O
whenever w $7-AST-xi. Hence,

(28) (STY1 STY2, X1 X2) 0

whenever y Axe, because ST-y 6 ST-Axg ST-AST-x.
THEOREM 4. LetA 1, A 2: H - 2n be causal and strictly monotone, and let A be an

operator. Assume that ST-D(Ai)c D(A) for each T R and i= 1, 2. Then the F.S.
[A 1, Az] over H is unambiguous and causal.

Proof. The unambiguity of [A 1, Az] follows from Theorem 3. Next, let (u l, Ua)--
(ea, ez), (u, u)--(e, e_), and assume that, for some TR 1,

(29) Sru STU , STU2 STU t2.
Then there exists y Ae and y Aiei, 1, 2 such that

el+y2= Ux, e +y u,
(30)

ez-yl= uz, e-y =u.
However, equations (30) and (29.) yield

(31)

Thus

(32)

Sr(e- e’a )+ S(yz- y)= 0,

ST(e2--e’)-s(yl y)=0.

(ST(el e ), e2 e + (St( y2 y ), e2 e’z/= 0,

(Sr(ez- e’z), e- e)-(Sr(y- y ), e- e) 0.



FEEDBACK SYSTEMS 345

(33)

Since Sr is selfadjoint, it follows that

(Sr(y- y), e-e’)+($r(yl y’ ), ex- e’ O.

Since both A1 and A2 are monotone, it follows by Lemma 2 (b) that both inner

products in (33)are nonnegative, and consequently,

(34) (St(y2-y), e2-e) 0,

(35) (ST(Y1 y ), ex- e) O.

Thus, by Lemma 2 (a), Srel Sre and Sre= Sre.
Remark 1. If a F.S. satisfies the assumptions of Theorem 4, then Srug- STU,

1, 2 =), Sre Sre , 1, 2. This in turn implies by (31) that STy Sty , 1, 2, i.e.,
the F.S. is causal in regard to outputs y and y.

In order to simplify the formulation and proofs of further theorems, let us
introduce the following notation.

Let d//be the set of all operators N: H -H such that

(36) /zN inf <Nx1-Nx2, Xl-X2)llXl-X211-2 >-00.
Xl,X2EH
Xl#X2

Observe that if N, M6d/I and a =>0, then N+M, aNAt and IzN+M_-->

txn +/xt, tx,,u a/Xu. Also, it is clear that N is monotone [strongly monotone]C:> IXN >---- 0
[ > 0].

Furthermore, let Lip be the set of all operators N:H H such that

(37) IINII* sup [INxI-NX=I[.IIxI-x=[[-1<c,
Xl,X2EH
Xl#X2

It is clear that fIN[I*->_0, and [IN[I*=0c*N is a constant operator. Also, if
N1, N2 Lip and al, a2 are real numbers, then alN1 + a2N2, NIN2 Lip and

Ila 1Sill* --la,I. ]lNlll*, JINx / N=II* <--[INIII* / IIN=ll*,

If, in particular, N is linear, then N is bounded :>N Lip. In this case [INII [[NII*.
Finally, note that by virtue of Schwarz inequality,
(i) Lip c,
(ii) IINII*_-> I1 eor every N Lip.
The numbers IINII* and/XN can be interpreted crudely as a "gain" and "minimal

slope" of the operator N, respectively.
LEMMA 3. Let N eg and let/XN > 0; if N is hemicontinuous, then N is invertible,

N- Lip, ixzv-1 >- 0 and

-1(38) IIN-II* zN.

If, in addition, N Lip, then

(39)

(40)

N-’ NliNi[*-2.

Proof. For all x x, x2 H we have

(Nx1 Nxz, x1 X2) IXNIIX X=II.
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Thus, N is monotone, and because N is hemicontinuous, it is maximal monotone. Also,
(40) shows that N is coercive. Hence, NH-H (see [12]).

Moreover, (40) implies that N is 1-to-l, and consequently, N-1 exists. By Schwarz
inequality we have from (40)

[[Nx1 Nx2II >- tzvllx
Hence, for any Yl, y2H, IIN-lyI-N-Iy2[I-/zrlllyx-y2[[, which gives (38).

Also, by (40), (y-y2, N-Xy-N-Xy2>0, so that m-1 0.
If N Lip, then

(41) [Nx Nx2[[ [[N[I*[[x xll
for all Xx, x H. However, (40) and (41) yield:

(Nx Nx2, x x2) #NI[NI[*-2llNx1 Nx2]]2.
Choosing YI, Y2 H and setting Xx N-Iy, x2 N-Iy2, we get

(YI-- Y2, N-Iy N-Iy2) #N]]N]*-2[[Y Y2[[2.
This, however, proves (39).

LEMMA 4. LetN be hemiconfinuous and lets > 0; ifN is causal, then N-1 is
also causal.

Proof. ByN we have for any xI, X2H and TR 1, (NSTxI-NSTx2, STXI-
STX2) [[STxI--STX2[[2; thus, by causality of N,

(42) (STNx1--STNx2, xI--XI)N][STXI--STX2[[.
Since N is invertible by Lemma 3, choose y,, y2 H and put x N-y, 1, 2, in (42).
We get:

(STy STY2, N-lyl N-Iy2) #N[[STN-y STN-Iy2]]2.
Thus, if STYx STY2, we have STN-IyI STN-ly2, and causality of N- is proven.

LEMMA 5. Let A be hemicontinuous, and let B Lip, >0. If A+
s[IB][*-> 0, then I +AB is invertible, (I + AB)-I Lip and

(43) ][( + AB)-I][* (A + B]B[[*-2)-.
If, in addition, both A and B are causal, then (I +AB)-I is also causal.

Proof. The assumptions B Lip, s > 0 imply by Lemma 3 that B is invertible,
1 -1B-x,s->s[[Bl[*-2 B-xLip and [[B-II[*< Thus, B +A is hemicon-

tinuous, B-1 +A and

(44) g-,+ g, + gllsl*- > 0.

Hence, again by Lemma 3, B -1 +A is invertible, (B -1 + A)-1 Lip and

l(s-x + A)-Xll* (g, +giis ,-)-,.
Next, I +AB (B -1 + A)B, and consequently, I +AB is invertible. Since

(45) (I + AS)- S-(S-I + A)-I
we have by the above

]](I + AS)-I* lS-,ll(S-I + A)-ll, g (g, + gllS,-)-.
Now, let A and B be causal. Then Lemma 4 and the above relations show that B-is causal, and consequently, B- +A is causal. Moreover, (44) implies that (B-x + A)-

is causal. Hence, by (45), (I +AB)- is causal.
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THEOREM 5. Let A Lip, /A1 > 0, and let A2 [/[ be hemicontinuous. If [d,A2 "-
zallA all*-2 > 0, then the F.S. [A x, 32] over H is normal.

Moreover, if (ux, u*)--(e x, e2) and (u, u*)--(e’, e), then

(46)

and

(47)

fie1- e <= tt ,1, (/za: + IXA[iA ll]:--2)--I[[u 1-

--1 II*-=)-’llu ullIlez e 11 I[A 111" A1 (/d,A2 -[- ,[IA
If, in addition, both A and A2 are causal, then [A 1, A2] is causal by the first input.
Proof. Let A A2, and, for a chosen u*6 H, let B:H-H be defined by Bx

u* +AlX. Then clearly B cLip, /xB =/ZA >0 and liB[f*= flAx[f*. Thus, by Lemma 5,
I +AB is invertible and (43) holds. Hence, by Corollary 1, (iii), [A1, A2] is normal
(see (2)).

Moreover, from (13) it follows that

(48) ex-e’ -x -xM,.ux-M..u x,

and

(49) e2 e2 A 1M-I*ul-A 1M-I*u 1.

Since M,.=I+AB, (46) follows from (43). Also, (49) yields Ile2-e]l_<
I[A IlI*IIMS. u MS.lu 11, The rest is obvious.

As for the causality of [A1, A2] by the first input, assume that (ul, u*)--
(el, e2), (u’, u*)--(e’l, e.) and STUl =STU2 for some TR x. Clearly, with a fixed u*,
the operator B is causal. Thus, by Lemma 5, MS* is causal and (48) yields

ST(el e’ -1) STM- u STM:x* u STM.. SrU STM- STU O.

Finally, (49) and causality of A imply that ST(e2- e) 0. Theorem 5 can be improved,
if either Ax or A2 is linear. To this end, we need the following"

LEMMA 6. Let A 6:tt be a linear operator with ttA >0, and let B 6At be a
hernicontinuous operator with I.tB <-0. If [UA +tttllA[[Z>0, then I +AB is invertible,
(I +AB)-1 Lip and

(50) [[(I + AB)-X[[* IIA[l(ttA +/x Ilml[2)-1.

If, in addition, both A and B are causal, then (I +AB)-I is also causal.
Proof. First observe that A is bounded. Indeed, since A is linear, it is hemicon-

tinuous. Thus, by Lemma 3, A is invertible, A-x Lip and [[A-I[ _<- tt 21. Consequently,
by the open mapping theorem, A itself is bounded.

Next, consider the operator C (I +AB)A* A* +ABA*. Clearly, C is hemi-
continuous. Indeed, A* is continuous and for any x0, w H and number sequence t,, 0
we have

BA*(xo+ tw)= B(A*xo+ t.A*w)- BA*xo.

Since A is bounded, it follows that ABA*(xo+tnw)--- ABA*xo.
Moreover, for any x 1, x2 H,

(Cx-Cx, x-x)

(51) (A*(xx x2), xx x2) -.b (ABA*xl ABA*x2, Xl X2)

(A(Xl x2), Xl x2) -- (BA*xl BA*x2, A’x1 A’x2).
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However,

and

(BA*xl-BA*x2, A*xa-A*x2) >= [IA*(X1 X2)II2,

Thus, by (51)

(CXl Cx2, Xl x2) >- ([.I,A q- g[IAllZ)llx- xz[[z,

Hence, by Lemma 3, C is invertible, C-1 Lip and

(52) IIC-all* _<-/x <_- (/.tA +/xBIIAll2)-1

2Now, since A* is invertible and [[A*-ll<tt we have I+AB=CA*-1.
Consequently, I +AB is also invertible, and the equation (I +AB)-I= A,c-X yields
immediately (50) by (52).

To prove causality, note first that, by Lemma 4, A-a is causal. Also note that, by
Lemma 3, t.I,A-I #A][A]]-2. Thus, A-1 +B, Id,a-+B ld,B +#AIIAI[-2 > 0 and A-a +
B is hemicontinuous. Hence, by Lemma 3, A-X+B is invertible, and (A-X+B)-1 is
causal by Lemma 4. Since I+AB=A(A-I+B), we have (I+AB)-a=
(A-a + B)-IA-a, and consequently, (I + AB)-a is causal.

Remark 2. The invertibility of I+AB can also be proved via invertibility of
A-1 + B, but then we obtain a worse estimate than (50).

THEOREM 6. Let AlCOtt with /-tal-<-0 be hemicontinuous, and let A2lt with
.6A2 > 0 be linear. If Id,A2 " tZA[IA 2[[2 > 0, then the F.S. [A a, A2] over H is normal.

Moreover,
(i) if both A and A2 are causal, then [A 1, A2] is causal.
(ii) if (ua, u2)--- (ea, e2) and (u, U’z)--(e’, e’), then

(53) lie,- eill <= A Ilu,- u Ill + IIA211" flu2- ui[I,

where

z -IIAz[l(tta_ + tZAllAz[12)-a.
I[, in addition, A Lip, then

(54) Ile2-ell<-IIAxll*Allua-ull+(1 +llAxll*allA211)llu2-ull.

Proof. By Lemma 6 it follows that the operator I+AzAa is invertible and
[[(I +A2Aa)-IlI*-< 3,. Thus, by Corollary 2, [Aa, A2] is normal.

Moreover, by (14) it follows that

lie1- e [[(I + A2A 1)--X(ul- A2u2)-(I +AzA 1)-1(u -A2u2
_-<A}Iul-uII+AIIA211" Ilu2- u

which is (53).
Similarly, if A Lip, then (14) yields

Ilez e <- Iluz u / llA ll*A llu A2u2- u +A2u
which readily gives (54).
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Finally, let A1, A2 be causal" If (ul, u2)--(el, e2), (U, u)--(e’a, e’) and STUl
Sru’, Sru2 Sru’, then (14) and causality of K =(I +A2A1)-1 yield

Sre Sre SrK(u A2u2)- SrK(u A2u )

SrK(Sru SrAzSru2)- SrK(Sru SrA2STU t2 O.

In the same manner it follows that Sre2-Sre 0 which completes the proof.
Remark 3. If a F.S. [A1, A2] over H satisfies the assumptions of Theorem 6

(including A Lip), and if A 10 0, then (0, 0)e H2 is the unique solution of [A 1, A2]
corresponding to (0, 0) H. Thus, if (Ul, u2)-- (el, e2), we get from (53) and (54)

[[e2[[ _<-IIA IlI*A Ilu ill / (1 + IIm l}*a [IAzll)llu2[I.

Consequently, [A 1, A2] is stable in the standard sense (see [8], p. 52).
Let us now prove a "linear counterpart" of Lemma 5.
LEMMA 7. Let A be hemicontinuous with tXA <= O, and let B ill be linear with

zB > O. If tB + allBII2 > 0, then I +AB is invertible, (I + AB)-I Lip and

(5 5) II(I + AB)-ll[* _< IIll( / llllZ)-a.
If, in addition, both A and B are causal, then (I +AB)-I is also causal.
Proof. Since linearity of B and B ,/zB > 0 imply that B is bounded, i.e., B Lip,

our assertions concerning invertibility of I +AB and possible causality of (I + AB)-1

follow immediately from Lemma 5. However, the bound for I[(I + AB)-I[I* given by (55)
is smaller than that given by (43), since the latter is a z, IIBII_-> 1 multiple of the former.

To confirm (55), we use an argument similar to the proof of Lemma 6. First, note
that B* is invertible and IIB*-}I _-< ,. Letting C B*(I + AB), we verify as before that
C is hemicontinuous and satisfies the condition

(Cx1- Cx2, x1- x2) e (Id,B q- al[Bll2)llxa- x21l=
for all xl, xz e H. Thus, by Lemma 3, C is invertible, C-1 Lip and

(56) Ilc-1ll* -< (., + .allB 112)-.
-1Now, since B* is invertible and [[B*-I[[-<_ t B, we have I +AB B*-1C. Consequently,

I +AB is invertible and (I +AB)-1 C-1B*. From this and (56) we conclude that (55)
holds.

LEMMA 8. LetA, B" H Hbe operators, letB be linear, and letB andN I +AB be
invertible. If a e H, let M" H --> H be defined by

(57) Max x +A(a + Bx ).

Then Ma is invertible, and

(58) MSx N-a(x +B-a)-B-aa

for each x H.
Proof. Let O denote the operator standing on the right-hand side of (58). Then, for

any x H, we have

OMax N-l(x + A(a +Bx)+B-la)-B-la
N-l(x + B-la +AB(x +B-la)) B-la x.
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Also,

M,Ox N-I(x +B-la)-B-la +A(a +B[N-I(x +B-la)-B-la])
N-I(x +B-Ia)_B-1a +ABN-I(x +B-la)
(I + AB)N-I(x + B-la)-B-Xa x.

Hence, O =M1.
THEOREM 7. Let A E ./ with IA1 > 0 be linear, and let A2 with IA2 <- 0 be

hemicontinuous. If AI+tZA2[IAII[2>O, then the F.S. [AI, A2] over H is normal.
Moreover, if (Ux, u2)--(el, e2) and (u, u)--(e, e), then

Ilel eill < h [[u u Ill + (1 + h)-ialluz-ull(59)

and

(6o)

where

If, in addition, both A1 and A2 are causal, then [A 1, A2] is causal.
Proof. By Lemma 3, A is invertible, by Lemma 7, N i +A2A is invertible, their

inverses are in Lip and IIa-111-<_tx.11, [IN-[I*-<h. By Lemma 8, Ma defined by (2)is
invertible for any a e H and (58) holds. Thus, by Corollary 1, [A 1, A2] is normal.

Moreover, by (13) and (58) we have

(61)

Also by (13),

Ile - < llu - u2II+]IAll] IIM-SI ul
which gives readily (60) by invoking (61). Finally, let A1 and A2 be causal. Then A-1 is
causal by Lemma 4, and N-1 is causal by Lemma 7. If (ul, u2)-(el, e2), (u, u)---
(e, e) and STul STU’, STU2 STU’, then (13) and (58) yield

Srel Sre’ SrN-l(ul + A-lu2)- SrA-lu2- SrN-l(ul + A-lu’2 )- SrA-(lu’2

STN-I(STUl + STA-ISTu;z)--STA-ISTu2

STN-I(STU’I + STA-ISTu )+ STA-ISTu O.

A similar argurnent shows that STe2--ST.e’ 0 which concludes the proof.
Remark 4. If a F.S. [A 1, A2] over H satisfies the assumptions of Theorem 7 and if

A20 0, then (0, 0)H2 is the unique solution corresponding to (0, 0)H2, and (59),
(60) yield

[[el[[ <- A [[Ulll + (1 + A )/2, -1 Ilu=lt,

Ilez[I IIA ill/ [[u 1[[ ’1 [1 + (1 + A )tX IIA ll[][[u2l]
Hence, [A 1, A2] is stable in the standard sense.

In concluding this part of the paper, let us present an example of a specific F.S.
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Example 1. Let n_-> 1 be an integer, and let H =L., where L is the n-fold
Cartesian product of L2[0, oo) with itself equipped with usual inner product.

Let D be a real n x n matrix, and denote

(62) d inf :rD

(here, [’1 denotes the Euclidean norm).
Also, let K(t) be an n n matrix whose entries Kii(t) LI[0, oo) (’1L2[0, oo), and let

(iw) be the Fourier transform of K(t), (defined as zero for < 0).
Denote

(63) k= inf inf r(g(iw)+(iw)r),
wR Il=l

and

(64) K supx A(/- (iw)),
weR

where A(M) denotes the square root of the largest eigenvalue of the matrix I[TM.
(Note that -oo < k -<_ 0 and 0 -< K < oo).

Furthermore, let 4" R - R be such that

(65) b(0)= 0,

(66) It (:1) b (:a)l 11- :e]
for some/ > 0 and all :1, :2 R n, and

(67) inf

12

((D (1)-- I) (2))T(1- :2)" I1- 21-2 a2 _--< 0.

A typical example of such function & in one dimension is given in Fig. 2.

(68)

FIG. 2

Now, define the operators A 1, Aa on H by

(AlX)(t)=Dx(t)+ K(t-r)x(r) d’,
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and

(69) (A2x)(t)= &(x(t)).
We are going to show that, if

(70) d+k>0

and

(71) d + k + a(IDI + ,) > O,

(ID[ denotes the norm of D associated with the Euclidean vector norm), then the F.S.
[A 1, A2] is normal.

Indeed, it is clear that A1 is linear, maps H into itself and is bounded. A
straightforward argument using Parseval’s equality and (63) shows that A1 cH and
/ZAl>-_d+k >0 by (70). Also, it is known [16] that

On the other hand (65) and (66)show that A2 mapsH into itself and is a continuous
mapping. A little thought will persuade us that, due to (67), A2 H and/XA2 a2 <= 0.

Thus, we have by (71), /za+/zallA2ll:>=d+k+a:(lD[+,)>O. Hence, by
Theorem 7, our F.S. [A 1, A2] is normal. Also, estimates (59), (60) hold with

a _<- (IDI + ,)(d + k + a2(lDI + K )2)-1,
i.e., our F.S. is Lipschitz continuous in both inputs.

Finally, it is well known that, if Sr :L L is defined by (Srx)(t)= x(t) for =< T
and (Srx)(t) 0 for > T, then {St T R 1} is a resolution of identity on L. Also, it is
clear that A and A2 are causal with respect to {St T 6 R 1}. Hence, by Theorem 7, our
F.S. is causal, i.e., ul(t) u (t) and u2(t) u(t) on [0, T] implies that ex(t)=e’l (t) and
e2(t) e (t) on [0, T ].

3. Feedback systems over an extended Hilbert space. The results obtained in the
second part can easily be generalized to the case in which the underlying space is an
extended Hilbert space. As it will be apparent later, the Lemma 10 given below is a
crucial tool for deriving results concerning extended spaces. However, since otherwise
the proofs of generalized results are quite straightforward, we will discuss only a
counterpart of Theorem 5.

We introduce the following framework"
Let He be a real linear space and let H c He be a Hilbert space. Moreover, let

II {P" a e I } be a nonempty collection of linear operators P" He - He which satisfies
the following axioms"

(i) p2= p for each P II.
(ii) P1P2 P2P1 and PIP2 e II for all P1, P2 .
(iii) If X e He, then Px H for each P H.
(iv) If, for every P e H, the element x w) is in He PH and Pox wl) Pox w2) for all

P1, P2 e H with P0 PIP2, then there exists x He such that x w) Px for every P e II.
(v) If x H, then IIPx[I <- Ilxl[ for each P H.
(vi) If x He and [Iexll--< a for every P H and some fixed a >_-0, then x H and

I[x[l_-< a.
Then He will be called an extended Hilbert space, or an extension of H.

LZMM 9. (a) PoP1 PoP Po for every P1, P2 II and Po
(b) PHe PH He Hfor each P II.
(c) If x He and Px 0 for each P s H, then x O.
(d) The element x s He in axiom (iv) is unique.
(e) (Px, y) (x, Py for every x, y H and P s II.
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Proof. (a) By (i), (ii) we have PoP1 PIP2P PZP2 PaP2 Po. Also, PoP2
PxP =Po.

(b) If z PHe, then z Py for some y e He. However, by (i), z P(Py) and Py e H
by (iii), so that z PH. Hence, PHe PH. Conversely, since H He, we have PH
PHe. The inclusion PHe H is in fact the axiom (iii).

The assertion (c) is a trivial consequence of (vi). Similarly, (d) follows immediately
from (c).

As for (e), choose x, y 6 H and P H. Since Px, Py H by (b), we have for every
real A by (i) and (v),

i.e.

Thus, necessarily

IIPx + Ay[[ >= IlP(Px + Ay)II [[Px + APyII,

2A {(Px, y (Px, Py )} + A 2{(y, y (py, py)} __> 0.

<Px, y> <Px, Py).

Interchanging the role of x and y, we get <Px, Py) <x, Py) and (e) follows.
Let A:He He; then A will be called causal, if

(72) PA PAP

for every P 6 H.
Before proceeding further, let us point out the following facts: The axioms (i), (v)

and assertion (e) show that each P H restricted to H is an orthogonal projection on H.
Moreover, if in particular the collection H- {P c I } can be indexed by reals, i.e.,
I R 1, if PIP Pmintal,a2] and if we impose the additional requirement: (vii) P, is
right-continuous at every c e R and Pax x, P_x 0 as a oo for every x e H, then
we can easily verify that H is a resolution of identity on H. Thus, if an operator
A: He He is causal by definition (72) andAH c H, then its restriction Ao: H H toH
is causal in the sense defined in the second part.

LEMMA 10. Let A: He He be causal. For each P II, let Ap: Hp Hp PH be
the restriction of PA to Hp. Then A is invertible and the inverse A-l: He He is
causal Ap is invertible for every P II. In this case,

(73) PA -1 A,IP

for every P II, and A, is the restriction ofPA- to Hp.
Proof. First note that, due to Lemma 9(b), Ap truly maps Hp into itself.
(1) Assume that Ap is invertible for each P 6 H. Choose y He, and for each P 6 II

et

(74) x (P)= A,Ipy Hp.

We are going to show that

(75) Pox (P1) Pox (P2)

whenever P, P2 G 1-I and P0 PIP2. Indeed, by (74)we have Apx(P)-" Py, i.e.

(76) PiAx(P’) =Piy,

1, 2. Thus, by Lemma 9(a), PoAX (P’) Poy, and by causality of A, PoA(Pox(P’))
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P0y. Since P0y, Pox (I,’ Poll Heo, it follows that

(77) APo(Pox(P’) P0y.

Thus, (75) follows by invertibility of Apo.
Next, by virtue of (75) and (iv) there exists a unique x He such that

(78) xI,= Px

for every P II.
The element x is a solution of the equation Ax y. Indeed, choose P II. Then we

have by causality of A arid (78), (74), P(Ax-y)=PAx-Py=PAPx-Py=
PAx(P-Py Apx(P-Py 0. Hence, by Lemma 9(c), Ax y O.

As for uniqueness of x, let He be such that A y. Then we have for every
P II, PAP Py and also PAPx Py. Hence, ApP Py, ApPx Py which implies
that P Px. Thus, by Lemma 9(c), x . Consequently, A is invertible.

Moreover, since x A-ly, we have for any P e II, Px PA-ly. Using (78) and (74)
it follows that PA-ly x(m A,IPy, which confirms (73). Also, since A;,1P restricted
to He is A1, (73)proves that A is the restriction of PA-1 to Up.

Finally, by (73) and (i), PA-1P A;,1P2= A;,1P PA-1 i.e. A -1 is causal
(2) Conversely, let A be invertible, and let A -1 be causal. Choose Pe II and

denote B" Hp Hp the restriction of PA-1 to Hp. If x Hp, we have BApx BPAx
PA-1PAx PA-1Ax Px x. Also, ApBx ApPA-lx PAPA-ix PAA-lx
Px x. Hence, B A? i.e Ap is invertible

Now we can state the counterpart of Theorem 5.
THEOREM 8. LetA 1, A2: He He be causal operators. For every P II, let A 1P and

A2i, be the restriction of PA and PA2 to Hp PH, respectively. Assume that, for each
PH,

(i) A 1i, Lip and tx > O,
(ii) A2I, and is hemicontinuous,
(iii) /x,, + 1PII > o.

Then the F.S. [A1, AI over He is normal and causal, i.e., i[ (ul, u)H2, (ul, u)-->
(el, e=)H, (u’, u)H2, (u’, u)-->(e, e)H2 and Pul=PU’, Pu=Pu, then
Pe Pe and Pe2 Pe.

Moreover, assume that, in addition, there exists A > 0 such that

(79) /.l, A1/,-1 (]’/’A2p "+"/Xal,,llA 1P[[*-2)-1 < A

for all PII. If (Ul, u*)(el, e2)H2e, (U’l, u*)(e’l, e’z)H2 and Ul-U’l H, then
e e’l H and

(80) lie1- e’11[ </IIUl uill.
If, in addition, [IA 1ell* --< ]:or all P H and some K > O, then also e e’2 Hand we

have

(81) lie2 e ll < KA IlUl u Ill.
Proof. Choose a fixed z He and consider the operator Mz’He He defined by

Mzx=x+Az(z +AlX). Defining the operator Bz" He-He by Bzx=Z +Alx, we see
that Bz is causal and Mz I +A2Bz.

Next, choose P H. Since P is an orthogonal projection on H, it follows that He is a
Hilbert space of its own right. Also, let Bze" He HI, be the restriction of PBz to HI,. By
assumption (i), BzI, Lip and Ilnzll* -IIA xll*, = A> 0. Hence, by (ii), (iii) and
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Lemma 5, the operator Np I + A2pBzp: He - Hp is invertible, N 6 Lip and
-1(82) IIN I1" -< tA1p (/-/A2p + t-tAI,IIA PIl*-=)- A,,

However, Np is the restriction of PMz to Hp, since for any x e Hp we have
PM,,x P(I +A2Bz )x x +PA2PBzx (I +A2pBp)x. Also, Mz is causal, since PMz
P +PA2Bz P +PA2PBzP P(I + A2B,)P PMzP. Hence, by Lemma 10, Mz is
invertible, M is causal and we have by (73),

(83) PM- N,IP.

Consequently, [A 1, A] is normal by Corollary 1.
To prove causality of [A 1, A_], observe first that for any z He and P e II we have

eMz PMpz. Now, assume that (Ul, u)--) (el, e), (u, u )--) (e, e) and eul PU’l p,
PuE=PU=q. Then we have by (13), M,2el=ul, M,e’=U’l. Consequently,
PM,2Pe Pu1, PM Pe Pu i.e.

(84) PM,Pe P, PMqPe p.

Since p, Pel, Pe’l np and PM, is invertible (it is the above operator Np for z q), (84)
shows that Pel Pe

Moreover, since e2 A e + u2 and e A e + u by (1), we conclude readily that
Pe2 Pe ’2.

Finally, assume that (79) is satisfied, and let (ul, u*) (el, e2), (u, u*)- (e, e)
and Ul-U’x H. Invoking (13) and (83) it follows that Pel=PM-I.ul =PM-I.pul
N,Ipul and similarly for Pe’l. Hence, by (82), (79) and axiom (v),

<= A liP(u1 u )l[ <= A IlUa u Ill.
Thus, by axiom (vi), el-e H and (80)holds.

Moreover, since e2=Alel+u*, we have for every Pert, P(e2-e)=
PAIPel-PA1Pe’I. Hence, if IIAipIl*<-r, for all P6FI, we get

Then axiom (vi)concludes the proof.
Using Lemmas 10 and 6, 7, we can prove analogues of Theorems 6, 7 which

concern feedback systems over the extended space He, but we omit the details.
On the other hand, let us emphasize the following aspect of results established in

the second part as seen from the viewpoint of extended spaces. Assume that the
operators A1, A2: He -) He have the properties A1H c H, A2H H and A10 A20
0. Then by a theorem of Willems [18] the F.S. [A 1, A2] over He is well-posed, precisely
if the F.S. [A, A] over H is normal and Lipschitz continuous, whereA and A2 is the
restriction of A and A2 to H, respectively. Thus, if a given F.S. [A 1, A2] satisfies the
above requirements and [A, A] meets conditions of any Theorem 5-7 then (A 1, A2]
is well-posed.

4. Linearization. Consider a F.S. [A1, A2] over a real Hilbert space H, whose
operators A a, A2 satisfy the condition A10-A20 0. As it is apparent from (13), to
describe the behavior of [A1, A2] amounts to establishing the inverse M for each
a H. If A1 and A2 are not linear, this is usually a difficult task. If we wish to avoid
inverting nonlinear operators, and are satisfied with an approximate solution we can
linearize [A 1, A2] in a vicinity of the origin (0, 0)HE. More specifically, we can choose
an appropriate approximating F.S. [A1, AE] with A1, A2 being linear and expect
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that the errors el, e2 of [A 1, A2], corresponding to a pair of inputs (ul, u2)E H2 with
][u 1[I, Ilu211--< r, will be sufficiently close to the errors el, e2 of [A 1, A2] that correspond to
the same pair (ul, uz).

It turns out that if the operators AI+cexI and A2+a2I are monotone for some
O 0, 02 < 0 (or a < 0, a2 0), and ifAi is sufficiently close to Ai, 1, 2, on a certain
ball centered at the origin, then. we can derive inequalities of the form

[[e e 111 - KI l[[U 1[[-I-- K12[lu2]l,

These estimates are furnished by Theorems 9-11 below, which also supply conditions
for Lipschitz continuity of [A1, A2] and [Ax, A2].

DEFINITION 3. Let [A1, A] be a normal F.S. over a real Hilbert space H. Then
[A 1, Ae] will be called

(a) Lipschitz continuous in the first input, if there exist numbers h 11, 21 > 0 such
that

lie 1-- e[[ < h llllUl U i[[ [[e2- e’=ll<,=,llul uill

whenever (ul, u*)-*(el, e2) and (ul, u*)(e’, e);
(b) Lipschitz continuous in both inputs, if there exist numbers ,

11, 12, ,21, 2> 0
such that

lie1 e Ill <- A111[u1 U Ill + h l:zllu u Ill,

Ile. e Ill <-- a :zxllu u ll + A ==[In= u Ill
whenever (Ul, uz) (el, e) and (ul, u)-(e, e).

Now, we can state the first approximation result. If r > 0, we denote Br {x: x E H,

THEOREM 9. Let A 1, A Lip, and let r > O. Assume that
(a) there exists a linear operator A H Hand number a with 0 <-_ a < UA1 such

that

(85) oA[[(A1 1)xll <= a lllx

for all x Bur, where

-1(86) , Ix AI (IZA2 + tZA[IA 1[[$-2)-1,

(b) there exists a linear operator A:z: HH and a number az>=O such that

(87) II(A 2 A)xll <-- a2llxll
for all x B(l+llaxll*)r,

(C) tzAz-a2+(tZA-al)(al +llAlll*)-:Z>o.
Then

(i) both F.S.’s [A1, A:z] and [A1, A:z] are normal and Lipschitz continuous in the
first input,

(ii) if ul, u2 Br and (u, ua)- (e, e) for [A 1, A2], (ul, u2) (el, e:) for
[A 1, A2], we have

(88) lie1 e 11] < g11[[uxll / gl:llu:ll,

(89) lie= -e=ll-<- g=llu ill "[- g==llu=ll,
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where

K11=Kp(a2[IA11I*+allIA211), K12 ta2,

K21 a lP -’b I[m lil,,(a2[IA 111" / a 111m=11),
(90)

g== llm lla=,

K (A1- al)-l(a2 a2 + (ml- al)1[m 111--2)-1"
Proof. First (85) implies that A0 0. Also, if x B, we have

]IA x[[ x A xX[[ + [[A xXll a llx[] + [[A x[[*l[x [].
Since A is linear, this inequalit holds for all x H, and consequently, A is bounded
with [[A ill [[al + [[A 111".

On the other hand, if x B, we have

(91) (A 1x, x) (A ix, x)- ((A1 A 1)x, x),

and, by (85)

((A1-A1)x, x) alllxl[2.

Hence, by (91)and (A x, x) >= AIIIX[I,
(92) mix, x (/d,a a l)[[x =.
Due to linearity of A1, (92) holds for all x H. Hence, Ix a, >= I.I,Al--al >0 by our
hypothesis.

Moreover, since A1 is bounded, Lemma 3 shows that A1 is invertible.
Using the same argument and (87) it follows that A20 0, A2 is bounded with

IImzll<-a /llA.ll*, and that [J, OA2" Pba2-- a2.

Choose now z H and define the operators Mz, Mz: H -H by

(93) Mzx =x +A2(z +AlX), Mzx =x + A2(z + AlX).

Also, let Bz, Bz: H H be defined by

(94) Bzx z + Ax, Bx z + Ax.

It is obvious that

(95) Mz I +A2Bz, Mz I +A2Bz.
Moreover, from (94) it follows that Bz, Bz Lip,

bt,Bz lYbA1, t.oBz l.OAl bI,Al--a > O(96)

and

(97) [[Bz II* --IIA 111", IIBzll
Next, from (96), (97) and (c) it follows that ita2 q- m,llnzll*-= =/ IAIIIA 111"-=>

tza=-a=+(tza-al)(al+llAl]*-=)>O. Since/zz =gAl>0, Lemma 5 shows that the
operator Mz is invertible, M Lip and

(98) IIM; I1" < All (/-A2 -[- Id’al[[A 11[*-2)-1

Hence, by Corollary 1, [A 1, A2] is normal. Moreover, (98) and (13) show that [A 1, A2]
is Lipschitz continuous in the first input.
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Similarly, we get by (96), (97)and (c),

(99)
/J’A2 + ’llBzll*-=

-->/XA2 az + ([.a al)(al + llm 111")- > 0,

and because/zoB txoa > 0, it follows by Lemma 5 that Mz is invertible, M;1 Lip
and

31

(100)
<(/’A1 al)-l(txA2 a2+(A al)[[Alll-Z)-a -’-K.

Thus,
Lipschitz continuous in the first input. Hence, our assertion (i) is proven.

To prove (ii), define the linear operator N’H-->H by

(101) N I + A2A1.

Since A.1, AE Lip and txoa /zonz => tza- al > 0, inequality (99) shows by Lemma 5
that N is invertible, N-1 Lip and

(102)

Choose now x, z Br, and denote M-lx w. Since Ax and N are invertible, we
have by Lemma 8,

M- x M- x M-lx N- (x + A-lz) +A- z

(M-Ix -N-ax)+(I-N-1)m-lz
-N-I(Mz -N)M-lx +N-a(N-I)A-az

(103) -N- (M w Nw .Jr- N- oA2OA xOA- z

=-N-I(w+AE(z +AIW)-w-AAIw)+N-1

-N-I{[A2(z +AlW)- A2(z +A1W)]

+[A2(z +Alw) oA oA -1 o
2 1w]}+N "A2z

=-N-I(Az-Az)(Z +Alw)-N-1 A2(A1- l)W.

However, by our assumption,

(104) Ilwll--< I[M; 111"lx II-<- llxll-< ,r,

i.e., w B.. Also,

Ilz /a wll--< Ilzll / IIa llr.*ll w _-< r + I[a 11[* r,

i.e., z +A lW B(I+IIAIlI*,)r. Hence, (103) yields, by (85) and (87),

I[M;ax M-lx II--< IIN-ilia2(lie / iIA1 [i[w II) / [iN-Xll"llm2[iax w

--IIN-ll(a2llA 11" / a lllm2ll)llw[I / IIN-lla2llzll
(105)

-<- K,(a21IA ll* / a,llm=ll)llxll / Ka21[z[I
gallxll / glzllz[I.

To conclude the proof, choose (u l, u2) HE with u l, u2 Br, and let (u l, u2)--->
(el, eE) for [A1, AE], and (ul, uE)-(e, eE) for [A, AE]. Referring to (13) in Corol-
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lary 1, we have

(106)

(107)

0 -1ex e M-Ul- Mu2
0 -1 0A 0 -1

e2- e2=AiMu2Ul Mu2Ul.
Using (105), we obtain readily from (106),

Hence, (88) is confirmed.
On the other hand, (107) yields

_oA OAMXull.Ile.- e=ll =< IIa xM.-u M. u111/ IIAMuu
Since IIMLXuxlI-< llul[-< r, we have by (85) and (105),

Ile_ -e.ll =< a llu 111 / IIm xl[(gl llu 111 / g12[lu211)

(al / [[m 11[g11)llu 111 + IIm lllg=llu=ll

Thus, (89) holds and the proof is complete.
The estimates given in Theorem 9 can be improved, if either the operator A or A:

is linear. Let us first discuss the case of A: being linear.
< 0 let A J/[ with IXA2 ) 0 be linear, and letTHEOREM 10. Let A Lip with Ual

r > O. Assume that
(a) there exists a linear operator A l: H--> H with tx al <- 0 and a >- 0 such that

(108)

for all x Bo(l+llA211)r, where

(109)

II(A, m,)xll -< alllXll

(b) Ixa + (IxA a l)llA =11 > o.
Then

(i) both F.$.’s [A1, A:] and [A x, A.] are normal and Lipschitz continuous in both
inputs,

(ii) if ul, u2eBr and (Ul, u2)--)(el, e2) ]’or [A1, A2], (u, ua)-,,(el,ez) for
[A 1, A2], we have

(110)

(111)

where

lie1 -e111 -< A IlUl A =u=ll A Ilu 111 / A IIm =11" Ilu=ll,
lie= -ell--< (a lO) + IIm IIA )llua Au:[[

--< (a lw + IIA IIA)(IluII + IIA:ll’llu:ll),

(112) h al[[A2II3(IxA2 + Ixa,llA2[12)-l(ixa + Ixoa,llA:ll:)-1.

Proof. Let the operators N, ON: H H be defined by

(113) N =I+AA1, N=I+A2A1.
As in the proof of Theorem 9 it follows from (108) that A10= 0, and consequently,
N0=0. Also, it follows that A1 is bounded with IIJxll<=al+llAll[*, and that
(AlX, x)>=(ixa-al)tlxll: for all x H. Thus, A1 /and O>--IxOAa
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Moreover, by our hypothesis (b),

tXA2 + tXA,I[A 21[z > a I[[A zl[2 _-> 0.

Hence, by Lemma 6, N is invertible, N-1
E Lip and [[N-1[[* -<; . Since A2 is linear, we

can invoke the Corollary 2 and conclude that [A,, Az] is normal. Also, the fact that
AI, A2, N-1ELip and (14)show immediately that [AI A2] is Lipschitz continuous in
both inputs.

Next, since /zoa =<0 and la, A2+IZOA,[[A2[I2IZAz+(IZAI--al)IIA2[[2>O by (b),
Lemma 6 implies that the operator N is invertible, N-aLip and
[[A2[I(/ZA2-+-/.t,’1[la2112)-1-- to. Hence, again by Corollary 2, [A1, a2] is normal and
Lipschitz continuous in both inputs, which proves our claim (i).

Now, let x B(I+IIA211)r; then

(114) IIN-Xxll [[N-’II*IIx[[ o IIx w(1 + I[A2[[)r,
so that N-ix Boo(l+liA211)r. Thus, we have by (108) and linearity of N-a,

[IN-’x N-lxll [lN-(N N)N-lxII

(115)
-IIN-aAz(m 1-- A 1)N-ix

IIN-’ll.llA211 a lllN-’ll*llxl[

To conclude the proof, choose u 1, U2 Br and let (u 1, U2) I-’> (e 1, e2) for [A a, A2] and
(Ul, u2)- (el, e2) for [Al, A2]. Then we have

(116) Ilu-A2u2[llluall+llA2[l" I[u21l (a + [IA211)r,

i.e., w Ul-A2u2EB(I+IIAzlI)r. Also, by (114), N-lw Bo.,(l+llazll)r. Thus, invoking (14)
in Corollary 2, we get by (115),

[le-el[I I[(N-a- N-1)wll<--;tllwll<-Allua[l/ A [[A2[[. Ilu21l.
Moreover, by (108)and (115),

Ilez ezll-[lalN-aw aN-11 wll
<--Ila 1N-1w a1N-a wll + IIa 1N-1w --alN-a wll
-< a 111N-1 w / IIA ilIA Ilwll

(a 1(.o --I-IIm ilIA )llwtl

lll;)(lluall/llA211" Ilu211).
This, however, proves (110) and (111).

Remark 5. The assumptions/-/Ai -< 0, /./,A1 __--< 0 made in Theorem 10 can sometimes
be inconvenient. Fortunately, they can be dropped provided we are satisfied with
estimates that are worse than (110) and (111). The proof of this uses an assertion like
Lemma 6 which does not impose the condition/zB <- 0, and which can be proved via a
decomposition I +AB A(A-1 + B). The details are omitted.

If the operator A is linear, we have the following result:
THEOREM 11. Let A ,/ with [-I,A1 > 0 be linear, let A2 Lip with [.LA2 O, and let

r > O. Assume that
(a) there exists a linear operator A2: H-H with lZOA2<--O and a2>=0 such that

(117) II(A2- A2)xll <= a211xll
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for all x BollAlll(l+uJ,1)r where

(118) O -[[A ll[(/.al +/ZA2[IA 112)-1,

(b) +(-a2)llA xtl > 0,

Then
(i) both F.S.’s [A 1, A2] and [A 1, A2] are normal and Lipschitz continuous in both

inputs,
(ii) iful, u2Brand (Ul, u2)-(el, e2)for [A1, A2], (Ul, u2)--(el, e2)for [A1, A2],

we have

(119)

(120)

fie1 -e111 -< A IlUl+ A
Ile.-e=ll--< A IIA !1" IlUl -A1 u211 A IIA 11" Ilull / A IIA llzX Ilu=ll,

where

A allA,ll3(ZA, + tXA2I[A 1]I-)-I(A, + OAIIA,II)-’.
Proof. Using (117) we conclude as before that A20=0, A2 is bounded with

m11--< a2 + IIA =11", and 0 -> tZOA2 -->/ZA2-- a2. Moreover, due to Lemma 3, A is bounded,
invertible and IIAVII,

Consider now the operators N I + A:A and N I +A:A 1. Since /.zal > 0,
d,a2 0 and /XA1 + g,llA 11 --> ’A / (ZA=-- a:)llA 11 > 0 by (b), it follows by Lemma 7
that N is invertible, N-I Lip and

(121)

Similarly, since /-/.ml -- tZoA=llA 1112 /d.A -- (/"/’A2 a2)llA 1112 > 0 and /./.OA2 -< 0, Lemma 7
shows that N is also invertible, N- Lip and

(122) IIN-[[ < IIA II[(/ZA, + IZA2IIA 1112) -1

Next, choose a z H and define the operators Mz, M" H H by

(123) Mzx=x +A2(z +AlX), Mzx=x +A2(z +AlX).

Since N, N are invertible, and A is invertible and linear, Lemma 8 shows thatM
and Mz are invertible. Also, by (58),

M-Ix N-l(x +A-Iz)-A-Iz,
(124)

OM_lx ON_(x +A_lz)_A_z.
However, from (124) it follows readily that M1, MI Lip and

(125) [IM I1" -IIN-II* --< o, IIM-111* ---IIN-II--< n.
Thus, invoking Corollary 1, we see that [A, A] and [Aa, A_] are normal. Moreover,
if, for [A1, A], (u, u2)--(e, e) and (u’, u)-,(e’, e’2), it follows by (13) and (124)
that

[lel--e’ .u-Mull
_N-(U’l +A-u)+A-(IIN-a(Ul +Aau2) A-u2 ull

(126)
--< [IN-IlI*IlUl- u +A-1 (U2-- U )ll -t- ]IA-I II’llu2
ollul- u + IIA111(1 + p)llu.- ull.
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Similarly, by (13)and (124),
-1ez-e =u_-u +Al(M-lul-Muu)

uz-u +Al{N-X(Ul+A-lu_)-A;lu2-N-l(u +A-u)+A-Xu.}
=A{N-I(ul +Auz)-N-l(u +Au)}.

Hence, by (121),

Ilu2- ull A IIN-IUl ul +A (U2-- U
(127)

Thus, due to (126), (127), the F.S. [A, A] is Lipschitz continuous in both inputs.
The same argument applies to [A, A]; hence, our claim (i) holds.
Finally, let u, uaB, and let (u,u)(e,ea) for [A,A], and (u,u)

(e, e) for [A, A]. Denote w u+Au; then
--1 --1(128) IlA 1N-Iw I[A llp (llu 111 + u A, Ilu=ll) IIA 1110(1 + uA1

i.e., AIN-w nllallo(a+ul)r. Thus, we have by (13), (124) and (117),

]le eli[ IIMS uz MS
=[[(N-l-g-X)wll
llg-l(g-g)g-lwll

(129)
[[N-1(m2A1-AzAx)N-a wll
I[N-a(z-A2)A 1N-lwll
IIN-111a2lla xll" IIN-111*llwll

Ilwll (11u111 + u 1, lu211).
Hence, (119) is confirmed.

Moreover, by (13)and (129),

lie= o -x o- ezll IIA A u1Mu Ul u
(130) [[A 1[[

-1

Hence, (120) holds and the proof is complete.
Remark 6. A similar comment like Remark 5 applies to Theorem 11. Note also

that if the assumptionsaN 0,aN 0 are dropped, the corresponding claim follows
from Theorem 9.

Example 2. Let A, A be the same operators as in Example 1. Moreover, assume
that there exists a constant n x n matrix F with

such that

(131)

for all :

ao inf :rF:_-<O
R
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FIG. 3

A typical example of such b and F in one dimension is given in Fig. 3.
Define the operator A2 on H by

(132) (A2x)(t)= Fx(t), >=O.

We are going to show that if (70) and the inequality

(133) d + k + (a2- a )(lDl +
hold, then the F.S.’s [A 1, A2] and [A 1, A2] are normal, Lipschitz continuous in both
inputs and we have

lle ell--< ; *llu[[ / *(d / k)-l[[u211,
(134)

lie2- e2i[ <= h *(Iol + tc)(llUlll + (d + k)-alluzll)
whenever (Ul, u2)---> (el, e2) for [A1, A2] and (Ul, u2)--> (el, e2) for [A1, A2], where

(135) h*=a([Dl+)3[d+k+a(IDl+r)2]-a[d+k+ao([Dl+)2]-1.

Indeed, it is easy to see that /XOa2= ao--<0, and that I[(mz-mz)xll<=allxl[ for all
x e H by virtue of (131). Moreover, using the facts established in Example 1 and (13 3),
we confirm that /XA1 + (tZA2-- a)llA 1112 > 0, Hence, all assumptions of Theorem 11 are
met with any r > 0, and consequently, (119) and (120) hold. Introducing our bounds for
[IAII, ,,, etc. into (119) and (120), we get readily (134) and (135).
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ON THE STOCHASTIC REALIZATION PROBLEM*

ANDERS LINDQUIST, AND GIORGIO PICCI*

Abstract. Given a mean square continuous stochastic vector process y with stationary increments and a
rational spectral density such that (oo) is finite and nonsingular, consider the problem of finding all
minimal (wide sense) Markov representations (stochastic realizations) of y. All such realizations are
characterized and classified with respect to deterministic as well as probabilistic properties. It is shown that
only certain realizations (internal stochastic realizations) can be determined from the given output process y.
All others (external stochastic realizations)require that the probability space be extended with an exogeneous
random component. A complete characterization of the sets of internal and external stochastic realizations is
provided. It is shown that the state process of any internal stochastic realization can be expressed in terms of
two steady-state Kalman-Bucy filters, one evolving forward in time over the infinite past and one backward
over the infinite future. An algorithm is presented which generates families Of external realizations defined on
the same probability space and totally ordered with respect to state covariances.

1. Introduction. One of the most common models of random phenomena in
control theory is provided by the linear stochastic system

(1.1a) dx Ax dx +B dw,

(1.1b) dz Cx dt +D dw,

where A, B, C and D are constant matrices of dimensions n n, n k, m x n and rn k
respectively, and w is a k-dimensional mean-square continuous stochastic process with
zero mean, stationary orthogonal increments, and w(0)= 0. Here we shall assume that
w is defined on the whole real line R, that is

(1.2) E{w(t)} 0 for all s R, E{w(t)w(s)’} {Itl + Isl- It- sl}I
[35; p. 51], where E{ } denotes mathematical expectation and prime (’)transposition.
(All vectors without prime are column vectors.) For later reference, let //’k denote the
class of all such orthogonal increment processes, the index referring to the dimension;
more generally we shall say that the process is of class /4/’. Moreover, we assume that A is
a stability matrix, i.e. all the eigenvalues of A are situated in the left complex half-plane;
we shall write Re {A (A)} < 0 for short. This assumption will insure that (1.1a) has the
unique solution

(1.3) A(t-’)Bx(t) e dw(r)

on the real line, where the integral is defined in quadratic mean. This is an n-
dimensional vector process. If, in addition, we assume that z(0)= 0, the m-dimensional
process z can be determined uniquely by integrating (1.1b). We shall call x the state
process, w the inputprocess and z the outputprocess. Clearly the state process x is (wide
sense) stationary, i.e. the state covariance matrix

(1.4) P: E{x(t)x(t)’}
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does not depend on t, and it satisfies the Lyapunov equation

(1.5) AP+ PA’ +BB’ O.

(See e.g. [35].) The output process z has stationary increments.
Each w /’k has a unique spectral representation

(1.6) w(t)
e 1

d(to)
ito

[12; p. 205], where dff is an orthogonal stochastic measure such that
E{d(to)d(to)?}=Idto. (Here denotes the complex conjugation and trans-
position.) Then (1.3) may be written

(1.7a) x(t)= ei’t(itoI-A)-lB d(to).

(Indeed, making the substitution (sI-A)-1 (1/s)[! + A(sI-A)-I], (1.7a) is seen to
satisfy (1.1a.) Inserting (1.7a) into (1.1b) and integrating yields

(1.7b) z(t)= I_ ei’-1
W(ito)d(w)

where

W(s)=C(sI-A)-IB+D.
We shall call W the transfer function of (1.1). Relation (1.7b) is a spectral represen-
tation of z; d(to):=W(ito)d(to) being an orthogonal stochastic measure such that

(1.9) E{d(to) d(to))} O(ito) dto,

where is the spectral density given by

(1.10) (s) W(s) W(-s)’.

This is an m m-matrix of rational functions such that (i) each element of is analytic
on the imaginary axis, (ii) is parahermitian, i.e. O(-s)= O(s)’, (iii) O(ito) is nonne-
gative definite Hermitian for all real to, and (iv) (oo)<. Such a is called a spectral
function [3], [4].

In this paper we consider the following inverse problem. Let {y (t); R} be a given
mean-square continuous and purely nondeterministic m-dimensional stochastic
process with zero mean, stationary increments and y(0)= 0. Then there is a spectral
representation

(1 11) y(t)=
e -1

d(o)

[12; p. 205], where d is an orthogonal stochastic measure such that [9]

(1.12) E{df(to) d33(to)’f} (iw) dto.

Here is an m m-matrix of real rational functions satisfying conditions (i)--(iv) above.
Setting R := (oo), we also assume that (v) R -1 exists and that (vi) O(ito) is positive
definite for all real to. The problem is to find representations (1.1) such that the output
process z is equivalent to the given process y in some sense to be specified below. Such a
representation will be called a stochastic realization.

More precisely, the system (1.1) will be called a wide sense stochastic realization of
y if z has the same spectral density as y and a proper stochastic realization if, for each



STOCHASTIC REALIZATION 367

6 (-co, co), z(t) y(t), a.s. (In the sequel we shall leave out the "a.s.", hence regarding
such equivalent processes as equal.) Clearly each proper stochastic realization is also a
wide sense stochastic realization, but the converse is not true.

The stochastic realization problem is related to the spectral factorization problem:
Given a rational spectral function , find all matrices W(s) of real rational functions
with all its poles in Re (s)< 0 and satisfying (1.10). Such a function will be called a stable
spectral factor. Let 3{.} denote McMillan degree [8]. Then 6{W} -> 1/23{}; if there is
equality we shall say that W is minimal. We have seen that the transfer function (1.8) of
any wide sense stochastic realization of y is a stable spectral factor of the spectral
density of y. Conversely any such spectral factor W is the transfer function of an
equivalence class of wide sense stochastic realizations. In fact, for any orthogonal
stochastic measure dr such that E{dk(to) dk(to)?} Idto, the process

(1 13) z(/)= fo eia,t_ 1
W(ito) dye(to)

has the same spectral density as y. Since W is a real rational matrix function analytic in
Re (s)0, there is a quadruplet [A, B, C, D] of matrices such that (1.8) holds [8], with
A a stability matrix. Now let x be defined by (1.7a) and w by (1.6). Then w is of class /4/’
and (x, z) satisfy (1.1) as asserted. Note that [A,B, C, D] defines one wide sense
stochastic realization for each w l’k. Since these realizations are equivalent up to
second-order properties of z, in the sequel we shall say that [A, B, C, D] is a wide sense
stochastic realization, thereby referring to the whole equivalence class. To avoid
trivialities we shall assume that the representation (1.8) is chosen so that the dimension
of the matrix A equals 6(W), i.e. we shall only consider quadruplets [A, B, C, D] for
which (A, B) is controllable and (A, C) is observable [8]. We shall call a stochastic
realization minimal if it corresponds to a minimal spectral factor. Hence, the minimal
stochastic realizations are precisely those representations (1.1) which have a state
process of smallest possible dimension, i.e. n 1/26(). In this paper we shall restrict our
attention to such realizations, the basic problem being to find all of them.

Determining all wide sense minimal stochastic realizations [A, B, C, D] is a
deterministic problem which has been studied extensively by, among others, B. D. O.
Anderson [5], Faurre [11] and J. C. Willems [32], the first of whom has named it the
inverse problem of covariance generation. To facilitate its solution we note that the
spectral density of y can be written

(1.14) (s)= Z(s)+ Z(-s)’,

where Z is positive real and rational, and 8(Z)= n [3], [4], [11], [32]. Let

(1.15) Z(s)= H(sI-F)-IG + 1/2R
be a minimal realization [8] of Z, i.e. F, G and H are constant matrices of dimensions
n n, n m and rn n respectively. Hence F is a stability matrix, (F, G) is controllable
and (H, F) is observable [8]. There are computational procedures for determining
(F, G, H, R) from [8], [13], [31], [38], so in the sequel we shall assume that such a
quadruplet is given.

It can be shown [5] that all wide sense minimal stochastic realizations are given by

(1.16) [A,B, C, D] [TFT-’, T(B,,B2)S, HT-’, (R 1/2, 0)S]

A real rational function Z without poles on the imaginary axis is said to be positive real if it has no poles
in Re [s]>0 and Z(ito)+ Z(-ito)’ is nonnegative definite Hermitian for all real to.



368 ANDERS LINDQUIST AND GIORGIO PICCI

where the nonsingular matrix T and the orthogonal matrix S are arbitrary, R 1/2 is the
symmetric square-root of R, and (B1, BE)are two matrices, n m and n p respectively
(p is arbitrary), such that (P, B1, BE) satisfy the conditions

(1.17a) FP+PF’ + BaB’ +B2B =0

(1.17b) PH’ +BaR 1/2 G,

(1.17c) P is a symmetric, positive definite n n-matrix.

Conversely, any [A, B, C, D] constructed in this fashion is a wide sense minimal
realization. It is no restriction to set T--I and S I in (1.16), i.e. to consider only
realizations of the form

(1.18a) dx Fx dt + B1 du + B2 dv,

(1.18b) dz Hx dt+ R /2 du

where w () W,,+p. In fact, all other stochastic realizations can be obtained from
(1.18) by multiplying (1.18a) by an arbitrary T and transforming w by an orthogonal
transformation. Consequently we shall be working in a fixed coordinate system, thereby
identifying each transfer function (spectral factor) W with one quadruplet
[F, B, H, (R /2, 0)]. Hence the wide sense problem is reduced to determining B
(B1, B2).

The main topic of this paper is the characterization of all proper minimal stochastic
realizations. This is a probabilistic problem. In addition to the input-output map of (1.1)
we need to determine the input process w, which is no longer arbitrary; hence we shall
be looking for quintuplets [A, B, C, D, w]. For an arbitrary representation (1.1), let
(gl, , P) be a probability space on which both y and w are defined, and define H(y) and
H(w) to be the closed linear hulls in L2(, 5, P) of {yi(t); 6 (-, az), 1, 2,. , m}
and {wi(t); 6 (-, ), i= 1, 2,..., k} respectively. Since y is given, H(y) is fixed,
whereas H(w) varies with different choices of representation (1.1). For a proper
stochastic realization we will always have H(y)cH(w). We shall say that
[A, B, C, D, w] is an internal stochastic realization if H(y)= H(w) and an external
stochastic realization if H(y) H(w), adding the attribute minimal as appropriate.
Hence the internal realizations are precisely those proper stochastic realizations which
can be constructed in terms of the given process y, whereas the external realizations
require extending our probabilistic setting with an exogeneous noise generator
unrelated to y. Various aspects of the proper stochastic realization problem have been
studied by Akaike [1], [2], Picci [23], [24] and Rozanov [26], but here we shall give a
complete characterization of all such realizations. (In [21] the internal realizations are
constructed from’basic principles without first assuming that they are defined by models
of type (1.1).) After submitting this paper we have learned about a series of as yet
unpublished papers by Ruckebusch [27]-[29] containing discrete-time counterparts of
some of the results presented here; these papers provide an alternative approach to the
problem.

The outline of the paper goes as follows. Section 2 is devoted to preliminaries and
definitions. In 3 we show that to each proper stochastic realization there is a
representation (1.1) with Re {A (A)} > 0 and z y, the dynamic relations of which
evolve backward in time. These representations, which are an important tool in our
subsequent analysis, are called proper backward stochastic realizations. In 4 and 5 all
internal stochastic realizations are characterized, and it is shown that these are precisely
the proper stochastic realizations for which BE 0. Each internal state process can be
expressed in terms of two steady-state Kalman-Bucy estimates, one filter evolving in
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the forward direction from time =-c and the other in the backward direction from
o. Sections 6 and 7 are devoted to external stochastic realizations. First, in 6, we

construct a system of differential equations in B1 and B2 which generates families of
wide sense stochastic realizations, totally ordered with respect to state covariances. In
7 this result is interpreted in terms of proper stochastic realizations and a complete

characterization of all such realizations is provided.
This paper extends the results reported (without proofs) in our short note [20].

2. Preliminaries and definitions. Let the function A" R"" R"" be given by

(2.1) A(P)=FP+PF’+(G-PH’)R-I(G-PH’)’,

and define the set ={P[P’ P; A(Ja)-_< 0} of symmetric n x n-matrices, where Q _>- 0
(Q >0) means that Q is nonnegative (positive) definite. Also introduce the subset
o {PIA(P) 0}.

In the following theorem we collect some facts from Anderson [5], Faurre 11] and
Willems [32].

THEOREM 2.1. The set is closed, bounded and convex, and there are two elements
P, and P* in o such that

(2.2) P,<-P<-P* forallP.
Moreover, is the set ofall solutions Pof (1.17), ando is the set of all such solutions for
which BE O.

Each P can be interpreted as the covariance matrix (1.4)of the corresponding
stochastic realization (1.18). Consequently, there is a minimum-variance (P,)and a
maximum-variance (P*) wide sense stochastic realization, and for these realizations we
have B2 0.

For each P , define the feedback matrix

(2.3) F=F-(G-PH’)R-IH,
the significance of which will be made clear below. Let the feedback matrices cor-
responding to P, and P* be denoted F, and F* respectively. It can be shown that
Re{A(F.)}<0 and Re {A (F*)} > 0 [32, p. 260], [11, p. 53]. Consequently, for each
matrix N, the Lyapunov equation

(2.4) FM+MF, +H’R-1H+N 0

has a unique solution M.(N), which is positive definite whenever N is nonnegative
definite. In fact, since (F, H) is controllable, so is (F, H). (See e.g. [36].) LikewiSe

(2.5) -F*’M MF* +H’R-1H +N 0

has a unique positive definite solution M*(N) for each N_->0. Furthermore, define

+ {P ]P>P,} and

_
{P [P< P*}. Since (ito) > 0 for all real to, P, < P*

[32, p. 360], and consequently / and

_
are nonempty.

THEOREM 2.2. Let II and II be the unique solutions of the n n-matrix differential
equations

(2.6) fl(t) A(II(t)); II(0) 0

and

(2.7) 1-I(t) A(rI(t)); II(0) 0

respectively, where A is given by (2.1) and A by

(2.8) 7k(P)=F’P+PF+(It’-PG)R-I(H’-PG)’.
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Then II(t)- P. and fi(t) (p.)-i as t- oo. Moreover, the matrix P P, + [M.(N)]-1
belongs to + if and only ifN >- O. Likewise, P P* [M*(N)]-1 belongs to

_
if and

only ifN >-_ O. Finally, P* P, [M.(0)]-1 [M*(0)]-1.
Various versions of this theorem can be found in [7] and 11]. It provides us with a

procedure to determine all elements in + CI _: First compute P. and P*. Then
varying N over the nonnegative cone will generate the other elements in / CI _. The
corresponding wide sense stochastic realizations [F, B, H, (R 1/2, 0)] can then be
obtained by determining B (B1, B2) from

(2.9a) BI (G PH’)R -1/2,

(2.9b) BEB -A(P),

which is merely (1.17) reformulated.
In 6 another method for generating wide sense stochastic realizations is presen-

ted, which is formulated directly in terms of B, the unknown quantity in
IF, B, H’, (R 1/_, 0)]. Hence the intermediate step of determining P will be eliminated.
Define to be the set of all B (B, B2) given by (2.9) as P ranges over . Let 0,
and

_
be defined analogously in terms of 0, / and _. The set 0 consists of all

B with B2 0 (Theorem 2.1). In particular, let B. and B* be the unique elements in
0 corresponding to P. and P* respectively.

All stochastic processes in this paper will have finite second order moments. Given
a k-dimensional vector process r/ of this type, defined on some probability space
(, ,, P), and a subset I of (-oo, oo), letH(r/) be the closed linear hull in L2(,, o, P)of
the stochastic variables {r/i(t); tel, i= 1,2,..., k}. (We write H,(r/) if the set !
contains only the point t.) If s is ax/-dimensional stochastic vector such that i H(r/),
i= 1,2,..., l, we shall misuse notations slightly by writing sOpHs(r/). For
L2(’, ’, e), let/{srIH(r/)} be the projection of sr onto H(r/), i.e. the wide sense
conditional mean in the terminology of Doob 10]. (We shall sometimes write
instead of/{srlH,(r/)}.) For simplicity let H(r/), H- (r/) and H,+ (r/) denote
Ht-o,o(*l) and Htt.oo(r/) respectively. Moreover, set rh0-) r/(t + -)- r/(t), and define
H-(dr/) and H,+ (dr/) to be respectively H (rh) and H (rh). Note that if r/(0)= 0
(which is often the case with the processes studied in this paper), we have Ho (dr/)=
H(n).

As mentioned in 1, any mean-square continuous stochastic vector process
{(t); R} with stationary increments and /(0)= 0 has a rpresntation of the form

(2 10) rt(t)= I e’’t- 1
d(to)

12; p. 205], where d is an orthogonal stochastic measure, called the stochastic spectral
measure of r/. If, in addition, r/ is purely nondeterministic, it has an absolutely
continuous spectral distribution [9], i.e.

(2.11) E{d(o) d(o)’} S(ito) do

where S is the spectraldensity of /. If E{r/(t)} 0for all t and S I (identity), r/is said to
be of class V. The spectral decomposition (2.10) defines an isometric correspondence
between H(r/) and L2(R, S(ito)do) under which /(t) corresponds to (e i’‘- 1)/ko;
hence to any real random variable s H(r/) there corresponds an (essentially) unique
g L2(R, S(ito) dto) such that

g(o) d(o).
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In fact, the system of functions {(e io’- 1)/ito; R} is complete in L2(R, S(ito) do)[ 12;
p. 204]. Hence we have the following lemma which we shall need below.

LEMMA 2.3. Let and ’1 be mean-square continuous and purely nondeterministic
stochastic vector processes, defined on the whole real line R, with (jointly) stationary
increments and such that (t)H(q) ]’or all R. Let S(ito) be the spectral density
of q, and assume that (0)= O. Then there is a matrix-valued function K such that
((e i’’- 1)/ito). K(iw)6Lz(R,S(iw) dto) for all R and such that

(2.12) :(t) I_ e’’-1K(io) d
If, in addition, and *1 are both of class

(2.13) K(s)K(-s)’=I..

The last statement follows from d K(ito) d and the fact that both sc and r/have
identity spectral densities.

3. Forward and backward stochastic realizations. Let {x(t); t R} be an n-dimen-
sional wide sense Markov process, i.e.

(3.1) J{x(s)ln-[ (x)} {x(s)lx(t)} for s -> t,

or equivalently

(3.2) i{x(s)ln (x)} {x(s)lx(t)} for s _-< t.

In addition, assume that x is purely nondeterministic and (wide sense) stationary. It is
well-known 11 that such a process can be described as the solution of a system of linear
stochastic differential equations of the type

(3.3) dx Ax dt +B dw,

where A and B are constant matrices, Re {A(A)}< 0, and w is a vector process of class
such that2 H+t (dw)+/-H- (x) for all R. [In fact, A being a stability matrix implies

that (3.3) has the solution (1.3), and consequently H-(x)H-(dw)_LH+(dw).]
Moreover, the covariance matrix P:=E{x(t)x(t)’} satisfies (1.5). The model (3.3) is
clearly unsymmetric with respect to time, x(t) being orthogonal to future increments of
w, but not to past ones. Hence we shall call (3.3) the forward representation of x.

We shall now show that x has a backward representation also, i.e. a model (3.3) with
Re{A(A)}>0 and H-(dw)+/-H(x)for all tR. To this end first observe that the
forward representation (3.3)can be integrated between and s to yield

(3.4) x(s)= eA(S-t)x(t)+ eA(S-’)B dw(r),

where the two terms are orthogonal if and only if s => t; in this case it can be seen that
(3.4) is precisely the orthogonal decomposition

(3.5) x(s)= #,{x(s)ln-; (x)}+[x(s)-{x(s)lH? (x)}].
We shall use a symmetric argument to determine the backward representation. More
precisely, for s -< t we shall derive a backward version of (3.4) from the decomposition

(3.6) x(s)= l,{x(s)lH (x)}+[x(s)-l.{x(s)lH (x)}].

2 "Ha +/- HE" means "Ha and HE are orthogonal".
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In view of the Markov property (4.2) and the standard projection formula 11 the first
term in (3.6)can be written

{x(s)lH+t (x)} E{x(s)x(t)’}E{x(t)x(t)’}-ix(t)
(3.7)

P eA’(t-s)P-ix(t) e-PA’P-(s-t)x(t),
where we have used (3.4) to evaluate E{x(s)x(t)’}. From (3.7) it is clear that

(3.8) (t) ePA’P-ltx(t)
is a wide sense backward martingale with respect to the family {Ht+ (x)}, i.e.

(3.9) /{:(s)ln,+ (x)} :(t) for s -< t,

and using (3.3)we obtain

dsc eeA’P-I’[(AP + PA’)p-lx dt +B dw],

which, because of (1.5), may be written

(3.10) dsc ePa’P-tB(dw B’e-lx dt).

LEMMA 3.1. Let {x(t); R} be the solution on (-c, o) o[ (3.3), and let P be the
covariance matrix of x. Then the vector process ff, defined by

(3.11) dff=dw-B’P-lxdt; if(0)= 0,

belongs to class /T, and H- (dff is orthogonal to H? (x) for all R.
Proof. Inserting (1.6) and (1.7a) for w and x in (3.11) yields

(3.12) O(t) | T(ko) d(o).

where

(3.13) T(s)= I-B’p-I(sI-A)-IB.
Consequently O is a zero-mean, mean-square continuous vector process with sta-
tionary increments and spectral density T(s)T(-s)’ and such that O(0) 0. Then, to see
that O is of class 4/’, it just remains to show that

(3.14) T(s)T(-s)’=L

To this end first note that

T(s)T(-s)’= I-B’p-I(sI-A)-IB-N(s)P-’B,(3.15)

where

(3.16a)

(3.16b)

N(s)= T(s)B’(-sI-A’)-B’(-sI-A’)--B’p-(sI-A)-BB’(-sI-A’)-.
In view of (1.5)we may write

BB’=(st-A)P+P(-s-A’)

which inserted into (3.16b) yields

(3.17) N(s) -n’P-(st- A)-IP.
Now (3.15) and (3.17) together yield (3.14). To show that H- (d)+/-H (x), take
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ll -< t2 -< t3 and form

(3.18) E{[ff,(t)- ff,(t2)lx(t3)’}
ito

e-it3N(ito) dw.

Here we have used (3.12), (1.7a) and (3.16a) to obtain (3.18). But (e -i’’ -e-i’a)/iw is
the Fourier transform of the indicator function Xt,, t of the interval (a,/3) and, in view of
(3.17), N(iw)is the Fourier transform of-B’P-1 atpxto.oo" Hence Parseval’s Theorem
yields

E([ g,(tl)- ,(t2)]x(t3)’} B’P-1 X(tl-t3,t2-t3)(t)X(o,oo)(t) eAt dtP,

which is zero whenever tl, t._<-t3. [i

Consequently, in view of (3.7)-(3.11), (3.6)can be written

(3.19)
X(S) e-PA’P-I(s-t)x(t)+ e -PA’P-s [(s)-- sc:(t)]

e-PA’P-l(s-t)x(t)+ e-PA’P-I(s-z)B d (r),

which is the backward counterpart of (3.4). Since Re {A(-PA’p-1)} >0 and H- (dff)_L
Ht+ (x) for all R,

(3.20) dx -PA’p-lx dt + B d,

obtained by differentiating (3.19), is a backward representation of x. In [22], [30] it was
shown that, for arbitrary w and ff of class W, the solutions on (-o, c) of (3.3) and
(3.20) have the same second-order properties. Here we have demonstrated that, for the
particular choice (3.11) of , these systems actually represent the same wide sense
Markov process. We record this observation in the following theorem.

THEOREM 3.2. Let {x(t); R} be a vector-valued, wide sense stationary, purely
nondeterministic, wide sense Markov process with covariance matrix P. Then x has a
forward representation (3.3) with Re {A (A)} < 0 andH (dw)_L H-/ (x) for all R, and
a corresponding backward representation (3.20) with H- (d) _1_H (x) for all R. The
processes x, w and are related as in (3.11).

In 1 we only considered stochastic realizations for which Re {A (A)} < 0, i.e. with
the state process x written in the forward form. From what has been said above, it is
clear that we will get an isomorphic theory by reversing time. In particular, let us
consider representations of the type

(3.21 a) d$ A dt +B d,,

(3.21 b) dE CY dt +D d,
where Re {A (A])} >0 and H-/(dw)_l.H (x) for all t6 R. We shall call (3.21) a proper or
a wide sense backward stochastic realization of y, depending on whether the solution
of (3.21)on (-, o) equals y or has the same spectral density as y. Equation (3.2 la) has
the unique solution

(3.22) 2(/)= eA(t-)J dl(’t’)

on (-c, c), and by the procedure used in 1 we obtain

(3.23) z(t)= |
e
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where

(3.24) ff’(s) (sI- fi,)-lB + ;.
If (3.21) is a backward stochastic realization of y, we must have

(3.25) W(s)W(-s)’= (s),

i.e. W is a strictly unstable spectralfactor of . Conversely, each such spectral factor W
is the transfer function of an equivalence class of wide sense backward stochastic
realizations; to see this proceed as in 1. If W is minimal, we shall say that the
realization (3.21) is minimal; only such representations will be considered in
the sequel.

Consider the problem of determining all strictly unstable minimal spectral factors
(3.24) of . Since W(-s)W(s)’ (s)’, this problem is equivalent to finding all stable
minimal factors W(-s)of (s)’. Given the representation (1.14)--(1.15), we have

(3.26) (s)’= Z(s)+ Z(-s)’,

where Z is the positive real matrix function Z’, i.e.

(3.27) (s) G’(sI F’)-IH + 1/2R.
Consequently we have reduced the problem to the one considered in 1. In fact, all
stable factors

(3.28) ff’(-s) (?(sI + fi)-’(-/)+/

of (s)’ are given by

(3.29) [-fi,-/, ,/]--[TF’T-1, T(-JI,-B2)S, G’T-1, (R 1/2, 0)S]
where T is any nonsingular n n-matrix, S is any orthogonal matrix of appropriate
dimension and (B1, BE) satisfy

(3.30a) F’P +PF /B1B +BEB O,

(3.30b) PG JIR1/2 H’,

(3.30c) P is a symmetric, positive definite n n-matrix.

This the dual spectral factorization problem considered by Anderson [6] and Faurre
11 ]. As in the forward setting it is no restriction to take T I and S =/, i.e. to consider
backward stochastic realizations of the form [-F’, (/1,/), G’, (R 1/2, 0)] only; then/5
in (3.30) is the state covariance matrix.

Let , be given by (2.8)and define ={P=P’I(P)<-_O} and 0
{P IA(P)= 0}. By Theorem 2.1, the set is closed, bounded and convex, and there
are two elements/5, and/5, in 0 such that/5, __< p _</5, for all P . Moreover, is
the set of all solutions P of (3.30), and o is the set of all such solutions for which BE 0.
Let be the set of all solutions B (B_, BE) Of (3.30a)-(3.30b) as P varies over , and
let/, and/* be the elements in B corresponding to/5, and/5, respectively. As
expressed by the following lemma (which is essentially the same as one found
in [11]) there is a one-one correspondence between and as well as between

and .
LEMMA 3.3. The set of matrices (P, B1, BE) given by

(3.31a) /5 p-,
(3.3 lb) (/1,/2) P-(B, BE)
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is a solution of (3.30) if and only if (P, B1, B2) is a solution of (1.17). In particular,
p-, (p,)-l,/5, (p,)-l,/, (P*)-IB* and * (P,)-B,.

Proof. Pre- and postmultiplying (1.17a) by p-1 and premultiplying (1.17b) by p-I,
it is seen that P is a solution of (1.17) if and only if (3.31 a) is a solution of (3.30) with
(B, B2) given by (3.31b). The rest of the statement then follows trivially from
(3.31). [-l

Lemma 3.3 defines a bijective mapping between the sets @ and @. This raises the
question whether to each proper minimal stochastic realization with transfer function W
there is a unique proper backward minimal stochastic realization whose transfer
function is the dual spectral factor W, and vice versa. In general this is not true, for a
spectral factor may correspond to many proper minimal stochastic realizations
(Theorem 7.1). However, we shall see that if, in addition, we require that the two
realizations have the same state space, i.e. Ht()= Ht(x), for all t R, there is such a
one-one correspondence under mild conditions on B, and that the input processes are
related as in Lemma 3.1. Of course, taking (3.31) and (3.11) as the starting point, the
families of forward and backward proper minimal stochastic realizations are seen to be
bijectively related regardless of any condition on B.

THEOREM 3.4. Let (F, G, H, R) be defined as in 1. To each proper minimal
stochastic realization of y of the form
(3.32a)

(3.32b)

dx Fx dt + B1 du + B2 dr,

dy H’x dt + R 1/2 du,

with state covariance matrix P, them is one and, if B2 has linearly independent columns,
only one proper backward minimal stochastic realization of the form
(3.33a) d -F’Y dt +B da +2 dO,

(3.33b) dy G’ dt + R 1/2 dt,

with state covariance P, such that (3.31) holds andHt() Ht(x)for all R. Conversely,
to each realization (3.33) there is one and, if B2 has linearly independent columns, only
one realization (3.32) such that (3.31) holds andHt(x) Ht() for all R. The stochastic
processes in the two realizations are related in the following way

(3.34) .(t)=P-lx(t),
(3.35a) dr7 du Bp-lx dt; (0) O,

(3.35b) dO dv Bp-lx dt; O(O) O.

The relations (3.31), (3.34) and (3.35) define a bi]ective mapping between the families
(3.32) and (3.33) offorward and backward stochastic realizations.

Proof. The backward representation (3.20) corresponding to (3.32a) is

(3.36a) dx -PF’P-ax dt + B1 da + B2 dO,

where, according to Theorem 3.2, ti and 0 are given by (3.35). Then (3.32b)and (3.35a)
together yield

dy (HP+ R 1/2B )p-ix dt + R 1/2 d,

which, in view of (1.17b), is the same as

(3.36b) dy G’P-lx dt + R 1/2 dti.

Now let be defined by (3.34). Then Hi(Y) H(x) for all t R and has the covariance
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matrix (3.31 a). Moreover, (3.34)applied to (3.36)yields (3.33) with B given by (3.31 b).
Secondly, consider an arbitrary proper backward minimal realization

(3.37a) d; -F’; dt + B1 d +B2 d,

(3.37b) dy G’ dt +R 1/2 d

with B given by (3.3 lb) and Ht() Hi(x) for all R. Due to the last condition, there is
a nonsingular matrix S such that x(t)= S;(t); since x and are stationary, S is constant.
Set T= p-1S. Then in view of (3.34), .(t) T;(t). Hence (3.37) can be written

(3.38a)

(3.38b)

dY TF’T- dt +T dfi + TBz d,
dy G’T-, dt + R /2 d.

Since . and have the same covariance matrix P, we must have TPT’ P. Hence, in
view of (3.38), (3.30) holds also with (P,F’,B, G’) exchanged for
(TPT’, TF’T-1, T;, G’T-1); in particular, (3.30b) yields T(fiG’- ;IR1/2) H’, which
together with the original (3.30b) gives us TH’ H’. We also have TF’T-1 F’. To see
this, form /{;(s)lHt+ (;)} for all s-< by using first (3.33) and then (3.38); we get
e-F’(s-t)(t) and e-rV’r-’-t)Y,(t) respectively. Hence (F’)iH’=T(F’)iT-aH’=
T(F’)H for i= 1, 2,..-, n, and since (H, F) is observable we must have T= L
Therefore . Then comparing (3.33b) and (3.37b), we see that a a, and hence
(3.33a) and (3.37a) yield 5 iS, for the columns of B are linearly independent. Hence
(3.33) and (3.37) are identical. Finally, the converse statement is obtained in the same
way starting out with the backward realization (3.33).

4. The minimum- and maximum-variance realizations. The proper stochastic
realizations corresponding to P. and P*, the minimum and maximum elements of the
set , will play an important role in what follows. Therefore we shall begin by providing
an interpretation of these.

Consider an arbitrary proper minimal stochastic realization of the form (3.32) and
with state covariance P. It is not hard to see that such a realization exists; we postpone
the proof of this to 7 (Theorem 7.1). It is well-known [35] that, for each fixed T R, the
estimate

(4.1) ;(t; T)= {x(t)lHtr.,](dy)} (t >-- T)

is generated by the Kalman-Bucy filter
(4.2a) d; F; dt + K(t- T) dvr; /(T; T)= 0 (T-< < co),

where {vr(t); 6 [T, co)} is the transient innovation process, defined by3

(4.2b) dvr R-a/2(dy -Hi dt); vr(max {0, T})= 0.

The matrix function K, called the Kalman-Bucy gain, can be determined from the
matrix Riccati equation

(4.3a) " FZ+ZF’- KK’ +BB’; (0) P,

(4.3b) K H’R-x/2 +B.

Our choice of initial conditions in (4.2b) and (4.5b), which are otherwise arbitrary, is to insure that
ua(0) 0 (ffa(0)= 0) for negative (positive) T.
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In the same manner, given an arbitrary proper backward minimal stochastic
realization of the form (3.33), it can be seen that

(4.4) b(t, T)= ,{(t)lHt.r(dy)} (t <= T)
is given by the backward Kalman-Bucy filter
(4.5a) db=-F’bdt+K(T-t)dJT; b(T, T)=0 (-oo < t-< T),

where {Jr(t); (-o0, T]}, defined by

(4.5b) dJr R-1/2(dy G’b dt); vT-(min {0, T})= 0,

is the transient backward innovation process, introduced in [17]. Here K is given by
the dual matrix Riccati equation

(4.6a) X F’E +YF- KK’+ BB’; ,(0) P,

(4.6b) / ,GR-1/2-B1.
Note that both vr and Jr are normalized orthogonal increment processes 17], so

(4.2) and (4.5) can be regarded as a pair of "nonstationary stochastic realizations" of y.
We shall now demonstrate that the steady-state versions of these representations are
indeed proper stochastic realizations in the sense of this paper.

THEOREM 4.1. There is one and only one proper stochastic realization (3.32) with
state covariance matrix P,, namely

(4.7) dx, Fx, dt + B, du,, dy Hx, dt + R 1/2 du,,

and it is the steady-state Kalman-Bucy filter in the sense that, ]’or each t R, x,(t), u,(t)
and B, are the limits in mean square o]’ (t, T), vr(t) and K(t-T) respectively as
T-oo. The innovation process u, satisfies
(4.8) H- (du,) H[ (dy)

,for all R, and the projection of the state x(t) o]’ any stochastic realization (3.32) onto

H- (dy), being given by

(4.9) #{x(t)ln-; (dy)} x,(t),
is invariant with respect to the particular realization.

THEOREM 4.2. There is one and only one proper stochastic realization (3.32) with
state covariance P*, namely

(4.10) dx*=Fx* dr+B* du*, dy=Hx* dt+R 1/2 du*,

and it is the forward counterpart (in the sense of Theorem 3.4) of the backward stochastic
realization

(4.11) d, -F’$, dt +;, da,, dy G’$, dt + R 1/2 d,

where ,(t), a,(t) and , are the limits in mean square of b(t; T), Jr(t) and ,(T-t)
respectively as T--> oo. Then x* and u* are given by

(4.12) x*(t) P*,(t),
(4.13) du* da, -’ *-B,P x, dt; u*(0)= 0

and B, by Lemma 3.3. The backward innovation process t, has the property

(4.14) H (dti.) H[ (dy)
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]’or all t R, and

(4.15) /{(t)lH+ (dy)} ,(t)
]’or the state process of any backward stochastic realization (3.33).

Before proving these theorems a few remarks are in order:
(i) It is well-known that

(4.16) E{[x(t)- (t; T)][x(t)- :(t; T)]’} Y.,(t- T),

where Y_. is given by (4.3); the stationarity of x insures that (4.16) depends on the
difference t- T only. Likewise, set E{(t; T)(t; T)’} H(t- T). Then

(4.17) Y_,(t) P n(t).

Inserting (4.17) into (4.3) and applying (1.17) it is seen that II satisfies (2.6) and that

(4.18) K G IIH’)R /.

Hence K(t)B, as oo by Theorem 2.2. The corresponding dual results are analo-
gous. Consequently one could base the proofs of Theorems 4.1 and 4.2 on Theorem 2.2,
but instead we shall offer a self-contained proof which is more direct. Note that (4.18)
together with (2.6), and its dual counterparts, imply that the filters (4.2) and (4.5) are in
fact invariant with respect to the particular realization which provides the process x(Y).

(ii) The choice of (3.33) as the standard form for the backward stochastic realiza-
tions rather than (3.36) is motivated by the dual spectral factorization problem.
Relation (4.15) provides an additional justification for this choice. As in (4.9), the left
member of (4.15) is invariant with respect to variations in the state process 2. On the
other hand, were we to project the state process x of (3.36) onto the future space
Ht+ (dy), we would have

(4.19) {x(t)lH (dy)} P(e*)-lx*(t),
which does not enjoy the same invariance properties. Indeed the natural setting for the
process x is the forward, and not the backward, realization problem.

Proof of Theorem 4.1. For each fixed tR the process {so(z); -=>-t}, where
so(z) X(t;-z), is a uniformly integrable wide sense martingale [10], and therefore
(t; T) tends to a limit x,(t) in mean square as T-oo. Moreover,

(4.20) :(t, T)= .{x(t)lntr,o(dy)}-, J.{x(t)l/T<_tntr,o(dy)}
in mean square [10], and hence (4.9) holds (a.s. for each t), for /._tHEr.,l(dy)=

(dy). Then ur tends to a limit process u,. Since uT- has normalized orthogonal
increments, the same must hold for u,; hence u, is of class/4/. In view of (4.20), II(t) and
K(t), as given by (4.17) and (4.18), tend to limits; let us call these IIoo and Koo
respectively. Consequently, x, and u, must satisfy

dx, Fx, dt + Koo du,, dy Hx, dt + R 1/2 du,,

which is a proper minimal stochastic realization of y with state covariance Iloo. Thus
Ho . But since (4.16) is nonnegative definite for all t R, (4.17) implies that P => Iloo,
and this holds for all P , for the realization (3.32) is arbitrary. (By Theorem 7.1 there
is a proper stochastic realization for each P e .) Therefore IIo P,, and consequently
Ko- B,. Given P,, the matrix B, is uniquely determined by (2.9a). Moreover, as we
shall see in 5, u, is uniquely determined as a causal function of y through relations
(5.10b) and (5.12). Hence there is only one proper stochastic realization (3.32) with
P P,, and moreover H- (du,)cH (dy). Since, in addition, H- (du,) H- (dy),
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(4.8) holds. Also, since x, is uniquely determined, the limit (4.20) is. independent of the
choice of state process x. 71

Proo] o[ Theorem 4.2. The statements concerning (4.11), (4.14) and (4.15)
follow along the same lines as in the proof of Theorem 4.1, just reversing time.
Then the statements concerning (4.10), (4.12) and (4.13) are a consequence of
Theorem 3.4. [:]

5. Internal stochastic realizations. Consider an arbitrary proper stochastic realiza-
tion (3.32) and its backward counterpart (3.33). The following lemma describes the
relationship between the two input processes w and ff and the output process y.

LEMMA 5.1. Let (w, ) be the pair of input processes defined above. Then the
following relations hold for all R.

(i) H- (dy) H- (dw) and H+t (dy)H (d),
(ii) H(y) H(w),
(iii) H- (d,)c H- (dw) andH(dw) H- (dff),
(iv) H(ff): H(w).
Proof. Relations (i) and (ii) are trivial consequences of (1.1b) and (1,.3) and (3.21b)

and (3.22), recalling that z y. To obtain (iii), insert first (1.3) and then ,f P-ix, as
given by (3.22), into (3.11). Then (iv)is proven by letting t-->0o in the first of relations
(iii) and t-->-0o in the second.

Since the input process w is of class /’, (i) implies that the future increments of w
are orthogonal to the past increments of y, i.e. H+, (dw)_L H- (dy) for all R. In the
same manner it can be seen that H- (dff,)_LH+t (dy) for all t. It follows from Theorem
5.5 below that the innovation process u, and the backward innovation process t, are
the only input processes to satisfy relations (i) with equality; they satisfy (4.8) and (4.14)
respectively. The only thing we can say about the future space of u* is that H+t (du*)c
H- (dy), which follows from Theorem 5.5. Hence we have again detected a certain lack
of symmetry between the minimum- and maximum-variance realizations.

We shall now consider those realizations for which the converse of relation (ii)
holds.

DEFINITIONS. The proper forward or backward stochastic realization
[A,B, C,D; w] of y is said to be internal if H(w)=H(y). If H(w)H(y), the
realization is said to be external.

For an internal stochastic realization, the input process w can be expressed in terms
of the output y. Therefore, if x is the state process, x(t) H(y) for all (-0o, 0o). In
view of Lemma 5.1 (iv), the backward counterpart of any internal (forward)realization
is also internal. Hence, in the sequel, we shall restrict our attention to forward
realizations, and only consider backward ones when there is an interplay between the
forward and backward settings. We now turn to the characterization of the set of
internal realizations.

THEOREM 5.2. A proper stochastic realization of y is internal if and only if it has a
square transfer function W, i.e. W(s) is m x m.

Proof. The proof consists of two parts. First we show that H(w) H(y) if and only if
W has a left inverse. Secondly we show that W has a left inverse if and only if it is m m.

(i) Assume that w(t)s H(y)for all t s R. Then there is a representation

e O,t_ 1
(5.1) w(t)= | K(ito) d(oa)

d-

satisfying the conditions of Lemma 2.3. Therefore, since the stochastic spectral measure
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is unique, dff K(ito) d. But

(5.2) d W(iw) db,

for y z satisfies (1.7b), and consequently

(5.3) d, K(iw)W(iw) dff.

Postmultiply (5.3) by dfff, take expectation, and note that E{dff dCvf} I do to see that

(5.4) K(s) W(s)= I

by analytic continuation. Hence W has a left inverse. Conversely, assume that W has a
left inverse K. Then (5.3) holds,,and, in view of (5.2), we have (5.1). Hence w(t) H(y)
for all R, and therefore H(w)= H(y) (Lemma 5.1 (ii)).

(ii) An rn k rational transfer matrix W(s) has a left inverse if and only if
p{ W} k, where p stands for rank, defined with respect to the field of rational functions
[34; p. 162, Thm. 5.5.3]. Therefore it remains to show that p{W}= k if and only if
k m. To this end, apply Sylvester’s inequality [34; p. 40] to (1.10) to obtain

p{ W(s)} + p{ W(-s)’}- k _-< p{q} _-< min [p{ W(s)}, p{ W(-s)’}],

which can be written

(5.5) 2p{ W}- k _-< rn -< p{ W},

for p{tP} m. Consequently, if p{ W}= k, we have k m. Conversely, if k m, (5.5)
implies that p{ W} k. [3

COROLLARY 5.3. A proper minimal stochastic realization in the standard form
(3.32) is internal if and only if B2 O.

Proof. The transfer function of (3.32) is

(5.6) W(s) H(sI- F)-I(B, B.)+ (R ’/e, 0),

which is square if and only if B2 0. [:]
Consequently the internal stochastic realizations in standard form are precisely the

representations of the type

(5.7a) dx Fx dt +B du,

(5.7b) dy Hx dt + R 1/2 du

among which we have the minimum-variance realization (4.7) and the maximum-
variance realization (4.10).

THEOREM 5.4. There is a one-one correspondence between the family of internal
realizations (5.7) and the set o of solutions of the algebraic Riccati equation A(P) 0.
The input process u of (5.7) is given by

(5.8) u(/)= fei,o,_ 1 w_l(io)) d)3,
J_

where W is the transfer function of (5.7).
Proof. Each stochastic realization (5.7) has a state covariance matrix P which

belongs to 0, since B2 0. (Theorem 2.1). Hence it remains to show that to each
P e 90 there is one and only one proper stochastic realization (5.7) and that u is given by
(5.8): To each P e 0 there is one and only one spectral’factor of the form (5.6), namely
the square factor

(5.9) W(s) n(sI F)-IB + R 1/2,
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for B is uniquely determined by (2.9a). Since R is nonsingular, (5.9) has an inverse
W-1. First define u by (5.8). Then d33 W(ioo)da, which transformed to the time
domain yields (5.7). Secondly, let u be the input process of a proper stochastic
realization with transfer function (5.9). Then d3 W(ioo) d, and hence u is given by
(5.8).

The internal realization (5.7) can be inverted in the time domain also by rewriting it
in the form

(5.10a)

(5.10b)

dx Fx dt + BR-1/2 dy,

du R-1/2(dy- Hx dt)

where, in view of (2.9a),

(5.11) F=F-BR-1/2H

is the feedback matrix (2.3). Once there is a solution of (5.10a), u is given by (5.10b).
For the two extreme realizations, corresponding to P, and P*, such solutions are
immediate, namely

(5.12) x,(t) er*(t-)B,R -1/2 dy(’r)

and

(5.13) x*(t) er*t-gB*R -1/2 dy(r)

respectively. In fact, all eigenvalues of F, (F*) have negative (positive) real parts. (See
2.) Then u, and u* can be determined from (5.10b).

Other internal stochastic realizations can now be handled by integrating stable
modes over the past and unstable over the future, provided that the matrix F has no
eigenvalues on the imaginary axis. However, since P, < P* [32, p. 260], no such
eigenvalues occur for 0-realizations [33, p. 630; Remark 19]. In fact the solution is
surprisingly simple.

THEOREM 5.5. Consider an internal stochastic realization (5.7). Let II/(II-) be the
projection operator onto the invariant subspace spanned by the eigenvectors corresponding
to eigenvalues of the feedback matrix (5.11) with positive (negative) real parts. Then

(5.14) x(t) II-x,(t) + H+x*(t),
where x, and x* are given by (5.12) and (5.13). The input process u is given by

du R-1/2[dy- HH-x,(t) dt-HH+x*(t) dt].

The proof of Theorem 5.5 is based on the following lemma.
LEMMA 5.6 (J. C. Willems). LetP o, and let H/ and H- be defined as in Theorem

5.5. Then II/ + H- I and

(5.16) P= H-P, + II+P*.

Moreover, with F, and F* defined as above,

(5.17) II-F,H- H-F, and H+F*II+ II+F*.
In view of the fact that P* P, > 0 and (H, F) is observable (see 1), this result is

an immediate consequence of Theorem 6 and Lemma 8 in [33].
Proof of Theorem 5.5. Let P be the state covariance matrix of the stochastic

realization (5.7). Hence P0 (Corollary 5.3). Since (II-)2= II- and H-H+=0, we
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have II-P H-P, from (5.16). Consequently, in view of (2.9a) and (5.11),

(5.18a) II-B H-B,,
(5.18b) II-F II-F, II-F,II-,
where in the last relation we have also used (5.17). Hence, premultiplying (5.10a) by H-
and using (5.18), it is seen that II-x(t) satisfies the differential equation

(5.19) d II-F,: dt + II-B,R -1/2 dy

on (-, o). But II-x,(t), too, satisfies (5.19)on (-o, ). To see this, use (5.17).
Therefore, since (5.19) has a unique solution on (-c, ), we must have II-x(t)=
II-x,(t) for all t R. In the ame way we show that II+x(t) H+x*(t). Hence, (5.14)
follows from II++H-- I (Lemma 5.6). Then insert (5.14) into (5.10b) to obtain
(5.15).

It follows from (5.12) and (5.13) that x,(t) H- (dy) and x*(t)H (dy) for each
R. Therefore, (5.14) decomposes x(t) H(y) into two components, one in H- (dy)

and one inH (dy). In view of (4.8) and (4.14), we can acquire symmetry between past
and future by using (4.12) to rewrite (5.14) in the form

x(t) H-x,(t) + II+P*$,(t).

Consequently, the state process of any internal stochastic realization can be expressed
in terms of the steady-state forward and backward Kalman-Bucy estimates, x, and ,,
and therefore it can be constructed from a linear combination of the filters (4.2) and
(4.5), by taking the limit in quadratic mean.

6. Families ot totally ordered stochastic realizations. Considering minimal sto-
chastic realizations in the standard form (3.32) leaves only the matrix B (B1, B2) and
the input process w () to be determined, the parameters (F, G, H, R) being given.
This section will be devoted to studying the set of feasible matrices B, defined in 2;
finding w will be the topic of 7.

It was shown in 4 (Theorem 4.1) that

(6.1) B,= lim K(t),
too

where K is the Kalman-Bucy gain function. This fact together with the following
theorem provide us with a means to determine B, directly without first having to obtain

TI-IEOREM 6.1 (Kailath-Lindquist). Let (K, (2) be the unique solution on [0, oo) of
the system of matrix differential equations
(6.2a) / -O0’H’R -1/2", K(0)= GR

(6.2b) O (F- KR-a/2H)O; O(O) OR-1/z.

Then K is the Kalman-Bucy gain function. The filter covariance function H, defined in
4 (Remark (i)), satisfies

(6.3) fl 00’; II(0) 0.

Note that, although different realizations (3.32) yield different Riccati equations
(4.3) [but the same filter (4.2)], the non-Riccati algorithm (6.2) is invariant over ,
depending only on the known quantities (F, G, H, R). If needed, P, can be determined
as the limit of II(t) as oo (Theorem 2.2), where H is generated by either (2.6) or (6.3).
The system (6.2)-(6.3) is precisely the algorithm derived in [17] by using the transient
backward innovation process (4.5b) and in [16] by factoring the matrix differential
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equation (4.3). A dual non-Riccati algorithm generating the backward Kalman-Bucy.
gain K and the backward filter covariance II can be derived analogously by using the
forward innovation (4.2b)or alternatively from (4.7) by applying the technique of [16];
formally it can be obtained by merely exchanging (F, G, H, R) for (F’, G’, H’, R) in
(6.2).

It can be seen that K(t) approaches B, from outside of . In fact, as one can see by
comparing (2.9a) and (4.18), K(t)is related to II(t) as B, to P,, and, in view of (6.3), H is
monotonely nondecreasing starting out with 0a at 0; hence H(t)=<P, for all t.
Here we shall show that there are equations similar to (6.2)whose trajectories, with the
proper initial conditions, lie entirely inside . These equations will consequently
generate families of wide sense stochastic realizations. Again the basic idea is to
eliminate the need of going via the auxilliary quantity P.

THEOREM 6.2. Let [F, Bo, H, (R 1/2, 0)] be an arbitrary wide sense minimal sto-
chastic realization of y in standard form, and let 0 --, B(0)= [BI(0), B2(0)] be the unique
solution on (-c, o) of the system of matrix differential equations

(6.4a) dB---21= BzBH’R-/2

dO

(6.4b) dB---2= (F- BR-a/-H)B2
dO

with initial condition B(O)= Bo. For each 0 (-, c), let P(O) be the unique solution of
the Lyapunov equation

(6.5) FP + PF’ + B(O)B(O)’= O.

Then, ]’or each 0 (-c, ), IF, B(O), H, (R 1/2, 0)] is a wide sense minimal stochastic
realization o]" y with state covariance matrix P(O). This family of realizations is totally
ordered in the sense that P(O2)<-P(O)
and ifBo YJ+, B(O)--) (B*, O) as 0 - -. The function 0 - P(O) satisfies the differential
equations (6.7) and

(6.6) d__P= -BzB,
dO

and also conditions (iii) and (iv) o]" Lemma 6.3 where here Po may be any point on the
trajectory {P(0); -c < 0 < }.

The proof of this theorem is based on the following lemma.
LEMMA 6.3. Let A be defined by (2.1). Then, for each Po , the matrix differential

equation

dP
(6.7) d- A(P(0)); P(0)= P0

has a unique solution on (-c, ), such that (i) P(O) for all 0(-, c), (ii)
P(O2)<-_P(OX) for 0102, (iii) if Po-, P(O)P. as 0-, and (iv) if Poe+,
P(O) --, P* as 0 --) -c.

Proof. First note that (6.7) can be replaced by the system

(6.8a) dP= U(O)A(Po)U(O)" P(0)= Po,
dO

(6.8b)
dU
d--- r(o)u(o); u(o)= I,
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where F(0) is the feedback matrix (2.3) corresponding to P(O). To see this, reformulate
(6.7) to read

dP
d-- (F- GR-1H)p+ P(F- OR-1H)’ +PH’R-HP+ GR-G,

and use the differentiation technique employed by Kailath in [15], i.e. observe that

d2P F(O)o+ dPdO2 (0)= A(Po),

and integrate to obtain (6.8).
Clearly the Riccati equation (6.7) has a unique solution locally in the neighborhood

of 0 0. In fact, at least for small 0, P(O)= Y(O)X(O)-I, where the n x n-matrix valued
functions X and Y satisfy a system of linear differential equations such that X(O)-1

exists for sufficiently small 0 [8, p. 156]. Since Poe , A(P0)-< 0, and hence, in view of
(6.8a), the condition

dP
(6.9)

dO

holds along this trajectory. Consequently, (6.7) implies A(P(0))-< 0, i.e. the trajectory is
contained in the bounded (Theorem 2.1)set . Hence the solution can be extended to
the whole real line, for P(O) will never leave . Since A is locally Lipschitz, this solution
is unique. This also proves (i), and (ii) is a consequence of (6.9).

To prove (iv) we use an argument similar to that in Willems [33, p. 631 ]. In view of
the fact that A(P,)=< 0, S(0):= P(O)-P, is the solution of

dS
d- F,S +SF+ SH’R-1HS; S(O) Po- P,.

Since S(0)> 0 (for Poe +)and dS/dO <=0 (by (6.9)), S(0)> 0 for 0 =<0. Consequently
S-1 exists on (-o, 0]. Let M, be defined as in Theorem 2.2, and define V := S
M,(0). It is easy to see that V satisfies

dV
d- -FV- VF,

on (-c, 0]. Since Re {A (-F,)} > 0, V(O)O as 0-, and hence S(O)[M,(O)]-l=
P*- P, (Theorem 2.2). Therefore P(O) P* as 0 -* -. This proves (iv). The proof of
(iii) is analogous; just exchange substar (,) by superstar (*) everywhere and (-c, 0] for
[0, c). (Now S(0) < 0 for 0 => 0.)

Hence, given any P0 in / f’)_, we may construct a trajectory -c extending
from P* through P0 to P, so that - is a totally ordered set of matrices P satisfying
(1.17). The only difference between (2.6)and (6.7)is the initial conditions (0 ); the
differential equation is the same. Its critical points are precisely the elements of 0, one
of which (P,) is locally stable in the forward direction and another of which (P*) is stable
in the backward direction (cf. [33]). Note, however, that (6.2) and (6.4) are not exactly
the same, although they are derived from the same differential equation. A dual
(backward) version of (6.1) can be obtained by factoring (2.7), with II(0) , as above.

Proof of Theorem 6.2. Let P0 be the state covafiance of the initial realization
[F, Bo, H, (R 1/2, 0)], and let {P(0); -c < 0 < c} be the trajectory through Po defined by
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Lemma 6.3. Define B(O)as

(6.10a) B(O) [G- P(O)H’]R -/2,
(6.10b) B2(0) U(O)(Bo)2,
where U is given by (6.8b). Then (6.6) and (6.4a) follow from (6.8a) (for A(Po)
-(Bo)2(Bo)) and (6.4b) is a consequence of (6.8b) and (6.10). A local Lipschitz
condition insures uniqueness. In view of (6.6)and (6.7), we have Bz(O)Bz(O)’=
-A(P(0)), which together with (6.10a)yields (6.5). Since Re {A (F)}< 0 and (F, B(O))is
controllable (for (F, Bo) is), (6.5) has a unique positive definite, symmetric solution [8].
This fact together with (6.5) and.(6.10a) insures that (P(O), B(O)) satisfies (1.17), and
consequently [F, B(O), H, (R /2, 0)] is a wide sense stochastic realization with state
covariance P(O). By Lemma 6.2, P(O)satisfies conditions (ii)-(iv), and obviously the last
two conditions hold for any Po on the trajectory {P(0);-oo < 0 < oo}. Finally, the fact
that B(O) tends to B,(B*) as 0 oo(0 -oo) under the stated conditions, follows from
conditions (iii)and (iv)and (6.10a). Since dP/dO->O, (6.6)implies that B2(0)-->0 as

In the next section we shall interpret Theorem 6.2 in terms of proper stochastic
realizations.

7. External stochastic realizations. The following theorem gives a complete
characterization of all proper minimal stochastic realizations.

THEOREM 7.1. Let

(7.1 a) dx Fx dt + B du +B2 dr,

(7.1 b) dy Hx dt + R I/ du

be a proper minimal stochastic realization of y, and let Wl(s) and W2(s) be defined by

(7.2a) Wl(s) n(sI F)-IB1 +R 1/2,

(7.2b) Wz(s) H(sI- F)-IBz.
Then

(7.3) W(s)= [Wl(s), We(s)]
is a minimal stable spectralfactor of the spectral density dp ofy, and the inputprocesses are
given by

(7.4a) v(t)= I; eit-1 W2(_ioo),dp_l(ito)d(to)+z(t

(7.4b) u(t)= I_ eit-- 1
Wl(_ito),dp_l(ito)d(to)

1
j_

e
W (iw) W2(iw) d(w)

where z is a mean-square con6nuous, purely nondeterministic stochastic vector process
with stationary increments, zero mean, spectral density

(7.5) (s): I- W2(-s)’-(s)W2(s),
and z(0)= 0. Moreover, (iw)> 0 for all real o and H(z)&H(y); we shall call z the
exogeneous input component. Conversely, for each minimal stable spectral factor (7.3)
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of , there is a minimal proper stochastic realization (7.1) with u and v given by (7.4), z
being an arbitrary stochastic vector process with all the properties prescribed above.

Proof. It was shown in 1 that, with (7.1) given, (7.3) is a minimal stable spectral
factor of ; this result is restated here for completeness only. To see that u and v .are
given by (7.4), first decompose v as

(7.6) v(/) {v(t)lH(y)}+ z(t).

Then H(z)_L H(y). Given the properties of v and y described in 1, it is easy to see that
the first term in this decomposition is a mean-square continuous, purely nondeter-
ministic vector process with stationary increments, so the same must hold for z; in
addition, z has zero mean and z(0)= 0. Hence, since

(7.7) d(w) W,(iro) da,(w),

where dr/, is the stochastic spectral measure of the innovation process u, and W, is the
transfer function of (4.7), and in view of Lemma 2.3, (7.6)can be written

o(t) 1Z(iw) dt/,(ro) + d,(w),

for some Z to be determined. Let q denote the spectral density of the process z. Clearly
there is a representation

(7.9) d(w) T(iw) dl(w),

where d/2 is the stochastic spectral measure of a process of classs such that
H()&H(y), and T(s) is a spectral factor of (s). en (7.8) can be written

(7.10a) d Z(iw) d, + T(iw) d.
erefore, inserting (7.7) and (7.10a) into

(7.11) d W(iw) da + Wz(iw) d,

which is (7.1) rewritten in terms of spectral measures, and solving for dfi, we obtain

(7.lOb)

where

(7.12)

and

dfi X(ioo) dfi. + Y(ioo)T(io) dl2,

X(s)= w (s)W,(s)- w;’ (s)W(s)Z(s)

(7.13a) Y(s)= W-1 (s) W2(s),

for the matrix R being nonsingular insures that WI has an inverse. Since both () and (*)
are vector processes of class W, the coefficient matrix function of (7.10), i.e.

IX(s) r(s)T(s)]K(s)=
I_Z(s) T(s) J’

satisfies relation (2.13)of Lemma 2.3, i.e.

(7.14a) X(s)X(-s)’ + Y(s)T(s)T(-s)’Y(-s)’= I,

(7.14b) X(s)Z(-s)’ + Y(s)T(s)T(-s)’= O,

(7.14c) Z(s)Z(-s)’ + T(s)T(-s)’= I.
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Then inserting (7.12) into (7.14b) and applying (7.14c), we have

(7.13b) Z(s)= W2(-s)’W (-s)’,

which inserted into (7.12)yields

(7.13c) X(s)= Wa(-s)’W (-s)’.

To obtain this, we have used the fact that

(7.15) ,I,(s)= W(s)W(-s)’ + w.(s) W(-s)’.
Now (7.10) together with (7.7) and (7.13) yield (7.4), and (7.13b) and (7.14c) give us
(7.5), for T(s)T(-s)’= (s). By using the matrix inversion lemma [14, p. 124], we can
see that

(7.16) ,I,(s) [1 + w.(-s)’W-’ (-s)W-i’ (s)W(s)l-.
Hence (ito)> 0 for all real w.

Secondly, assume that a minimal stable spectral factor (7.3)is given; from it we can
determine a quadruplet [F, (B1, B2), H, (R 1:., 0)]. Let z be an arbitrary mean-square
continuous process with stationary increments, zero mean, and spectral density (7.5),
and such that z(0)=0 and H(z)lH(y). Since z has a rational spectral density, it is
purely nondeterministic [9]. Define u and v by (7.4). Then the corresponding stochastic
spectral measures dt and dr3 are given by (7.10)with X, Y, Z and T defined by (7.13)
and (7.9). Straightforward calculations using (7.15) show that X, Y, Z and T satisfy
(7.14), and consequently (o") is a process of class 7#’. Finally, with the help of (7.15), we
can see that dt and d3 thus defined satisfy (7.11) (the z-components cancel), and
therefore (7.1) is a proper stochastic realization of y. [1

Theorem 7.1 provides us with an alternative proof of the "only if" part of Corollary
5.3. (Theorem 5.5 gives an alternative proof of the "if" part.) In fact, since (ito)> 0 for
all real to, the exogeneous input component z is never identically zero. Therefore,
unless B2 0, the output of (7.1) contains a component orthogonal to H(y):

We are now in a position to interpret Theorem 6.2 in terms of proper minimal
stochastic realizations. Consider an arbitrary such realization

(7.17) dx=Fxdt+(Bo)l duo+(Bo)2dvo, dy=Hxdt+R 1/2 duo
with exogeneous input component Zo having spectral density o(S). Let To(s) be a
square spectral factor of o(S) and define

(7.18) /x(t) I e’"- 1
ito

Ta’ (ito) do (to).

(Since o(ito)> 0 for all to, To(s) has an inverse.) Then,/z e /4/’k, where k is the number
of columns of (B0)2. Let be the sigma-algebra generated by {y (t), / (t); e R} and
form the probability space (f, , P) on which (7.17) is defined. Then (7.17) gives rise to
a family of proper minimal stochastic realizations

(7.19) dxo=Fxodt+Bl(O)duo+B2(O)dvo, dy=Hxodt+R 1/2 duo,

which are defined on the same probability space (lI, , P) and which are totally ordered
in the sense that the state covariance function P(0) E{xo(t)Xo(t)’} is monotonely
nonincreasing in 0. In fact, for each 0e [-oo, oo], define W(s; O) and W2(s; 0) by
inserting [BI(0), B2(0)], generated by (6.4), into (7.2), and let

(7 20) Zo(t) I et- 1
ito

To(ioo) dl(to),
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where To(s) is a square spectral factor of

(7.21) W0(s)= I- W2(-s; O)’dP-l(s)W2(s; 0).

(We may for example take all To to be minimum phase.) Then define uo and vo by
inserting W(s; 0), W2(s; 0) and zo into (7.4). Hence xo(t), uo(t) and vo(t) belong to
H(y,/z) for all and all 0. If B0 -, the family (7.19) will contain the steady-state
Kalman-Bucy filter (4.7); if B0e /, it will contain the maximum-variance model
(4.10). Finally, if B0 30, (7.19) will only contain one realization, (7.17) itself.
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STABILITY FOR A MULTI-RATE SAMPLED-DATA SYSTEM*

DAVID P. STANFORD’

Abstract. A sampled-data system with sampling interval lengths selected from a finite set is considered.
Stabilizability of the system via feedbacks associated with sampling interval lengths is studied, and conditions
for stabilizability involving "pre-contractiveness", "contractiveness", and "positive definiteness" of a finite
set of matrices are given. Included in these results is a generalization of a theorem by P. Stein stating that for a
real square matrix H, lim,_. H" 0 if and only if there is a symmetric matrix Q such that Q-HrQH is
positive definite. Finally, some results concerning a choice of feedbacks which will produce stability are
presented.

Introduction. In this paper we study stabilizability of a sampled-data system in
which the sampling interval length varies over a fixed finite set of positive numbers. The
discretization of this system, as described in 1, leads to a finite set of square matrices
with which we hope, by successive multiplication, to be able to steer each vector to the
origin. The matrices arrived at are a function of the selection of certain feedback
matrices.

Section 2 determines a necessary and sufficient condition ("pre-contractiveness")
for stabilizability of the system, and a sufficient condition ("contractiveness") for
stabilizability. These conditions are stated in terms of arbitrary vector norms, and the
norm-dependence of the conditions is discussed.

In 3, contractiveness of a set of matrices is related to a notion of positive
definiteness for a set of symmetric matrices, and a geometric description of such sets is
discussed.

In 4, we examine the choice of feedback matrices used to produce the system to
be stabilized. "Best possible" choices are given for making the system contractive
relative to a norm (xrQx)1/2 with Q positive definite. Finally, contractibility of the
system relative to such a norm is related to positive definiteness of a set of symmetric
matrices.

1. Formulation of the problem. We wish to stabilize a linear control system of the
form

(1) 2=Ax +Bu

where x is a real n-dimensional "state" vector, u is a real m-dimensional "control"
vector, A is a real constant n n matrix, and B a real constant n m matrix. It is well
known that on the interval [tx, t], a continuous control u will steer the state X(tl) z to
the state

T

VABu(2) x(t)= eraz + e (t v) dr,

where T is the interval length t-h.
Using this, we define the multi-rate sampled-data system as follows. A finite set of

positive numbers {$1, S,. , SN} is selected. These are the sampling interval lengths.
At a sampling instant the state x is used to determine the next sampling interval length
S and a constant control u to be applied in (1) to produce the state X/l at the next
sampling instant, S time units later.

Received by the editors May 24, 1978. This research was supported by NASA-Langley Research
Center under Grant NAS1-11958.

" Department of Mathematics and Computer Science, College of William and Mary, Williamsburg,
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Using (2),

(3)
Si

Xk+ eS’Axk q- e vA dv BUk.

The constant value of Uk is to be determined by a feedback matrix depending only on
the sampling interval length $i selected. Thus for each i, 1 <-i <-N, we must define an
m n real constant matrix F, and then when interval length Si is chosen, we take

Then (3) becomes,

(4)

For 1 -<_ -<_ N, we define

Uk FiXk"

Xk+ (esA + e vA dv B Xk.

(5) Ci e S’A, and Di evA dv B,

so that (4)can be written:

(6) Xk+l (Ci + DiFi)Xk.

Since our goal is to stabilize the solution to (1), we may view the problem as follows:
We begin by taking the N interval lengths $1, $2, , Sr as given. From the matrices A
and B we determine Ci and Di, 1-<i<-N, using (5). We then wish to select
F1, F2,’’’, FN so that the system (6) is stable in the sense that for any initial Xo, a
sequence {ik} k=o exists with 1 <- ik <- N so that

Xk+ (Cik + DikFik )Xk
defines a sequence converging to 0.

DEFINITION 1. A set {H1, H,..., Hr} of n n matrices is convergent provided
that, for each x in R ’, there is a sequence {p(X)k}=l such that 1 <=p(X)k <-N and the
sequence

converges to 0. We assert this convergence by writing

lim ( 13I Ho(x,,)x 0.
k k

Clearly the system (6) is stable for a selection F, F2, ,F of feedback matrices
if and only if the set {H1, H2," , Hv} is convergent, where Hi Ci + DiF, 1 -< _-< N.

2. Contractive and pre-contractive sets. In this section we relate convergence of a
set of matrices to other properties of the set which we now introduce.

It is well known that if N 1, the set {H1} is convergent if and only if the spectral
radius of H1 is less than one; i.e., H1 satisfies IIHxll<llxll for all nonzero x R
(Euclidean norm). Consider, then, the following example"

Example 1.

0
H2= -.75 1.25

H3= .5 H4= 75 1.25
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It can be routinely verified that each Hi has spectral radius 2. But {Ha, HE, H3, H4} is
convergent, as seen from the following facts:

1. Ha contracts each nonzero vector in the closed cone Ca, co-axial with the x-axis,
having vertex angle at the origin, and measuring 45. HE, H3, and Ha act similarly on
vectors in cones CE, C3, and C4 which are counter-clockwise rotations of Ca through
45, 90, and 135 respectively.

2. There is a number/, 0 </3 < 1, such that if x R 2, x 0, then one of the vectors
Hax, H2x, H3x, Hnx satisfies:

Thus the set {Ha, HE, H3, H4} is (exponentially)convergent, and for some sequence
from {Ha, HE, H3, Ha}

IIx ll<  llx011,

The example suggests the following definition"
DEFINITION 2. Let I1" I1 be any norm on R". The set {Hi, n2,""", HN} Of n x n

matrices is contractive relative to II’llv provided that, if x e R", x 0, there is an i,
1 <- _-< N, such that Ilnxllo < Ilx[l.

The fact that contractiveness of a set of matrices relative to some norm implies
(exponential) convergence will appear as a corollary to Theorem 1.

Consider another example with N 2.
Example 2.

o] 1.
0 2’

Ha is the Hi of Example 1, while H2 effects clockwise rotation through 30. The set
{Ha, HE} is not contractive relative to the Euclidean norm, for neither matrix contracts
(0, 1). The set is convergent, however, for if x is in the cone Ca described in the earlier
example, we may apply Ha to contract x by a factor of/3. If x is not in C1, then the
application of HE no more than 11 times results in a vector of the same length as x and
lying in Ca, and so a subsequent application of Ha contracts by a factor of/3, and
the set {H1, HE} is convergent. We are thus led to the following definition and
theorem:

DEFINITION 3. Let I1" IIv be any norm on R". The set {H1, H2,’’’, HN} of n x n
matrices is pre-contractive relative to II’ll provided that, if x R ", x 0, there is a finite
sequence {q(x)i}=l, 1 <=q(x)i <-N, such that

THEOREM 1. Let 1[’11o be any norm on R , and let K (H1, H2," , HN} be a set of
n x n matrices. Then K is pre-contractive relative to I1"11/ and only if K is convergent.

The proof of Theorem 1 depends on the following two lemmas, each of which can be
verified by standard arguments based on the compactness of the unit sphere in R".
These arguments are omitted here.

LEMMA 1.1. IfK is pre-contractive relative to I1"11o, then there is a positive integer M
such that, ifx R" andx O, there is a finite sequence {q(x)i}(=xl), 1 <- q(x)i <- N, such that

I-I <llxll and n(x)<-_M.
i=n(x)
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LEMMA 1.2. IlK is contractive relative to
and x O, there is an i, 1 <= <-_ N, such that

Proofof Theorem 1. It is immediate that convergence of K implies pre-contractive-
ness of K relative to

Assume K pre-contractive relative to II,llo. Let M be the positive integer given in
Lemma 1.1. Then the set

i=k

is contractive relative to I1" I1. Choose < 1 lor/ using Lemma 1.2. Then we have, for
each x in R ’, a sequence {q(x)}_-( with

1[( 1!I Hq(x),)x[I--</3llx[Io and n(x)<-M.
i=n(x)

To show K convergent, select x R" and define

p (x)i q (x)i for 1 _-< _-< n (x).

Let yo x and Yl (1-I=,,(yo) Ho(yo),)Yo.
Define

p(x)i q(Yl)i-,(yo), n(yo)+ 1 <_- <- n(yo)+ n (yl).

Let y2 ffI]= (y l) Hq(yl),)yl, and continue in this way to form the sequence {p(X)k}=l.
It is clear from this construction that if k n(yo)+ n(yl)+. + n(y) for some l, then

(7) I1( II
i=k

To conclude the proof, we must bound the left side of (7) for

n (yo)+ n(yl)+’’’ + n(yt) < k < n (yo)+ n(yl)+... + n(yl)+ n (yt+l).

Suppose k satisfies this inequality. Let s n(yo)+ n(y)+. + n(y), and let k -s.
Since n (yl+ l) <-- M, we have <M. Let I1"110 be the operator norm on n n matrices
generated by I1"11o, and let

B max {[[na]]o, liB2110,""",

Then

As k eo, we have oe so K is convergent and Theorem 1 is proved.
COROLLARY 1.1. Pre-contractiveness is norm-independent.
Proof. The proof is immediate.
COROLLARY 1.2. IfK is contractive relative to II’llv, then K is exponentially convergent

relative to I1"11, in the sense that, for some number F and some , 0 < fl < 1, we have, for
each xRn, a sequence {p(x)i}i so that

for each k.
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Proof. The M in the proof of Theorem 1 can be taken as 1 when K is contractive
relative to II’ll, so each n(yi) is 1 and (7) holds, with k, for each k. Thus K is
exponentially convergent with F 1.

We conclude this section with two examples which answer the questions: (a) Is
contractiveness norm-dependent? (b) Does pre-contractiveness imply contractiveness
relative to some norm?

(a) Contractiveness, unlike pre-contractiveness, is norm-dependent, as is seen by
the following example.

Example 3. Let

Q= [1/20011 and ,Ix[[o (xTQx)1/2= (1/2X-[-X)1/2

[01] and K ={HI}, it can easily be seenfor allxR2.IfHl-0 0
that K is contractive

relative to I1" I10, but not contractive relative to the Euclidean norm on R 2.
(b) There is a set of matrices which is pre-contractive, but not contractive relative to

any norm.
To justify this statement we need the following theorem, whose proof is straight-

forward and is omitted.
THEOREM 2. Suppose {O1, O2," an} is a basis ]:or R", K {H1, H2," Hn} is a

set of n n matrixes, and h 1, z, , h, are numbers such that

hjai, j,
O, ij.

Suppose ]I’ll is a norm on R and K is contractive relative to [[.[1. For x R, x
XlO -[- X202 "q"" -[- XnOl.n, let

Ilxll* Ix1[ [11[[ + Ix=lll=ll+""" + Ixl IIll.

Then 1. I1" II* is a norm on R"
2. I111" I111, 1 _<- j _-< n
3. Ilxll <--Ilxll*, x R .
4. K is contractive relative to

Geometrically, the unit sphere of II’ll* is the convex hull of vectors +/-(1/11,,11),
l<_i<_n.

Example 4. Let

Hi=
0

H2=
0

K is pre-contractive, since HH2 0. Suppose there is a norm I1"11 on R: relative to
which K is contractive. Let

Then Hla 3,Ha=4aa, and H2 Hc =0. Thus, by Theorem 4,

X

defines a norm on Ra agreeing with I1"11 for and a, and relative to which K is
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contractive. Thus, for any x > 0, either

which simplifies to"

either x <211a111 or x >
[[all"

Since this holds for all x>0, we must have 11zll/(211xll)> 311211/1111, which implies
1/2 > 3. This contradiction establishes that there is no norm on R2 relative to which K is
contractive.

3. A criterion for contractiveness---positive definite sets of matrices. In [2], P. Stein
proves the following theorem.

THEOREM. IfHis a real orcomplex square matrix, a necessary and sufficient condition
that lim,,_, H" 0 is that there exists a positive definite Hermitian matrix 0 for which
0-H*OH is positive definite. IfH is real, 0 may be taken real and symmetric.

Now lim,_,oo H" 0 if and only if {H} is a contractive set relative to some norm. In
Stein’s theorem, the statement that O-H*OH is positive definite implies that

x*(O-H*OH)x>O, or x*H*OHx<x*Ox, forx0.

This suggests the following criterion for contractiveness.
DEFINITION 4. If Q is a positive definite symmetric matrix, IIx[Io denotes the norm

(xOx)/.
DErINITIOrq 5. The set W {A1, Az,"’, AN} of symmetric n n matrices is a

positive definite set provided that, if x R", x # 0, then there is an i, 1 _-< -< N, such that
x rAix >0.

THEOREM 3. Let K {H1, H2,"’, HN} be a set of n n matrices, and let 0
be an n n positive definite symmetric matrix. Form the set W=
{0-HQH1, O-HfOHz, 0-HHN}. Then K is contractive relative to II,llo if
and only if W is a positive definite set.

eroof. Clearly IIHixl[o <llxllo if and only if xrHYOHix <xrOx; that is, xr(O
H.r,OHi)x > 0. The theorem follows.

We now present a geometric test for positive definiteness of a set of symmetric
matrices. For 0 -<_ p, 0 -<- m, and p + m <_- n, let

2
+

S(p,m)= yeR Yi > E
/=1 /=p+l

S(p, m) is a cone in R", in the sense that it is closed under multiplication by nonzero
scalars. Notice that if m 0, S(p, rn) is the complement in R" of an (n -p)-dimensional
subspace of R".

THEOREM 4. Suppose thatA is an n n symmetric matrix, and thatD PrAP, where
P is nonsingular and D is the unique matrix confugate to A having the canonical form

D =Diag{1, 1,..., 1,-1,-1,...,-1, O, 0,..., 0}.

IfD contains p l’s and rn
co-index ofA is m ), then

-l’s on its diagonal (that is the index ofA is p and the

{x R Ix TAx > O} P(S(p, m)),

where P(S(p, m)) denotes {PYlY 6 S(p, m)}.
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Proof. Let y p-1x. It is easily Checked that x TAx > 0 if and only if y TDy > 0, and
that this occurs if and only if y S(p, m); that is, x P(S(p, m)).

COROLLARY 4.1. If W {A 1, A2, , AN} is a set ofn n symmetric matrices and,
for 1 <- <- N, Di PfAiPi is the canonicalform OrAl, and if the index and co-index ofAi
are pi and mi respectively, then W is a positive definite set if and only if

N

[.J P(S(p,, m,)) R"-{0}.
i=1

An n n positive definite matrix has all eigenvalues positive (its index is n). A
generalization of this to positive definite sets is that a positive definite set of n n
symmetric matrices must have the property that the number of positive eigenvalues of
all the matrices in the set (counting multiplicities) must be greater than or equal to n.
This is the implication of Theorem 5, the proof of which uses Corollary 4.1 and the
following dimensional inequality:

LEMMA 5.1. If V1, V2, VN are subspaces ofR n, then

N

Vii> ( dim(V/))-(N-1)n.dim (1"= i=l

Proof. Let dg dim (Vl) and do dim = W/). For 1 <_- _<- N, let Ag be an
(n- di) n matrix having null-space V/. Let A be the block matrix

A1

A is (Ei=N (n di)) x n’, that is, A is (Nn -= di) x n. Clearly, for x R n, Ax 0 if and
only if Ax 0 for 1, 2,. , N, so do nullity(A). Now Nn i= di >-- rank (A)
n- do, so do--> E/N=I di- (N- 1)n, and this proves the lemma.

THEOREM 5. If W {A 1, A2," , AN} is a positive definite set ofsymmetric matrices
and the index ofAi is p for 1 <- <-N, then

N, pi>=n.
i=1

Proof. Let D PfAPi be the canonical form of Ag, and let mg be the co-index of A.
Corollary 4.1 gives

N

[.J Pg(S(p,, m,))= R" -{0}.
i=1

Thus /=1Pi(S(pi, mi)) {0}, where "c" denotes complement in R". Now for each i,
S(pi, mi) S(pi, 0), so Pi(S(pi, mi)) Pi(S(pi, 0)) and Pi(S(pi, 0)) c Pi(S(pi, m)).

Thus
N N

(8) Pi(S(pi, 0)) Pi(S(pi, mi)) {0}.
i=1 i=1

But S(pi, O) is a subspace of R" of dimension n-pi. Since Pi is nonsingular,
Pi(S(pi, 0)) Pi(S(pi, 0)) is a subspace of R" of dimension n --Pi. Thus, using (8) and
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Lemma 5.1,

0 dim Pi (S (Pi, 0)) >= (n pi (N 1)n n E pi,
i=1 i=1

so E--1 Pi>=n.

4. Selection ot teedback matrices. We consider in this section the following
problem" suppose that the matrices A and B for the system Ax +Bu have been
given, and that time-interval lengths $1, $2,"’, SN have been determined for a
corresponding multi-rate sampled-data system. Then the matrices Ci e s’A and D

’ eoA dv B are determined. How can feedback matrices F1, F2," , Fu be selected so
that the set

K =(Hi Ci+DiFli 1, 2,...,N}

is convergent? It would be useful to know when K can, in fact, be made contractive
relative to some norm, since this implies exponential convergence (Corollary 1.2).
Theorem 6 describes how the choice of the feedback matrix F can control distances
between the column space of Hi and any other given subspace of R". By choosing this
subspace to be {0}, we can make K contractive if that is possible.

We will employ the following notation: throughout this section O is an n n
symmetric positive definite matrix. For x in R

Ilxllo denotes the norm (xTOx)1/2.

if A is an n m matrix, Rowi(A) and Coli(A) denote the ith row and ith column of A,
NS(A) and CS(A) denote the nullspace and column space of A, and for y in R",
disto(y, A) denotes the distance in II’lIo from y to CS(A). A/

will denote the Moore-
Penrose pseudoinverse of A. Finally, if W is a subspace of

W+/- ={y eR"lyrOx =0 for all x e W}.

LEMMA 6.1. IfA is n m and W CS(A ), then

W+/- NS(ATO).
Proof. If y e W- then Rowi(AT)Oy Coli(A)TOy =0 for i= 1, 2,..., n. Thus

ATOy=O. Conversely, if yeNS(ArO), we have (Az)TOy=zTATOy=O for all
z e R", so y TOx X TOy 0 for all x e W.

LEMMA 6.2. IfA is n m, W CS(A), and z R ", then z zw + zw;O, where

Zw A(ATOA)+AT(Z is in W,

and

ZwO (I-A(ATOA)+ATO)z is in W+/-.

Proof. Since R"= W@ W there are (unique)re W and /3 e W+/- such that
z re +/3. Let v e R" such that re Av. Since

A TQ(z -Av)= A TQfl =0.

Thus the equation ATQAx ATQz has the solution x v, and so

u (JTOA)+ATOZ
is a solution of the same equation. This implies that z-AueNS(ATO) W+/-.



398 DAVID P. STANFORD

Clearly, Au W, so we have

z au + (z Au),

with Au=A(ATQA)+ATQz=zw in W and z-Au=(I-(A(ATQA)+ATQ)z)=
ZwlO in W1.

THEOREM 6. Suppose C is n x n and nonsingular, D is n x m, and V is n k. Let
L I- v(VTQV)+VrQ, E LD, andF -(ETQE)+ETOLC, and let G be any n m
matrix. Then, ]’or each x in R n,

disto((C +DF)x, V)<=disto((C +DG)x, V).

Proof. For any y in R an-d any n l matrix A, disto(y,A)= O-length of the
Q-orthogonal projection of y onto C$(A)+/-. By Lemma 6.2, then

disto(y, A)= IIY cs(a)-t]]O [I(I-A(ATQA)+AO)y IIo.
Thus disto((C + DG)x, V)= IIt(C / O)xllo. Let T GC-1, y Cx, and W C$(E).
Then L(C +DG)x L(I +DT)y [Ly]wo + [Ly]w + ETy. Since the first term is in
Wx and the sum of the second and third terms is in W, we obtain

disto((C + DG)x, V): [IL(C + OG)xl[ [l[ty]vo[l+ II[tr]v + ETylI.

The first of these terms is independent of G, and the second becomes 0 when G F, as
can be easily checked using Lemma 6.2. Thus

disto((C + DG)x, V) is minimized by G F.

By choosing V to be the n 1 matrix of zeros, we obtain the following corollary
concerning feedback selection in the multi-rate sampled-data system. Notice that in
that system, each Ci e s’A is nonsingular.

COROLLARY 6.1. IfC is n n and nonsingular, andD is n m for 1, 2, , N,
and if there exist feedback matrices F1, F:, , FN such that the set

K {Hg G /DF 1,2,...,N}

is contractive relative to I1"1[o, then the choice

Fi

makes K contractive relative to II’llo. In addition, letting O L we obtain
COROLLARY 6.2. In the notation ofCorollary 6.1, ifany choice offeedbacks makesK

contractive relative to the Euclidean norm, then

Fi -D?Cg does so.

We conclude this section with a theorem combining Corollary 6.1 with Theorem 3 to
relate "contractibility" of a set of Ci’s and Di’s to positive definiteness of a set of
symmetric matrices. Recall that, since O is symmetric positive definite, O uTu for
some nonsingular matrix U.

LEMMA 7.1. IfC is n n, D is n m, F -(DTQD)+DTQC, andH C +DF, then

Q-HTQH uTu--(uc)T[I--(UD)(UD)+](UC).
Proof. Let J=Q-HTQH=Q-(C+DF)TQ(C+DF). Then J=Q-[(I-D.

(DrQD)+DTQ)C]TQ[(I-D(DTQD)+DTQ)C]. Algebraic manipulation produces
J Q CTQC+ CTQD(DTQD)+DTQC + CTQD(DTQD)+DrQC CQD
{(DTQD)+DTQD(DTQD)+}DTQC. Since the quantity in {.} reduces to (DTQD)+, we
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obtain

(9) J O + Cr[QD(DrOD)+D 7"0 O]C.

Now

(10) QD(DTQD)+DTQ uT(UD)[(UD)T(UD)]+(UD)7,U.
The properties of the Moore-Penrose pseudo-inverse (see [1]) give

((UD)T)/(UD)T(UD)=UD, and (UD)T(UD)(UD)/=(UD)7,.

Thus UD)7, )+ UD 7" UD) UD)T UD) UD)7, UD UD)+ UD UD)T UD)
(UD)T. By [1, p. 18], this is suffici.ent for

[(UD)T(UD)]+ (UD)+((UD)T)+.
Then by (10),

QD(DQD)+DTQ U (UD)(UD)+((UD)T)+(UD)rU
Ur[(UD)(UD)+][(UD)(UD)/]rU= U[(UD)(UD)+]U.

Thus by (9),

J UTU + cuT[(UD)(UD)+]UC-CUrUC
UTU-(UC)7,[I-(UD)(UD)+](UC),

which was to be shown.
THEOREM 7. Suppose Ci is n n nonsingular and Di is n m for 1, 2, , N. Let

Ji UrU-(UCi)r[I-(UD)(UDi)+](UCi), i= 1, 2,..., N,

and let W {J1, J2,""", Jv}. Then these statements are equivalent:
(a) There exist m n matrices F1, F2, , FN such that

K {Hi Ci +DFIi 1, 2,..., N}

is contractive relative to
(b) W is a positive definite set.

Proof. Suppose (a) holds. By Corollary 6.1, K is contractive relative to I1"11o for the
choice F -(DSQD,)+DSQCi, 1, 2,..., N. By Lemma 7.1, Q-HSQHg Ji, and
so by Theorem 3, W is a positive definite set. Clearly, if (b) is assumed true, the choice
F =-(DfQD)+D[QC produces a set K contractive relative to

The "cone of contraction" P(S(p, m)) described in Theorem 4 is centered about the
subspace of R" containing (x l, x2,’", xp, 0,..., 0). It is to be hoped that, when
contractiveness cannot be achieved, Theorem 6 will be useful in achieving pre-
contractiveness by enabling us to aim the column space of Hi into a cone of contrac-
tiveness for/-/.

Acknowledgment. The author expresses his thanks to Dr. Alper Caglayan and to
Dr. Douglas Price of NASA-Langley for bringing the problem to his attention and for
many helpful discussions.
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Abstract. In this paper, the uniform asymptotic stability of nonautonomous ordinary differential
equations with Lyapunov functions whose derivatives are negative semidefinite is studied. A general
framework for constructing and analyzing such systems is established, and applications to adaptive schemes
for identification and control are described. Specific rates of convergence and robustness estimates are also
given.

1. Introduction. In some recent papers on adaptive identification and control, the
following method of developing asymptotically stable linear nonautonomous systems
has been used. First, system elements which can be chosen at the discretion of the
controller are specified so that the overall system has a Lyapunov function with a
negative semidefinite derivative. Then asymptotic stability is implied by an "excited-
ness" property. A fundamental related mathematical idea is periodicity, and Lyapunov
theorems for the asymptotic stability of periodic systems are fundamental to a number
of these papers. (See P. M. Lion [15], Narendra and Kudva [22], and Narendra and
McBride [23].)

The purpose of this paper is to provide mathematical results that will allow the
same basic method of constructing asymptotically stable systems for nonlinear and
nonperiodic cases. Further, rate of convergence and robustness estimates are also
provided. The proofs given here are elementary and constructive, and hopefully this
will expedite the development of computer algorithms for the control applications.

Previous mathematical work relating most directly to the results in this paper is in
LaSalle [12], [13], Burton [4], Haddock [6], [7], [8], Morgan and Narendra [19], [20],
and Morgan [18]. The control theory inspiration comes from such papers as Lion [15];
Narendra and McBride [23], Yuan and Wonham [26], and Narendra and Kudva [22].
The recent papers by Artstein [2], Anderson [1], Kreisselmeier [11], and Nuyan and
Carroll [24] are also relevant. The material developed here logically follows Morgan
and Narendra [19] and [20], providing a unified and general framework in which the
results in those two papers can be developed.

In 2 necessary preliminary definitions are stated. Section 3 contains the main
results of the paper, the key result being Theorem 3. Sections 4 and 5 develop special
cases, while 6 is devoted to a discussion of generalizations and variations on the 3
material. An outline of the specific control theory ideas which motivated the previous
material is given in 7. The last section contains a technical result.

2. Definitions and a theorem. In this section a number of definitions and a theorem
are presented.

2.1. Notation and conventions.
DEFINITION 1 (Notation). (a) R denotes n-dimensional Euclidean space. R /

denotes the nonnegative real numbers.

* Received by the editors December 15, 1976, and in final revised form July 17, 1978.
f Division of Systems and Computer Services, Medical College of Georgia, Augusta, Georgia. Now at

Mathematics Department, General Motors Research Laboratories, Warren, Michigan 48090.
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(b) The open ball of radius e about 0 R" is denoted S. The closure of a subset S
of R" is denoted S. The annulus about 0 defined by e > e2 > 0 is AI.2 S1- S2. If C
is a closed subset of R ", then S(C)={xR"ld(x,C)<e} where d(x,C)=
inf {Ix y lly C}.

(c) K denotes the collection of all strictly increasing continuous functions k" R/
R/ with k(0)= 0. (See Hahn 19, p. 7].) KKo denotes the collection of all continuous
functions k" R/xR/R/ with k(q, 0)=0 for all tl and strictly increasing in the
second variable with tl fixed.

K’ and KK’o denote the collections of functions as above but with "strictly
increasing" replaced by "monotonically increasing".

(d) If x R 1, then Ix[ denotes the smallest integer n such that n > x. ([. is the
"greater integer" function.) For example, [3/2] 2 and [1] 2.

DEFINITION 2. The following notation and basic assumptions will be fixed from
now on. Let G be an open bounded subset of R" containing 0. Assume f: R / x G R"
is measurable in t, continuous in x, and f(t, 0) 0 for all R /. Consider the equation

(1) =f(t,x).

Assume that Go is an open subset of G containing 0 such that, if x(t) is a solution of (1)
with initial condition in Go, then x(t) is continuable to +oo. In other words, if X(to) Go
for some touR /, then x(t) G can be defined for all t> to.

DEFINITION 3. The smooth function V: R / x G R+ is a Lyapunov function for
(1) at 0 if

1. V(t, 0)= 0 for all R /,
2 given annulus A, there is a positive constant bo such that bo >- V(t, x) >=0 for all

(t, x) R + x (A f’) G).
3. 12(t, x) =< 0 where 12(t, x) (0 V/0t)(t, x) + (0 V/Ox)(t, x)f(t, x).
It is not assumed that V is positive definite. Also, note that if V is a Lyapunov

function for (1) at 0, it does not necessarily follow that 0 is uniformly stable. (See Hahn
19] or Hale 10] for definitions of (uniform) stability and (uniform) asymptotic stability.)
The abbreviation u.a.s, is used for uniform asymptotic stability.

If 0 is asymptotically stable and G’ G, then "G’ is in the basin" means that
solutions with initial conditions in G’ go to 0 as oo.

2.2. Rates of convergence and persistence.
DEFINITION 4. The "rate of convergence" of (1) across annulus A A1.2 is the

smallest positive number r such that, if x(t) is a solution and X(to) A, then x(t) S, for
all => to + r.

The rate of persistence of (1) in annulus A is the smallest positive number r such
that, if x(t) is a solution and x.(to) A, then there is a tl [to, to + r] such that x(q) = A.

In other words, if r is the rate of persistence of (1) in A, then no solution can remain
in A for r consecutive units of time. If 0 is uniformly stable, then the existence of finite
rates of persistence for annuli about 0 implies that 0 is u.a.s. Further, in this case, rates of
persistence can be used to derive rates of convergence.

For example, let e2 > E2 and suppose that solutions with initial points in S never
leave S, for some e -> e and solutions with initial points in S never leave S for some
e <- e2. Suppose that r is an upper bound for the rate of persistence of (1) in annulus
A’=A,. Let x(t) be a solution with Ix(t0)[ < el. Since x(t) must leave A’ for some
tl [to, to / r] and since x(t) cannot go outside A’, it must go inside. We conclude that if
IX(to)[<el, then [x(t)l<-_e2 for all t>-to+r. Thus an upper bound for the rate of
persistence in A’ is an upper bound for the rate of convergence across A A,,.
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If V(x) Ixlz is a Lyapunov function for (1) at 0, then Ix(t)l can never increase for
any solution x(t) and the rate of persistence in A coincides with the rate of convergence
across A.

The linear case is particularly simple. Let X(t, to) denote the fundamental solution,
and suppose that IX(t, to)l <= Co for any to and all _-> to. Let e > e2 > 0 and suppose that r
is an upper bound for the rate of persistence of the equation in annulus Aco1,2/o. Then

IX(t, to)l <= (el/e2)Co e-L’-’)

for any to and all >_- to where L (In (el/e2))/r.

2.3. Uniform boundednes and continuity conditions. The following assumptions
are used in several contexts. They will be cited as necessary.

Let/" R + G -> R". Then "/ (to, Xo) exists" means 3 is smooth in an open subset
of R / x G containing (to, Xo). In this case, we have / (to, Xo)
(OB/Ot)(to, Xo)+ (O/Ox)(to, Xo)f(to, Xo). (However, this definition of/ can be extended
to continuous/3 in the usual way. See Hale [10, p. 293].)

Assumption A. There is a k K such that 1/3 (t, x)l =< k(Ixl) for all x G, a.e. R /.
Assumption B. There is a k K such that I/3(t, x)-B(t, y)l--< k(Ix Yl) for x, y G,

a.e. t6R +.
Assumption Bo. Assumption B with "for all R /" replacing "a.e. t R/".
Assumption C. The function l(t,x) exists for all (t,x)R+xG, and / obeys

Assumption B.
Assumption D. Given annulus A, there is r/ K such that, if x(t) is a solution in A

for [a, b], then It(b, x(b))-(a, x(a))l <- n(Ib a[).
Note that "/3 obeys a uniform Lipschitz condition" is equivalent to "/3 obeys

Assumption Bo with k(s)= CoS for some constant Co".
If/(t, x) exists for all (t, x), and, for each annulus A, there is a constant ko such that

[/(t, x)l <= ko for (t, x) R + (A f3 G), then/3 obeys Assumption D. In this case,
b b

b

--< J,, ko dr ko(b a) --- r/(b ).a

The following lemma will be used in the proof of Theorem 2.
LEMMA. Assume Wobeys Assumption D with Kfor annulus A. Suppose there is

a solution x(t)A for t[a,b], and suppose there is a t,[a,b] and 3,>0 such that
W(t., x(t,)) >= y. Then there is an interval I In, b] such that W(t, x(t)) >= y/2 for t I
and the length o[I is at least min {(b a)/2, rt-(,/2)}.

Proo[. For t, t,[a, b], we have IW(t, x(t))- W(t,,x(t,))l<- w(It-t,I), implying
W(t, x(t)) >= 3,- n(It- t,I). Thus W(t, x(t)) >= y/2 as long as n(It- t,I) --< 3’/2. Now, either

t.-a >=(b-a)/2 or b-t, >=(b-a)/2. If t,-a >=(b-a)/2, let

Otherwise, define

I (a, t,) (’l (t,-rt-l(y/2), t,).

I (t,, b) 71 (t,, t, + r/-X(y/2)).

2.4. Excitedness conditions. Let a R+ G --> R", and suppose that fl is a collec-
tion of measurable functions with domains closed intervals in R / and range G.
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DEFINITION 5. Let T be a positive constant, and let bi and si be sequences of
positive numbers with si--> . Then "a is pointwise uniformly exciting (PTUE) with
respect to fl with bi, T, and s" means

1. si+l- si <- T for all i,
2. given index and to fl with to(t) defined for [s, s+l], there is a toe [s, s+]

such that la(t0, to(t0))l > 4,.
DEFINITION 6. Let T be a positive constant, and let bi and s be sequences of

positive numbers with s --> o. Then "c is uniformly exciting (UE) with respect to fl with
bi, T, and si" means

1. Si+l- Si T for all i,
2. given index and to fl with to(t) defined for [si, Si+l], there is an interval

[a, b]_[si, si+] such that
b

fa O’(’/" to("/’))dr[ i.
If II is the collection of all constant functions on annulus A, then we usually say

"with respect to constants in A" in place of "with respect to ll" in using the above
definitions.

If a(t, x)- B(t)x is linear, then it is convenient to use the following abbreviated
statement: "B(t) is PTUE (UE respectively)" means "a(t, x) is PTUE (UE respec-
tively) with respect to constants of unit length".

The term "persistently exciting" is used by Yuan and Wonham in [26] to describe a
property which is similar to the above but somewhat less general. Excitedness condi-
tions are central to the results in Morgan and Narendra [19] and [20].

It is interesting to note that, if 0 is u.a.s., then f(t, x) must be UE as follows.
THEOREM 1. Assume thatf(t, x) obeys a uniform Lipschitz condition on R+ G. If

0 is u.a.s, for (1) with basin containing G, then, for any annulus A, there is a qbo > 0 such
that f(t, x) is UE with respect to constants in A (q G with qb qbo ]’or all i.

Proof. See 8.
COROLLARY 1. In the above result, "UE" can be replaced by "PTUE’;.
Proof. With the uniform Lipschitz condition, UE is equivalent to PTUE.
In Morgan and Narendra [19] and [20], it is shown in several uniformly bounded

linear contexts that conditions equivalent to UE are necessary for u.a.s. Artstein, in a
preprint [2] that I have just received, has established a result similar to Theorem 1.

3. Main results. Assume from now on that 0 is uniformly stable, V is a Lyapunov
function for (1) at 0, and there is a W: R+x G -> R+ with l?(t, x) >- W(t, x)>-O for all
(t, x)6 R + G. Let Ht {x G[ W(t, x) 0}.

The theorems to follow have the same basic structure: a (generalized) "distance
from Ht" function a(t, x) is identified so that, given annulus A, there is a collection fl of
functions to: [ta, t2]--> G and

(a) if x(t) is a solution to (1) and a(t, x(t)) is "small" for [tx, t:], then there is an
to fl that is "near" x(t) for [tx, t2];

(b) a is PTUE with respect to fl, or
(b’) & is defined and UE with respect to fl.
The u.a.s, of 0 for (1) follows.
We shall assume for the remainder of this section that W oveys Assumption D. In

Theorem 2, it is shown that, under this assumption, if IV is PTUE with respect to
solutions to (1) in A (q G for all annuli A, then u.a.s, follows. Theorems 3 and 4 are
corollaries to Theorem 2, and they are the main results of this paper. Theorems and
Corollaries 5 and 6 are further consequences.
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In 6, we will see that Assumption D for W can be weakened or omitted if other
conditions are strengthened. In particular, piecewise continuous W are allowable. In
general, the results in this section can be extended in a number of ways. Section 6
sketches some of these.

THEOREM 2. The equilibrium 0 for (1) is u.a.s, with Go in the basin if, ]’or each
annulus A, there is a 3" > 0 such that W is PTUE with respect to fA with 4i 3’ ]’or all i,
where ’A denotes the solutions to (1) in A.

Further, if bo >- V(t, x) for all (t, x) R+ x (A 71G), T and 4 3" are as in the
definition o[PTUE, and ,1 is as in the definition ofAssumption D, then [2bo/(3"do)]2 Tis
an upper bound ]’or the rate ol persistence o]’ (1) in A where do=min {T, /-1(3"/2)}.
(Recall [. ] denotes the greater integer function. See Definition l(d).)

Note that this is an extension of the result of LaSalle for periodic systems by which,
if/(t, x) and V(t, x) are periodic in and Q(t, x(t)) =- 0 for solution x(t) implies x(t) O,
then u.a.s, follows. See LaSalle [12].

We may generalize Theorem 2 by supposing that

-r(/(t,x)>- W(t,x)-a(t)

where W obeys the hypothesis of the theorem and a:R+R/ with constant a0 > 0
such that

t+Tol(7 dr <= ao
0

for any toe R + and 3"do> 2ao. In this case, the rate of persistence becomes [2bo/(3"do-
2ao)]2 T. This result can be proven by a minor modification of the proof of Theorem 2
given below. It provides an approach for estimating the "robustness" or "structural
stability" of the uniform asymptotic stability. It gives an estimate of the amount of
degradation of the rate of persistence caused by disturbances bounded as above by ao.

Proof. Let A be an annulus. Then we have T, 4) 3", and s -> oo with s(+ s <- T as
in the definition of PTUE. Suppose x(t) is a solution and x(t) A for [to, to + 2roT]
I for some tour + and some positive integer m. Let I =[to+2(k-1)T, to+2kT] for
k 1, 2, , m. For each k, there is an index i such that [&,, s+l] It,. Therefore

t,
W(r, x(r)) dr > 3"do

2

for each k, by PTUE and the lemma in 2. It follows that

f W z d" >
m3"d-----2
2

Thus bo>= V(to, X(to))>-m3"do/2, and therefore 2bo/(3"do)>-_m. This puts the stated
upper bound on the length of time that x(t) can stay in A.

To apply Theorem 2, we need two definitions. These are central to the method of
constructing stable systems being discussed.

DEFINITION 7. Suppose that, for each t e R +, there is a neighborhood of H,
N(H,), and a continuous a,: N(H,)-->R such that a,(x)=0 if xH,. Let a(t,x) be
defined by a(t, x)=a,(x). Then the pair (W, a) is admissible if there is a 8 KKo and
constant 3"0* with oo __> 3"0* > 0 such that

(a) if 0 <= 3" <-_ 3"d x N(H), and la(t,x)l>6(t, "r), then W(t,x)>3";
(b) if x G and x : N(H,), then W(t, x) > 3"*o.
Example 1. Suppose W(t, x) w(Q(t, x)) where w K’ and Q: R+ G R+.
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Then we can take a(t, x)= O(t, x), 8(t, y) =.w-l(y), yo* =oo. One case of interest is
Q(t, x)= If(t, x)l. This occurs, for example, when f(t, x)= -Q(t)x where Q(t) is a
positive semidefinite matrix. (See Theorem 5 and Corollary 5 below.)

Example 2. Consider the two dimensional linear system

--ax--b(t)XE,

E=b(t)x

where a is a positive constant and b" R/-->R . With V(x) =1/2(x21 +x22), we have
Q(t, x) axe. Thus W(t, x) axe, H, Ho ((0, xE) RE}, N(H,) R, a(t, x) xx,

(t, ) y/a, y . (See Corollary 6.)
Example 3. Suppose there is a retraction t: N(Ht) Ht of a neighborhood of Ht

onto Hr. (In other words, t is continuous and t(x)=x if x Ht.) Then we let
at(x) x -t(x), and N(Ht), 8(t, ), and y are defined depending on the geometry of
Hr. (See 4 and 5.)

From now on, let denote a collection of measurable functions with domains
intervals in R+ and range G. Suppose (W, a) is admissible with N(Ht), , and y as
above.
DzvIo 8. Let annulus A and be given. Then " approximates solutions to

(1) in A near Ht" means there are positive constants T and y, a sequence of constants
s , and a sequence of functions 0 KKo such that

(a) si+- si T for all i, and
(b) if x(t) is a solution to (1) with x(t) N(Ht) A for all [s, si+] for some index

and la(t, x(t))l (t, y) for all Is, s+t], then there is an with Ix(t)-(t)l
O(t, ) for all [s, s+].

Continuing the previous set of examples we have the following:
Example 1 (continued). Let O(t, x) If(t, x)l, be the constants in annulus A, and

o(t, (, -(l(t-sl.

Suppose x(t) is a solution in A with I(t, x(t))l (t, x(t) for e [s, t]. Then

Ix(t)-x(si)l dr If(r, x(r))l dr
si

f

d,

The for x(t)is thus o(t)x(s). (We may take y =.)
Example 2 (continued). Let fl be the constants in Ho A and

O(t, ) (.,,_.,3 + Ib(,)l.

Suppose x(t) is a solution in A with I(t, x(t)) N (t, ) for e [s, t]. Thus Ix(t)l @a.
Then

[x2(t)-x2(si)] dr= Ib(,)Xl(,)[ dr
$i
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Thus

Ix(t)- x(s,)l <-Ixl(t)- x(s,)l + Ix(t)- x(s,)l

[x(t)l + Ix(s,)l + Ixz(t)- xz(s,)l

Now Ix(s,)-(O, x2(si))[ [Xl(Si)l -< 4"/a. Therefore Ix(t)-(O, x2(s))l <--Ix(t)-x(si)[+
Ix(si)-(O, x2(si))l<-Oi(t, y). The wO for x(t) is thus to(t)(O, xz(si)). (Again, take

v* =o.)
Example 3 (continued). See 4 and 5 for examples in which a is defined from a

retraction 7rt: N(Ht)H (although Example 2 above is a case in point). These
sections include examples in which 1) does not consist of constants and N(H) is not all
of R".

Recall that we are assuming W obeys Assumption D with K.
THEOREM 3. The equilibrium 0 ]’or (1) is u.a.s, with Go in the basin if the following

conditions hold.
1. (W, a) is admissible with N(H), 6, and
2. a obeys assumption Bo with ko K.
3. For each annulus A, them are 1), positive constants T, yo, yl with y’ >- yo and

y’ >- 3"1, a sequence of constants s oo, and a sequence offunctions O KKo such that
(a) II approximates solutions to (1) in A nearH with T,
(b) c is PTUE with respect to II with c 6(yo) + ko(O(yl)), T, s where

max {6(t, Vo)lt e [s, s,+]},

0,(3,1) max {O(t, 3"1)It Is, si+l]}.

Further, with bo >= V(t, x) for (t, x) R+ (A G), [2bo/(ydo)]2Tis an upperbound
for the rate o[persistence of (1) in A where 3" min {3’0, 3"1} and do min {T, rt-1(3"/2)}.

Proof. This is a corollary to Theorem 2.
1. Let A be an annulus. Let 12, 3"0, 3"1, T, s, and 0 be as in the hypothesis. Fix the

index i. Suppose x(t) is a solution to (1) with x(t)A for [s, s+l] I. Suppose
la(t, x(t))l <= 6(t, 3"1) for t Ii. Then, by condition 3(a) in the hypothesis, there is an w fl
with Ix(t)-o(t)l <= o(t, 3"1) for I.

2. Now there is a toe I such that Ic(to, o(to))l> 6(3,o)+ ko(O(/)). Also
I(t,x(t))-(t,o(t))l<--ko(lX(t)-o(t)l)<-ko(0,(t,’/)) for I. Thus I(to, X(to))l >-
Ic (to, o (to))!- ko(O,(to, ,)) > ,(o) + ko(O,(m))- ko(O,(to, 3’a)) >-- ,(mo) >-- (to, 3’0).

3. Therefore, W(to, X(to)) > 3"0. We conclude that W is PTUE with respect to fA
with 4 3" where 3" min {3"0, 3"1}, T, and s. Now apply Theorem 2.

THEORE 4. The conclusion of Theorem 3 remains true exactly as written if we
replace condition 2 o]’ the hypothesis by

2’. obeys Assumption C with k K,
and replace 3(b) by

3(b)’. &(t, x) is UE with respect to f with bi 26(3"o)+ k(Oi(3"l))T, T, s.
Proof. This is a corollary to the proof of Theorem 3. Parts 1 and 3 of that proof carry

over exactly as written. We shall see now that the conclusion ot part 2 tollows by a
simple argument.

There is an interval I =[a, b]___ [s, s+l] such that
bIa (T tO(T)) dT i.



NONAUTONOMOUS STABLE SYSTEMS 407

Now I&(t,o)(t))-&(t,x(t))l<-k(loo(t)-x(t)l)<-k(Oi(t, yl))<-_k(O,(yl)) for a.e. teL
Therefore,

b b b

ffa &("(r))dr-fa ’(’r’x(’r))d’t’l<=ffa I&(,,o(,))-&(,,x(,))l d,

Thus

<-k(O,(r))T.

b

Ja &(r, x(r)) dr > i- k(Oi(3’,))T 28i(3’o).

Therefore, la(b,x(b))-a(a,x(a))l>2,i(/o) implying there is a toni such that
la(t0, x(to))l > (o). This completes the proof of Theorem 4.

The remark after Theorem 2 on "robustness" carries over to Theorems 3 and 4.
Theorems and Corollaries 5 and 6 below provide some simple concrete appli-

cations of these results. This includes versions of the main theorems for Morgan and
Narendra 19] and [20]. In 4 and 5, more complicated consequences are given. There
are many possible variations and generalizations of this material. For example,
Theorem 3 (Theorem 4 respectively) requires Lipschitz-like conditions on W and c (W
and & respectively), and these can be weakened. Thus W can be piecewise continuous
under fairly general circumstances. In 6 some such extensions are outlined.

THEOREM 5. Assume that W(t, x) w(lf(t, x)l) for some w e K. Suppose, for every
e >0, thereisa w eKsuchthat [w(a)-w(b)[<= w(la-bl)fora, b e[0, el. Supposethat
there is a constant c such that

If(t, x)-f(s, y)l-<- c(It- sl + Ix- y[)

]’or (t, x), (s, y)R+x G.
Then 0 ]’or (1) is u.a.s, with Go in thebasin i]’and only if, ]’or each annulus A, there is

a qbo > 0 such that]’(t, x) is PTUE with respect to constants in A f’) G with qb bo ]’or all i.
Further, if A=AI.2, bo > V(t,x) for all (t,x)eR+x(AG), and If(/,x)l is

PTUE with respect to constants in A f3 G with o, T, then [2bo/(ydo)]2T is an upper
bound for the rate of persistence for (1) in A where

y= w(g)o/(l +cT)),

do min{T, (w2 (//2))/(c(1 + cel))}

A version of this result was proven in Morgan and Narendra 19]. As in that paper,
the If(t,x)-f(s, y)l<-_c(It-sl-lx-yl) requirement may be replaced by a uniform
Lipschitz condition if a different excitedness definition is substituted for PTUE. See
6.3.

Proofo]’ Theorem 5. The necessity of PTUE for u.a.s, is immediate from Corollary
1. The sufficiency follows from Theorem 3, as shown below.

1. (W, a) is admissible as in Example 1:

W(t,x)-w(If(t,x)l),

(t,x)-If(t,x)l,

(t, )= w-(),
N(H,)= G,
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2. W obeys Assumption D with rt K" Define rt(s) w((c +c2ex)s).Letx(t)bea
solution in A A,: for [a, b]. Then

3. If(t, x)l obeys Assumption Bo with ko(s)--cs"

[If(t, x)l-If(t, Y)I] < If(t, x)-f(t, Y)I -< clx Yl.

4. f=constants in A71G approximates solutions to (1) in A near Ht with
Or(t, y)= w-l(y)(t st): This was shown in Example 1 (continued).

5. Now, the hypothesis of Theorem 3 is satisfied if there are yo, yl, T, si --> 00 such
that c(t, x) if(t, x)l is PTUE with respect to f with bi w-(yo)+CW-(yl)T, T, and
s. This follows for y0 yl w(bo/(1 + cT)), because then b bo for all i.

COROLLARY 5. Let Q(t) be a symmetric positive semidefinite nonautonomous n x n
matrix. Suppose that there is a constant c with c >-IQ(t)l and IQ(t)- Q(s)l <-- clt- sl ]’or all
t, s R /. Suppose there is a Cko > 0 such that Q(t) is PTUE with qbi qbo ]’or all and with
some Tand st --> 00. Then, With X(t, to) denoting the fundamental solutiono -Q(t)x,

IX(t, to)l-<- 2 e -’-’)

for any to and t>-_to with L=ln (2)r, r=[8/(ydo)]2T, and

"r’ (2/c)(4)o/(1 + cT))2

do min{T, 7/(16(1 + 2c))}

Conversely, if 0 is u.a.s., then there is a Cko > 0 such that O(t) is PTUE with 4
for all i.

This is similar to the main theorem in Morgan and Narendra [19].-As noted after
Theorem 5, the IQ(t)-Q(s)l _-< clt-sl condition may lie omitted if a modified PTUE
condition is used.

Proof. This is a simple consequence of Theorem 5. We have

f(t,x)=-O(t)x,

v(t, x)--Ixl,
r(/(t, x) 2xTO(t)x >- (2/c)xT"O(t)O(t)x (2/c)lO(t)xlz

w(lf(t, x)[), where w(s)= (2/c)s2.
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Now IQ(t)xl is PTUE with respect to unit constants with bo, T. Therefore, IQ(t)xl
is PTUE with respect to constants in A with bo, T where A A,I.2 with e 2 and
e2 1. We also have G=Rn, b0=4, and w(s)=(4e/c)s for any e >0.

By Theorem 5, r is an upper bound for the rate of persistence of (1) in A. The result
follows from this and the material in 2.2.

It will be worthwhile to note here some general conditions under which constants
approximate solutions. Suppose

1. there is a ( KKo such that if I(t,x)l<-_,(t, ,), then If(t,x)-&(t,x)l<=es(t, /),
2. there is a 8 KKo such that if Ic(t, x)l -< (t, 3"), then d(x, Ht) <= g(t, ).

Let si --> with si/l s <- T and fl LI (Hs, LI A), a collection of constant functions.
Then fl approximates solutioias to (1) in A near Ht with 0, T, and s where

Oi(t 3")--g(Si, 3")’ (Si, 3")"J" (t 3")’ ("/’, 3") d"r’.

This can be seen as follows. Let x(t) be a solution in A for [si, s/l]. Then

Ilx(t)-x(si)l-I(t, x(t))--Ot(Si,

Therefore, if la(z, x(’))l--< (’, 3") for - s [sb t], then

Ix(t)-x(si)l<=[(t,x(t))l-+-l(si, x(si))l+ (-, 3")d-
$i

<= 8(t, 3,)+ (Si, 3")+ (’1", 3")dz.

Also d(x(si),H,)<-_g(si, 3"). Thus there is an xi.ns, with Ix(si)-xilg(si, 3"). There-
fore, Ix(t)-x,l<-Ix(t)-x(si)l/lx(s,)-x,I < oi(t, ,).

Note also that the UE of & with respect to fl is equivalent to the UE of je with
respect to l’l, since f(t, to)= & (t, to) for to

Some consequences of these remarks and Theorem 4 follow.
Let m be an integer with 0 < m < n. Then R"= R"-" x R m, and we may write

x (Xl, x2) R"-" x R", f(t, x)= (f(t, x), f2(t, x)) R"-" x R".
THEOREM 6. Assume that W(t, x)= w(Ix l) [or some w K. Suppose, [or every

e >0, there is a wK such that Iw(a)-w(b)l<-w(la-bl) for a, bs[O,e]. Suppose
there is aseoS Ksuch that I/2(t, x)l-<-  :o(Ix l) for (t, x) s R + G. Assumefobeys a uniform
Lipschitz condition with constant c.

Deline fl(t, x2) f(t, O, x2). Then O [or (1) is u.a.s, with Go in the basin ifand only if,
for each annulus A, there is a b0> 0 such that fl is UE with respect to constants in
Ao A f’l Ho with ki ko for all i.

Further, irA AI.2 and bo >= V(t, x) [or (t, x)s R+ x (A f’l G), and (t, x2) is UE
with respect to constants in Ao with Co, T, then [2bo/(3"do)]2T is an upper bound [or the
rate of persistence of (1) in A where 3"=min{3"0, yl},
2w-(,o)+C(3W-(,)+ seo(W-(/))T)T, and d0 min {T, (wT (3,/2))/(ce)}.

Proof. The necessity of UE for u.a.s, is immediate from Theorem 1. The sufficiency
follows from Theorem 4, as shown below.
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1. (W, a) is admissible:

w(t,x)=w(Ixl),
a(t, x)= xl, &(t, x)=fl(t, x),

i(t, 3/) w-1(3/),
N(Ht)= G,

Ho {(0, x2) R"-" R"} Ht for all t R +,
&(t, x)= fl(t, x2) for (0, x2)Ho.

2. W obeys Assumption D with r/K" Define r/(s)= wl(CelS). Let x(t) be a
solution in A A,I.,2 for [a, b]. Then

[W(b, x(b))- W(a, x(a))l- Iw(Ixl(b)l)- w(Ix(a)[)l
<- w(llxa(b)l-lxx(a)l[)<-_ w(l.l(b)-Xl(a)[)

b

N Wel(I 121(’)]dT")<-wel(Cel(b-a))=rl(b-a)
3. & obeys Assumption B with k(s)= cs"

I/(t, x)-f(t, y)l If(t, x)-f(t, y)l clx yl.
4. fl {(0, x2) Ao} approximates solutions in A near Ho where Ao A fq Ho with

Oi(t, 3/)= 3w-l(3/)+o(W-l(3/))(t-si): This follows from the comments preceding the
statement of the theorem. Define :(t, 3/)= :o(W-1^(3/)). Then if Ic(t, x)l<- i(t, v), then
If(t, x)-&(t, x)l_-< :(t, /). Also d(x, Ho) Ixll, so =.

5. Now, the hypothesis of Theorem 4 is satisfied if there arc 3/o, 3/1, T, s --> c such
that &(t, x) is UE with respect to f with b 2(3/o) + k(O(3/1))T. This follows for any
choice of 3/0 and 3/1 obeying the inequality in the hypothesis.

The linear result below appeared in Morgan and Narendra [20] without the rate of
convergence estimate.

COROLLARY 6. Consider the linear system

(2) (12) =(-Qo(t)
\ P2(t) 0 X2

where Qo(t) is (n m) (n m) and Pl(t), PE(t) are m (n m) continuous bounded
matrices.

(a) If 0 for (2) is u.a.s., then there is a $o>0 such that Pl(t) is UE with i bo
]’or all i.

(b) If there is a symmetric positive definite differentiable matrix J(t) such that
+JQ+ QoJis positive definite, PE(t) J(t)Pl(t), and there is a $o> 0 such thatPl(t) is
UE with k ko for all i, then 0 for (2) is u.a.s.

Further, if X(t, to) denotes the fundamental solution of (2), then

IX(t, to)l-<- (2h/i2) e

for any to and >= to with L In (2)r, r [8]/(3/do)]2T, 3/= min {3/o, 3/1} where

.24,0 >- 243,0/Wo + c(34// Wo+1cJ//WoT) T, do min (T, 3//(16CWo)},

and ]2, c, Wo are positive constants with/ >-_ IJ(t)l-->/, h --> 1, h --< 1, IB(t)l <- c where B
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is the matrix on the right hand side o[ (2), I(t)+J(t)Qo(t)r+ Qo(t)J(t)l>= Wo for all
R /, and Pl(t) is UE with 4o and T.
Proofi This is a simple consequence of Theorem 6 and the material in 2.2. We

have

zlxl2-z w(t, x) lxlz,
and

(/(t, x) x (J(t) + J(t)Qo(t)T + Qo(t)J(t))Xl >- WolXll2 >= O.

It follows that IX(t, to)l--< i/i2 for _--> to.
In the notation of the theorem"

w(s) wos,
o(S) "11C$,
bo 4] taking el 2 and e2 1,

w(s) 2WoeS,

t) X2./(t, x2) p( 7"

4. Admissible (W, t) and II. In this section and the next, we will focus attention
on identifying systems that possess admissible (W, a) and on identifying convenient
classes of f which approximate solutions. In 6 the emphasis will be on such
considerations as weakening the Assumption D for W and Assumptions B0 or C for c
requirements of Theorems 3 and 4.

Suppose, for the rest of this section, that W(t, x)= k(xQ(t)x) where k K and
Q(t) is a symmetric positive semidefinite matrix. If/(t, x) is linear, we can take annulus
A always to be A2,1 (or any other fixed annulus). However,/(t, x) need not be linear.

4.1. Admissibility. Three schemes for admissibility, labeled (a), (b), and (c), are
presented below. For simple systems they are essentially equivalent, but even in simple
cases there are conceptual advantages of one over the other. In particular, the third
scheme emphasizes the geometry of admissibility, although it is computationally more
difficult to realize than the others.

(a) a(t,x)=xQ(t)x,

;(t, y)= k-l(y),

N(Ht)= R n,
,y =03.

(b) (t,x)=Q(t)x,

8(t, y)= x/IO(t)lk-(y),
N(Ht)= R,
"Y *o --03.

Compare Example 1, Theorem 5, and Corollary 5.
(c) To outline the third scheme, we need some preliminaries. For any t, Q(t) can be

diagonalized"

Q(t) L(t)TA(t)L(t)
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where L(t)is orthogonal and A(t)=diag(Al(t),A2(t),... A,, (t)) with Ai(t) the ith
eigenvalue of Q(t). (See Bellman [3].) If Q(t) is piecewise continuous (measurable,
respectively) in t, then L(t) and A(t) are piecewise continuous (measurable) in also.

Define

A(t) =diag (tr(A l(t)),..., tr(A, (t))),

A, (t) diag (#(Ax (t)), ., t(A,, (t)))

where

1 if s #0,
o’(s)=

0 ifs=O,

(s) {0 ifs #0,
1 ifs =0.

Define O(t) L(t)7"A(t)L(t), O, (t) L(t)7"A, (t)L(t), x,o)= O, (t)x, and xo)
Q(t)x for any xsR n. Then x=x,<,)+xo) for any (t,x)sR+xR ", and Ht

T{x,<t)lx s R } which is thus a hyperplane through 0. Moreover, xrQ(t)x x<,)Q(t)x<t)
and d(x, Ht)= Ix <,)l for any (t, x)s R+ x R".

Note that x,<t) is the orthogonal projection of x onto Ht, and x<t) is the orthogonal
projection of x onto the normal complement of Hr. (The orthogonality is with respect to
the dot product.)

Let q(t)2 denote the smallest nonzero eigenvalue of Q(t). Define

a(t,x)=x,),

J4k(,/)/q(t) if IQ(t)l # 0,
6(t, y)

o if IO(t)l- 0,

3,0* is any value, 0 < 3, -< o,

if 3,0*
N(Ht) R" if

Compare Example 2 and Corollary 6. Also see Example 4 below.

4.2. Approximating II. It is difficult to be specific about the choice of i) in general.
Intuitively, fl should consist of solutions to the "simplified" system ) =f(t, y) when y is
"near" Hr. For Theorem 5, f(t, y) 0 when y s Ht which indicated fl constants as the
natural choice. For Theorem 6, f(t, y) was not 0 when y s Ht, but solutions to 3) =f(t, y)
for y near Ht could stay near Ht only by being nearly constant of the form (0, y2). Thus,
these constants were the natural choice for fl in this case.

In order to provide more specific information on the choice of fl, let us consider the
following type of quasi-linear system:

(3) =P(t,x)x-O(t)x

where P(t, x) is a skew symmetric n n matrix for each (t, x)sR/ G and Q(t) is a
symmetric positive semidefinite matrix for each s R +. (Note that . =-Q(t)x from
Corollary 5 and (2) from Corollary 6, when Q0 is symmetric positive definite, are of this
form.) The analysis of this case will illustrate some general ideas.

With V(t, x) -lxl2, we get l?(t, x) xTQ(t)x W(t, x). Let us choose admis-
sibility scheme (b), so that a(t, x)= Q(t)x and 6(t, 3,)= x/vlO(t)l. Now, when W=0,
=f(t, x) simplifies to ) P(t, y)y which suggests defining 12 to be solutions to this

equation. A variant on this idea is presented below.
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Let A be an annulus, and let T > 0 and si --> c with si+l si _<- T for each i. Let 3’0* be
a fixed positive number. Define

vo(t) ,(t, ,o*)= 4io(t)l/,

Oi(t, ’)---- (’r, 3’)dr ,/10(,)1 dr,
$i

,i(t) To(t) + }O(t)]Oi(t, yd ),

N(H,) {x Ic(t, x)l < To(t)}.

For every smooth u: [si, si+]A fqN(H), define

f, {w(t) Alia(t, w(t))l < yi(t), oh(t) P(t, u(t))w(t) for [si, si+]}.

Then define 12 t.J fl, where the union is over all such u, for all i.
Now, by comparing (3) with & P(t, u(t))w via variation of constants and noting

that solutions to (3) are allowable choices for u(t), we see that 12 approximates solutions
to (1) in A near H with si, T, 3’0*, N(H), and Oi(t, y) as defined above. Given solution
x(t) with X(to) e N(H), the w efI associated with x(t) is defined by & P(t, x(t))oo with
to(to)= X(to).

Sometimes there is a collection fl’ of functions that are "close to" those in fl and
have desirable additional properties (e.g. computable or simple form). Then fl’ can be
used in place of ll, and this can result in a simplification of the stability criterion.
Theorems and Corollaries 5 and 6 illustrate this. Example 4 below provides an example
for which l’l does not consist of constants.

Example 4. Consider the three dimensional system P(t)x- O(t)x where

P(t)= a(t) 0 -b(t),
0 b(t) 0 !

and O(t) -diag (q(t), 0, 0) where a, b, q: R/R are measurable functions. Further
assume q(t)> 0 for all t.

Let us choose scheme (b) for admissibility. Thus we can use the material developed
above" V(t, x) 1/21xl2 and l’(t, x) xTQ(t)x q(t)2x21, k(s) s, a(t, x) q(t)2Xl,
6(t, y) xyq(t). Let si--> oo and T be given so that si/x- si _-< T. Then "go(t) xy*oq(t),

o(t, , (r, , d-=@ qO’l d-,

yi(t) q(t)*o +q(t)/ q(r) dr,

I-L-{x eR31x-O},

A A.,
a {o(t) > Io (t)l > ., Io(t)l < yi(t)/q(t),

(t) P(t)o(t) for e [s, si+] for some i}.

Now, l’l approximates solutions to 2 P(t)x- O(t)x in A near He with s, T, yo*,
N(H), Oi(t, ) as above. However, we can define an ll’ with elements near" those in 1
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that also approximates solutions. Further, this f’ has certain advantages over 11 as
noted below.

Define

Po(t)
b(t) 0

Let ll’= {(0, vo(t))lvo(t) is a solution to o Po(t)vo}.
Claim. ll’ approximates solutions to 2 P(t)x O(t)x in A near He with s, T, ,

N(H) as above, and

Oi (t, y) 2(O,(s; y) + O,(t, y)) + 2(@/q(s))

+ (@/q(t))+ la(,)l(O(,, )+ (@/q(,))) d,.

This ’ has the advantage of being lower dimensional than and of being explicitly
computable. (We can solve o Po(t)vo.)

The lemma below is the key fact in the proof of the claim. Let

and let P"(t)= P(t)-P’(t).

0 0 O)P’(t)= 0
Po(t)

0

LEMMA. Let to and v be solutions to tb P(t)to and f P’(t)v respectively with
to(si) v(si). Suppose e(t) exists with la, a(t)l-< e(t) for [si, Si+I]. Then

for e [si, Si+l].
Let us first establish that the claim follows from the lemma. Then the lemma will be

proven.
Let xt) be a solution in A CIN(Ht) with la(t, x(t))l<-,(t, 3’) for [si, si+l]. Thus

[x(t)l<=Vy/q(t) for t[si, si+]. Then there is an to(t) such that [x(t)-o(t)[<=
3") for c= [si, si+]. Thus Ix(tO-o(t)l <- O,(t, v)implying [o(t)l <= lxx(t)l + O(t,
q(t))+ O(t, 3"). Let e(t) (43"/q(t))+ Oi(t, 3’) and apply the lemma. Then there is a

v(t) with t(t) P(t)v(t) and to(s) v(s) such that

[v(t)-o(t)l<=e(t)+e(s)+ [a (’)le (z) d’.

Because of the form of P’, v(t)= v(s)= to(s) is constant. Then

1(0, Vz(t), v3(t))-to(t)l<-lv(t)l+e(t)+e(si)+ [a(’)le(z) dr

<=e(si)+e(t)+e(si)+ J. [a(’)[e(-) dr
$i

and Vo(t)= (v2(t), v3(t)) is a solution to to Po(t)Vo. Thus

Ix(t)- (0, Vo(t))[ _-< [(t)-o(t)] / 1o (t)- (0, Vo(t))]

’(t, 3")<Oi(t, 3")+2e(si)+e(t)+ la(r)le(r)d O,
$i
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Proof of lemma. Let V(t) be the fundamental solution for 3 P(t)v. Then by
variation of parameters

Now

and

Also

Thus

Ioa(t)-v(t)[ V(t-r)P"(r)co(r) dr
$i

V(t) 0 where E(t) is orthogonal
0

E(t)

v(t- ) o
0

E(t)E( )-1

-a(-),oO-)

P"(r)w (r)

Iw(t)-v(t)]<= a(r)WE(’r) + la(’r)l Iw(r)l d,r

[ l(r) / la,(’)le0") dr
$i $i

=<]Ol(t)-cOl(Si)[+ la(’)le(’) dr

This completes the proof of the lemma.

g. The ee (t,)=x--(x) hee ’,:N(H)/-L eefim In this
section, we consider the case that (t, x) x r(x) where -: N(H)-H is a retrac-
tion of a neighborhood of Ht onto Hr. (In other words, r is a continuous function with
-(x) x if x e H.) The a for admissibility scheme (c) from the previous section was of
this form: a(t, x) x,,(t) x -"st(x) where "st(x) x,(t).

In 5.1, we consider some general comments on admissibility and . In 5.2 and
5.3, sufficient conditions for existence of 7r, are given.

$.1. We have Ht={x G] W(t, x)=0}, a closed subset of G. Also N(Ht) is an
open subset of G containing Ht, and rt: N(Ht)Ht is continuous with "n’t(x)=x if
x Hr. Letting a(t, x)= x-Trt(x), we can define 6(t, y) by the relation

Ia(t,x)l>6(t, y) w(t,x)>y,

because Wt and 7rt are continuous. This holds for 0< 3’ =< 3"t* for some 3"t* which
depends on properties of Wt and 7ft. The existence of 3"0* which is independent of does
not follow necessarily. It must be established as a separate condition.
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The specification of fl generally requires some insight. Two fl which are useful to
keep in mind but rarely directly computable are described below. First

fix {y(t) y(t) is a solution to ) f(t, y)

and y(t)No(H,)f’lA for t[Si, Si+l] for some i}

where No(H,) N(H,) is some neighborhood of H,, perhaps depending on A or other
parameters, and Oi(t, y)= 0. Now define fla from fix as follows:

lla {z(t) r,(y(t))ly(t) fll}
with

Oi(t, y)= 6(t, "y).

Since we cannot specify ’]1 or fl2 unless we can solve f(t, y) for y near H,, the
use of these fl is generally nonroutine. In some cases, however, we can show that c (or
d, respectively) is PTUE (or UE) with respect to all smooth to(t)e H, obeying certain
general properties (e.g. uniformly bounded derivatives). Then we conclude u.a.s, from
Theorem 3 (or Theorem 4) by reference to fl2. Part of the usefulness of having test
functions to(t) in H, is that c(t, x) (or &(t, x)) may have a simpler form for x H,. (See
Corollary 6 or the proposition below.)

As noted in 4, the form of f(t, x) when x H, will sometimes suggest an
approximating fl. The proof that such an l’l is approximating can often be formulated by
comparison with Ill or fl2. (See the proofs of Theorems 5 and 6 and Example 4.)

5.2. In this subsection, a special case is described. Suppose there is a continuous
o’,: R"-R such that W(t,x)=O if and only if Xl"-O’t(X2) where X--(Xl, X2)
R R". (For example, W(t, x) k(IX.l-cr,(x2)l for some k K.) Then p: R" - H,
parametrizes H, where p,(x2)= (o’,(x2), x2). Thus

H, {(o’,(x2), x2) Ix2 g"},

and 7r,: R --> H, can be defined by r,(x x, x2) (o’t(x2), x2).
For example, in Corollary 6 W is of this form with o- 0. As a further illustration,

consider the following proposition.
PROPOSITION. Let u: R/--> R be continuous and bounded. Consider the two

dimensional system

I =--(Xx--XZz)+ u(t)xa I
(4) a -u(t)xl + xa(xx-xZz) i f(t, x).

Then 0 is u.a.s, if and only if there is a bo>0 such that u(t) is UE with 4i 4o for all i.
=1/21xl 2.Proof. Let V(x) Then -Q(x)=(Xl-X)2 W(x). Therefore, 0 is uni-

2 W(x) (Xl O-o(X2))2, and H, Ho, theformly stable. Now o,(x2) Oo(X2) x2,

parabola Xl x, for all R /. Also 7to: R 2 --> Ho is defined by 7ro(xx, x2) (x, x2). (See
Fig. 1.) Thus a (t, x) x 7ro(x) (x-x, 0), and (W, a)is admissible with (t,

Let A AI. be an annulus, and Y*A e2/2. Let

Cl max (Ix211 xz) A (3 Syt (Ho)},

ca min {Ixzl (Xl, xa) A f’) ST(Ho)},

c =max {l e=l Ix cA}.
(See Fig. 2.) Let

[’l {to(t) (Y(t)2, y(t))ly(t)smooth, ly(t)l>c2x/l+’2=c2, IP (t)l-<- c41+4c}
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X2

H0

=o(x)

X

Xl

FIG. 1. Parabola Ho with retraction ro: R Ho defined by ro(xx, x2) (xz, x2).

and

o, t,
Claim 1. Let x(t) be a solution in A (q Sv,(Ho) and let w(t) (x:(t)2, Xz(t)). Then

1. if la(t, x(t))l <= 6(t, V), then Ix(t)- w(t)l <= Oi(t, /),
2. w(t) f.

The proof of the claim, which is very simple, is omitted.
It follows from Claim 1 that D, approximates solutions.
Claim 2. If u(t) is UE with b0, T, si - c, then &(t, x) is UE with respect to D with
b, a constant for all i, T, si c.
By Claims 1 and 2, u.a.s, follows from Theorem 4.
Proo[ o[ Claim 2. We have &(t,x)=(]l(t,x)-2xzl2(t,x),O). Suppose w(t)=

(y(t)z, y(t)) . Then &(t, o (t))= (u(t)y(t)(1 + 2y(t)2), 0).
Now, given index i, there is an interval (a, b)

_
(s, s/l) such that

b
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FIG. 2. Parabola Ho and annulus A with constants cl and c2 indicated.

Then, for each positive integer N, there is an interval (aN, bN)_(a, b) such that
bN--aN (b-a)/N and

.I,, u (r)drl.>- qbo/N.
Since ))(t) is uniformly bounded above by cx/1 +4c2, as N gets large y(t)(1 + 2y(t)2)
becomes essentially constant over the interval (aN, bN) and can be factored out of the
integral

The result follows.

u (-)y (-)(1 + 2y(z)2) dr.

This completes the proof of Claim 2 and the sufficiency part of the proposition.
The necessity that u(t) be UE follows from Theorem 1.

5.3. If Ht is a smooth submanifold of G, then the existence of zrt follows from
elementary differential topology. The basic ideas are outlined below.
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IfM is an m-dimensional smooth (embedded) submanifold of R n, then each x0 M
has a "regular neighborhood" N(xo). In other words, N(xo) is open in R and contains
x0, and there is a ditteomorphism : N(xo)->S1 with &(x0)=0 and 4,1MtqN(xo) a
diffeomorphism of M fqN(xo) onto $10({0} Rm). (See Guillemin and Pollack [5,
Chap. 1].)

Now $1 retracts to 5:1 ) ({0} x R"), and any such retraction induces a retraction of
N(xo) to M CI N(xo) via b. If the retractions are chosen to be orthogonal projections
relative to some fixed inner product in R", then these N(xo) can be "patched together"
to coverM and provide a smooth r: N(M) ---> M with N(M) (.J N(Xo) where the union
is over all x0e M. This N(M) is called a "tubular neighborhood" of M in R". (See
Guillemin and Pollack [5, Chap. 2].)

Now, if H G is a. smooth manifold for each t, then N(H) exists with smooth
7r,: N(Ht)--> Ht. (The dimension ofH may vary with t.) Note that N(H) and 7r depend
on the choice of an inner product and on the choice of a covering of Ht by regular
neighborhoods. Then Ix-rt(x)l is the distance of x from Ht (relative to the induced
metric), and the existence of t;(t, y) follows from the continuity of Wt and zrt as noted in
5.1.

For computations, the principal difficulty is in explicitly identifying rr. Often,
N(Ht) can be taken to be W-1 ([0, e)) for some e. However, 7r must be determined by

X2

p(s)+ ,no(p(s))

p(s )+ THo(p(s ))

p(s)=(s,s)

THo(p (s ))

,Ho(p(s ))

FIG. 3. Parabola Ho with tangent and normal lines for point p(s).
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solving orthogonality equations. For example, if Ht is parametrized by a local
ditteomorphism p: R" H,, then TH,(p(s)) Dp(s)(R") is the tangent hyperplane to
H at p(s) (translated to the origin). Then ,H,(p(s)), the normal hyperplane at p(s), is
given by ,Ht(p(s)) (Dp(s)(R "))- which can be computed explicitly as the solution set
to (n m) x m linear equations. Then R" TH(p(s))+ ,Ht(p(s)) and re(x) =p(s) if
x p(s) + ,H,(p(s)) and x N(H).

To illustrate these comments, let us take a second look at the proposition proven
above and redefine rr0 to be the tubular neighborhood projection.

A parametrization p: R1-->R 2 for Ho is given by p(s)=(s2, s). Then Dp(s)=
(2s, 1), THo(p(s))={c(2s, 1)lc R1}, and ,Ho(p(s))={c(-1, 2s)lc R1}. (See Fig. 3.)
Therefore, the normal lind through p(s)=(s2, s) has the parametrized form /s(c)=
(s 2, s)+ c(-1, 2s), and it is easy to confirm that

N(Ho) {ls(c)ls e R , c>-1/4}
is a well defined tubular neighborhood of Ho with ro: N(Ho)-->Ho defined by
rro(l(c)) (s 2, s). (See Fig. 4.) If (x, x2) R 2, then, by solving (Xl, x2) l(c) for s and c,

X2

no

N(Ho)

FIG. 4. Parabola Ho with parametrized normal line, ls(c) (s 2, s)+c(-1, 2s). N(Ho) is the region to the
left of the dotted lines.
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we can write zr0 in (xl, x2)-coordinates. Then a(t, Xl, X2) (X1, X2)--7"/’0(X1, X2),
&(t, Xl, x2)= (I-DTro(xl, x))f(xl, x2), and we can proceed to apply Theorem 4.

Now (xl, x2) Is(c) reduces to the cubic equation
3s +(1/2 Xl)S =0

which can be solved with the cubic formula. There are three cases, depending on the
sign of

(1 xx2 X2
g---/ 64"

We will not continue with this analysis. Clearly the previous discussion is computation-
ally much simpler.

6. Generalizations of the main theorems. In this section, some modifications of
the material in 3 are outlined. In particular, we will see that the theorems can be
extended to cases in which W and a are piecewise continuous. The interest in such
extensions is motivated by the use of piecewise constant and other piecewise smooth
system elements in control applications. There is no attempt at completeness here. The
results below are only illustrative of some types of possible extensions.

6.1. In this subsection, we see that Theorem 4 holds for cases in which &(t, x) does
not exist for all or does not obey assumption B for all t. First we need the following.

Assumption C’. There is a positive constant L, sequence ti c, and k K such
that

1. ti/:-t _-> L for all i, and
2. for each index i, &(t,x) exists for (t,x)(ti, t+l)G and I&(t,x)-&(t, y)l-<

k(Ix Yl) for (ti, ti+l), X, y G.
THEOREM 4 (version 2). The conclusion of Theorem 3 remains true exactly as

written if we replace condition 2 of the hypothesis by
2’. a obeys Assumption C’ with L, t, and k K

and replace 3(b) by
3(b)’. &(t, x) is UE with respect to fl with 4 m(28(yo)+ k(O(yl))T), T, s where

m [T/L]+ I.
Proof. This is a simple modification of the proof of Theorem 4. There is an interval

(a, b)
_

(&, s+l) such that
b

Define (ai, bj) (a, b) 71 (tj, ti+l). At most m of these (ai, bi) are nonempty. Then there is
some j0 such that

a(r, o(r)) dr >-_/m.

By Assumption C’, ]&(t,x)-&(t,y)l<-k(lx-yl) for t(aio, bio) and x,yG. Now
continue as in the proof of Theorem 4.

6.2. In this subsection, we see that Theorem 2 holds for W which do not obey
Assumption D but rather obey a more general Assumption D’. In particular, W may be
piecewise continuous. It follows that Theorems 3, 4, 5, and 6 extend to this more
general case. First we need the following.
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Assumption D’. Given annulus A, there are constant L, sequence ti --> oo, and/ K
such that

1. ti/l ti >- L for all i,
2. if x(t) is a solution and there is an index such that x(t) A for [a, b]

(t, t+l), then

IW(b, x(b))- W(a, x(a))l<= rt(lb-a[),
and

3. if x(t) is a solution, W(t, x(ti))> 3’ for some index and constant 3" >0, and
there is an e >Owithx(t)A for t(ti-e, ti+e), then there is a 8 with 0<8 =<e such
that either W(ti 8, x(ti 8)) -> 3" or W(ti + 8, x(ti + 8)) >= 3".

Compare this restriction on W with the class P[0, oo) defined by Yuan and
Wonham [26].

LEMMA (version 2). Assume W obeys Assumption D’ with *1, L, and ti oo ]’or
annulus A. Suppose there is an index and solution x(t) A ]’or (ti, ti+l), and suppose
there is a t. (t, ti/x) and 3" > 0 such that W(t., x(t.)) >= 3".

Then there is an interval I
_

(t, ti+l) such that W(t, x(t)) >= 3"/2 fort land the length
of I is at least min {L/2,

The proof is essentially the same as that of the lemma in 3.
THEOREM 2 (version 2). I]’ Wobeys Assumption D’ instead ofAssumption D, then

Theorem 2 remains true as stated except that the given upper bound ]’or the rate of
persistence must be replaced by

2bo 1](2L++ 3r).

Proof. Define a sequence of positive integers k 1, k2, , k,,, and a sequence of
nonnegative real numbers trl, try., , trm," as follows:

where

and

0"0--" O,

o’,=o’,_1+(2k,+1)

L<-s#,_1 +kr-s#,_<-L+ T

L<-s,,-s#,_, + kr+ 1 <-L + T for r>0.

Note that tr,- o’,-1 <_-2L + 3 T for all r.
Let r be fixed. Suppose x(t) A for [r-l, tr,]. Then there is an interval (a, b) c_

(tr,_l, tr,) such that b-a>=L, W(t.,x(t.))>=3" for some t.(a,b), and [W(t,x(t))-
W(s,x(s))l<-_(It-sl) for t, s (a, b).

Applying the lemma, we get

b

W(r, x(’)) dz >-- do.

Thus

’r
3"

,-
W(’, x(z)) dr >-_- do for r > 0.
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Let M 2L + 3T. Let m >0 be an integer. Suppose x(t) is a solution in A for
t [to, to + raM] I for some to R /. Then there are m 1 intervals (o’j-1, o-) contained
in L Thus

to+mM TW(r, x(r)) dr -> (m 1) do.
tO

But then bo>-(m 1)(3/2) do, implying (2bo/(,do)) + 1 >=m.

6.3. In this subsection, excitedness conditions PTUE and UE are modified to
PTUE’ and UE’ and Definitions 5 and 6 are replaced by 5’ and 6’. Then Theorems 2, 3,
and 4 become Theorems 2’, 3’, and 4’. No version of Assumption D for W is needed; c
is required to obey a version of Assumption B (Assumption C, respectively) for
Theorem 3’ (Theorem 4’).

The main modification of the 3 material outlined below is to replace pointwise
equations with integral equations. In some contexts, the resultinffexcitedness condi-
tions are more natural. For example, the main theorem in Morgan and Narendra [19] is
essentially the version of Corollary 5 that would follow from Theorem 3’ below.

First we need the new excitedness conditions.
DEFINITION 5’. Let a R + x G R" be measurable. Let lI be given. Let T be a

positive constant and s and bg sequences of positive numbers with sg- oo.
Then "a is PTUE’ with respect to with T, , and sg" means
1. S+l- st N T for all i,
2. given index and e with w(t) defined for e [s, s+], then

DEFINITION 6’. Let a" R+x G +" be measurable. Let be given. Let T be a
positive constant, s, a, and O sequences of positive numbers with s m.

Then "a is UE’ with respect to with T, &, a, s" means
1. s+x-s T for all i,
2. given index and w e with w(t) defined for e [s, S+l], then

a(g, (g)) dg d> &i.

TnOM 2’. Theorem 2 holds if PTUE is replaced by PTUE’ and the rate of
persistence bound is replaced by [bo/y]2 T.

The proof is a simple modification of the proof of Theorem 2.
Now we need some more definitions.
Assumption B’. There is a kK such that [(t,x)-(t,y)[k([x-y[) for x,

y e G, a.e. e R +. Further, given T > 0, there is a -K such that

k(s(r)) dr s(r) d

for any continuous s: [0, t] G with t-<_ T.
For example, if k(s)= s2, then k(s)= Ns where G _.c Sr. Also, if k(s)=s, then

k s ,@.
DEFINITION 7’. Replace (a) and (b) in Definition 7 by
(a’) if 0 -<_ 3’ =< To*, x(t) is a solution and x(t) N(H,) for e [tl, t2], and

t2 It t2
I(, x())l dr > (z, ,) dr,
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then

W(, x()) > y,dr

(b’) if x(t) is a solution for [tl, t2] and there is a to [tl, tz] such that X(to) N(Ht),
then

’ W(r, x()) >

DEFINITION 8’. Replace (b) in Definition 8 by
(b’). If x(t) is a solution to (1) with x(t)N(Ht)fqA for all t6[si, si+l] and 3’ is a

number with 0 < 3’ <= y* and

la(r, x(r))l d" <= 8(r, y) dr,
$i

then there is an w f with

I f
$i+1

THEORZM 3’. Theorem 3 holds with the above Definitions 7’ and 8’ for "admis-
sible" and "fl approximates solution", Assumption B’ replacingAssumption Bo, PTUE’
replacing PTUE, and with

i 6(r, To) dr + Oi(r, r) d

and rate o]: persistence bound [bo/ 3,]2 T.
Note that we need the k from Assumption B’ to define
THZORZM 4’. Theorem 4 holds with Assumption B’ replacing Assumption B and

The proofs are simple modifications of the proofs of Theorems 3 and 4.

6.4. The following fact may be useful for certain examples. All parameters and
functions not now explicitly defined to depend on annulus A can be allowed to do so. In
particular, this is true of N(Ht), as well as V and W. The proofs will be unchanged. The
choice of what to define as depending on A in 3 was based on "naturalness" relative to
the key examples.

One delicate point here, however, is that if k K for Assumption B is to depend on
annulus A, then the w D, must be in A, which is sometimes an inconvenience. (See the
proof of Theorem 3.) However, given A, there is generally an A’

_
A with w(t) A’, and

k can be chosen to depend on this A’.

6.5. In this last subsection, let us note that there is an asymptotic stability version
of each of the results above (except Theorem 1). By simply omitting mention of the "T"
which consistently occurs and replacing "u.a.s." by "asymptotically stable", a series of
true theorems follow with proofs essentially the same as before.

7. Control motivation. In this section the control motivation for the material in
previous sections is presented. In particular, necessary and sufficient conditions for the
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convergence of adaptive identification and control schemes from Lion [15] and
Narendra and Kudva [22] are given.

7.1. The identification problem. Let us consider the following model reference
identification problem. Let

fi(t,x):R+Rn-->R for i= l, 2, r,

g](t,u)’R+R "-->R forf=l,2,...,s,

be measurable functions.

u I plant

FIG. 5

Xp

The plant whose parameters we wish to identify with input u(t) R" and output
xp(t) R" is given by the (nonlinear) equation

= a,[i.(t,x)+ bg(t, u)
i=1 ]=1

where al,’",ar and bl,...,bs are constants. (See Fig. 5.) The problem is to
determine a,..., ar and b,... ,bs from the input-output pair (u(t),xp(t)). The
method is to compare the plant with a model given by

m ceifi(t,X,)+ ]g](t, U)
i=l i=1

or some similar equation. We compare (u(t),xo(t)) with (u(t),x,(t)) adjusting the
parameters ai, ] via "adaptive identification laws" on &i and/J] until ci --> ai and/3] ->

(See Fig. 6.) Let us examine two different identification schemes.

plant
Xp

model
Xm

FIG. 6. Model re]:erence identilication scheme.

error
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7.2. Lion’s adaptive observer. The following approach appeared in Lion [15].
Define an error function using the model equation and the plant output"

e =Y c,f(t, xp)+Yjgj(t, u)-2p

Y (ai- ai)fi(t, x) +E (i- bi)gi(t, u)

Y (Aci)f/(t, xo)+X (Afl)g(t, u).

Define the adaptive laws by
-10eTe

A&,-- Oa---= --ef,(t, xo),

Ali
-10eTe e(t, u).
2

(Lion describes this as a "steepest descent law" on the surface F e.)
Letting aa (aa,.... aa) Aft (afl,..., a ,)L f= (gL..., f )L and g

(gL"’, g) we have

The stability of this type of system is characterized by Corollary . We conclude that 0 is
u.a.s, for (S) ff and only ff the time varying matrix (f(t, x(t)) g(t, u(t))) is PTUE.
(This assumes that the various uniform continuity conditions required by Corollary S
hold. But note also the comments in 3 and 4 on weakening these conditions.)

Thus the scheme converges uniformly i and only ff the above PTUE condition
holds. Lion observes that ff f, g, x, and u are all periodic, then the result of LaSalle
noted ater Theorem 2 implies the suciency o the above condition or u.a.s. See also
Morgan and Narendra [19].

.3. NattaaKa’fiafiom.Narendra and Kudva [22] use a
slightly dierent model equation and error unction, as follows"

2m =--(Xm--X,)+, otifi(t, Xp)+,igi(t, U),

e xm xp,

d =.m--.p =--e-t- (cei--ai)fi(t, xp)+ ([3i-bi)gi(t, u)

-e + AceiA(t, xp)/, Aigi(t, u).

The adaptive identification laws are defined by

AOI _f e

Alj -ge.
Letting f= (fl, ", fr), g (gl, ", gs), Aa (a, , a,) r, and At/= (/3,..., fls),
we have

(6) A& _fT 0 Ace
A/ -g 0 At/

The stability of this type of system is characterized by Corollary 6. It follows that 0
is u.a.s, for (6) if and only if the time varying matrix (f(t, xo(t)) g(t, u(t))) is UE. (This
assumes that f and g are uniformly bounded in t.)
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Narendra and Kudva also note the relevance of the result of LaSalle cited above if
(6) is periodic. Yuan and Wonham in [26] give some nonperiodic sufficient conditions
for the asymptotic stability of (6). See also Morgan and Narendra [20].

7.4. The adaptive control problem. The following description of the adaptive
controller is derived from material in Narendra and Kudva [22]. Although not the most
general formulation, it does serve to illustrate how the theorems from previous sections
relate to this type of problem.

Consider

p (Ap(t) + B(t)O(t)F(t))x + B(t)O(t)u (plant),., A.,(t)x., + B.,(t)u (model),

where F and Q represent feedback and feedforward respectively. (See Fig. 7.) Q, F, A.,,
B,,,, x,., u, and xp are accessible, but Ap and Bo are not. We want to specify a scheme that

,% Axp + Bu’

FIG. 7. Configuration ofplant with feedforward andfeedback gain matrices (from Narendra and Kudva
[22]).

continuously adjusts O(t) and F(t) so that [xp(t)-x.,(t)[ converges to 0. Thus A.,, B,.,
Ao, Bp, and u are taken as given, and Q and F can be chosen. The adaptive control laws
will be choices of ( and/6 which may involve A.,, Bin, x.,, u, and xp but which should not
(directly) involve Ao or Bp. Once these laws are defined, we want to find necessary and
sufficient conditions on the plant and model for the uniform convergence of the scheme.

It is assumed that A,.(t)x is u.a.s, at 0 and that there are constant matrices Q*
and F* such that Bp(t)Q* B,.(t) and B.,(t)F* A.(t)-Ao(t) for all R /. (See
Narendra and Kudva [22] for a discussion of the control significance of these matching
assumptions.) Let P(t) and R (t) be positive definite matrices such that

P(t) + P(t)A., (t) + A., (t) 7"P(t) -R (t).

We further assume Q* is symmetric positive definite. Although there are many
important examples that satisfy this last requirement, we would rather Q* be a general
invertible square matrix. However, this seems to lead to various technical problems in
finding a globally defined Lyapunov function. It is convenient to take Q Q*(I- Qo)
and F F* Fo.

7.5. A Narendra and Kudva type controller. Define the error function e x,. xo.
Then . ., A.,e + A.,xo Axo BQFxp + B.,u BOu

A.,e + B.,Fox + B.,Oo(Fxo + u).
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Choosing

PO T T-B.,Pexp,

00 -O*-IBPe(Fxp + u) r,
we find that the resulting (quadratic) system (d,/0, 0o) has a Lyapunov function

V(t, e, Fo, 0o) 1/2(e Tp(t)e + tr (FFo+ 00"0o))

with

V(t, e, Fo, Qo) -e TR (t)e.

Therefore, 0 is uniformly stable. Now, the uniform convergence of the control scheme is
equivalent to 0 being u.a.s. The u.a.s, of 0, however, is completely characterized by
Theorems 1 and 6. Thus, 0 is u.a.s, for (,/o, 0o) on G if and only if the function

a(t, Fo, Qo) =- B.,(t)Fox(t) + B,(t)Qo((F*- Fo)x(t) + u(t))

is UE with respect to constants in G i")A for all annular regions A about 0.
The resulting adaptive control laws are

T TP B,Pex,
T0 B,,Pe(Fxo + u)T.

7.6. Another controller. With the adaptive control problem formulated as in 7.4
above, define the error equation

e A,xp + B,u 2o B,,Foxo + B,Oo(Fx + u).

This suggests

0 T T-Bmexo,

lO --Q*-IBTm (Fx, + u)T

as in the Lion observer, yielding the adaptive control laws
T TB,,exp,
T T0 B,,e (Fxp + u)

By definition of Lyapunov function V(t, Fo, Go) tr (FFo+ OoTO* O0), it is rou-
tine to confirm that, given annulus A, there is a constant c such that -12(t, Fo, Oo) -->
c tr (P/o+ 00o) for all (Fo, Oo) A, where c depends on the annulus and the upper
bounds of B,, O*, F*, xp, and u. Therefore the scheme converges uniformly for
(Fo, Oo) G if and only if the function

cz(t, Fo, Oo)= tr (Pff/o + t’0o)= [xo(t)12lB(t)B,,(t)(Foxo(t)+ Ooy (t))l 2

+Iy(t)I21Q*-B (t)Bm(t)(Foxp(t)+ Qoy (t))l 2,
where y(t)=Fxo(t)+ u(t)= (F*-Fo)xo(t)+ u(t), is PTUE with respect to constants in
G f’)A for all annular regions A about 0. See Theorem 5.

8. Proof of Theorem 1. This section contains the proof of Theorem 1. (Compare
the proof of Theorem 3 in Morgan and Narendra [20].)

$.1. We need the following strong u.a.s, converse theorem of Massera [16], cited
on pp. 244-245 of Hahn [9].
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Let the differential equation f(t, x) have a u.a.s, equilibrium and suppose that
in a domain R/x G the right side satisfies a Lipschitz condition. Then there exists in
R/ G a positive definite decrescent Lyapunov function with a negative definite
derivative, which has partial derivatives of any order desired with respect to all of its
variables. If there exists a uniform Lipschitz constant, then V can be so determined that
all the partial derivatives are uniformly bounded and that, in fact, the same bound can
be used everywhere.

$.2. The following technical lemma is also needed.
LEMMA. Let to: R / R be measurable and bounded. Assume there are constants

a > 0 and b > 0 such that

to(r) dr >- a(t- to)- b

for all >- to >- O.
Then there are positive constants 61, qb, and T such that if to >- O, then there is

tl [to, to + T] such that
tl+

to(r) dr >-_ ok6

for all 8 with 0 <= 8 <= 8.
The (easy) proof is in Morgan and Narendra [20].

$.3. Since x 0 is u.a.s, and f(t, x) obeys a uniform Lipschitz condition, Massera’s
theorem guarantees the existence of Lyapunov function V with the listed properties.
Let A A, be an annular region about 0, and define S G VIA. Thus, since S is
bounded, we have constant ko> 0 such that Ix l-<-ko,

--xV(t, x) -<_ ko, (t, x) _-< ko x efor all S and R +.
Ot Ox

We may also assume If(t, x)l =< kolxl for all x S and R +. Since V is positive definite
decrescent, there are positive constants c2 and Cl with c2[xl=_-< v(t, x)_-<calxl2 all
x $ and R +. Also there is a positive constant c3 such that -f’(t, x)-> c3lxl2 for all
x S and t6R +.

$.4. Choose x0 $. Consider the perturbed system

1 ’) f(t, x f(t, Xo).

Then Xo(t)=-Xo is a (constant) solution to (1’), and

Thus

OV(/,(t, x)= Q(t, x)--x (t, x)f(t, Xo).

OV
(t, x0)= Qx(t, Xo)--x (t, Xo)f(t, Xo)

from which the inequality

--d-ffx (r, Xo)f(r, Xo) dr >=c3e2(t-to)-ce

follows easily.
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8.5. Now we apply the lemma from 8.2 above to conclude that there are
constants 81, 4, and T such that if to R /, then there is some tl E [to, to + T] with

Ox
(r, xo)f(r, Xo) dr >-6

for all 8 with 0 < 8 _-< 81.

8.6. Now 1(02V/Ot Ox)(t,x)]<-ko for all x S and tR+ implies that

OVox oxOV-:---(r, Xo)--z--(h, Xo) -<- ko(r- h) for any r _-> tl _-> 0.

Thus it follows that

It "+ (0V OV
(’, xo)f(’, xo)--U/x

Therefore,

) 1
(tl, xo)f(r, Xo) dr <--kg82

-x(r, xo)f(r, Xo) dr --k <- ko ,, f(r, Xo) dr.

8.7. Now, choosing tl e [to, to + T] as in 8.5, we have

f(’, Xo) d" >--kg82

ko 2

for all 8 with 0 < 8 -< 81. Thus it is clear that there is a 8o with 0 < 6o-<- 81 such that the
right-hand side of the above expression is positive. This 80 is clearly independent of the
choice of Xo 6 S.

Acknowledgment. would like to thank the referee for his helpful suggestions to
improve the readability of this paper. Also I would like to express my appreciation to
my wife, Ann S. Morgan, for drawing the figures.
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CONTINUOUS DEPENDENCE OF SOLUTIONS OF A DIFFERENTIAL
INCLUSION ON THE RIGHT HAND SIDE WITH APPLICATIONS TO

STABILITY OF OPTIMAL CONTROL PROBLEMS*

G. I. STASSINOPOULOSt AND R. B. VINTERt

Abstract. Continuous dependence of the solution set of a differential inclusion on the right hand side is
investigated. A mode of convergence for right hand sides, involving the notion of weak convergence of
set-valued functions, is determined which is necessary and sufficient for convergence of the solution sets. In
the case that the right hand sides depend affinely on the control, perturbations of the control constraint set
with respect to which the solution set is stable are more explicitly characterized. Our resul.ts are applied to give
necessary and sufficient conditions for stability of a general class of control problems under perturbations of
the dynamics.

1. Introduction. We investigate continuous dependence of the solution set of the
differential inclusion

(1.1) 6F(t,x), x(0) a,

on the right hand side, F(.,. ).
Motivation is provided by dynamical systems modeled as

(1.2) ’(t, x, u), u(t) U(t, x), x(O) a.

It is important to establish what tolerances are permitted in specification of/(.,., and
the control constraint set U(., in order that the set of responses x(. (the solution set)
achievable by the model adequately approximates that of the system. Fundamental to
such questions is the sense in which the solution set depends continuously on ]’(., .,.
and U(.,.).

We find it convenient to treat for the most part differential inclusions (1.1).
Perturbations in [(.,., and U(., affect the solution set only in so far as they modify
the velocity set ’(t,x, U(t, x)), which defines the right hand side of a differential
inclusion F(t, x), and conditions for continuous dependence are most simply expressed
through F(., directly. We point out also that differential inclusions provided a natural
setting for study of state dependent control constraint sets U(., ). Some generality is
provided too by giving the boundedness and Lipschitz continuity hypotheses needed
here in terms of the set valued function F(., ). Indeed such hypotheses apply even in
some special situations where F(., .) arises from (1.2) with /(.,., .), U(., .) not
continuous in their x-dependence ;1 a trivial instance occurs when ’(.,., is identically
zero and U(., is any discontinuous set-valued function.

Conditions are first given for convergence of solution sets to the solution set of a
nominal differential inclusion, in terms of convergence in some weak sense of the right
hand sides evaluated on trajectories in the nominal solution set. Convergence of the
solution set is understood in the sense of Hausdorff convergence with respect to the
supremum norm on C(L R"). The conditions are the most general possible in that they
are necessary and sufficient for convergence.

One immediate application is to models of the form (1.2) where/(.,., is affine in
its u-dependence, and U(., is independent of x; necessary and sufficient conditions
are given for continuous dependence on U(.), when ]’(.,.,.) does not vary. This

Received by the editors July 6, 1977, and in final revised form July 27, 1978.
? Imperial College of Science and Technology, London SW7 2BZ, England.
When [(., .,. and U(.,. are not continuous in their x-dependence however, the sense in which the

original equations and the corresponding differential inclusion are equivalent needs clarification (Fillipov’s
selection lemma does not apply in such situations). We thank a reviewer for this observation.
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application generalizes results of Artstein [1] relating to models (1.2) linear in (x, u).
The difficulties in achieving this generalization arise from the fact that in our wider
setting the solution set is only implicitly defined; in 1 the solution set has a convenient
representation through the variation of constants formula, to which results on con-
vergence of integrals of set-valued functions may be applied directly.

A sufficient condition is provided by requiring weak convergence of the velocity
sets along all constant trajectories x (.). Making an additional assumption, we show that
this stronger, but simpler, condition is necessary if we require convergence of the
solution sets for arbitrary initial conditions. This generalizes to differential inclusions a
theorem of Artstein [2] for differential equations.

Finally we examine the implications of our results for stability of control problems.
Necessary and sufficient conditions are given for continuous dependence of the minimal
cost on parameters for arbitrary cost functions in a certain class. The same conditions
imply upper semi-continuity of the set of optimal trajectories.

The debt to Artstein’s work in the present paper will be evident" the main results
here interpolate between those in [1] which concern reachable sets, but restrict
attention to linear control systems, and those in 12] which concern nonlinear differential
equations but not differential inclusions. The properties of set-valued functions and,
particularly, the notion of weak convergence, introduced in [1], are extensively used.
We stress however that our results require some essentially new developments. The
technical core of this paper is an analogue for differential inclusions of the ’equivalent
approximations’ lemma for ordinary differential equations; while the lemma for
ordinary differential equations follow simply from the assumptions, this is no longer the
case here and some delicate constructions are involved. Thus a trivial step in [2]
becomes the most serious problem in developing the broader results of this paper.
Of course the need for studying equivalent approximations does not arise in [1]
because of the assumption of linearity.

Convexity of the velocity sets is assumed. When the differential inclusion arises
from a model (1.2) this assumption amounts to admissibility of relaxed controls. We
could equally have given our results in terms of strong closures (in C(L En)) of the
solution sets, and of convex hulls of the velocity sets.

There is an extensive literature dealing with stability of solution sets to differential
inclusions, though much of this is concerned with dependence on initial conditions (see
[12], [13] for some typical results). Hermes [9]. Granger [14] and Bridgland 14] give
conditions for continuous dependence on right hand sides, and to this extent provide an
overlap with results in this paper, but the perturbations considered are very restrictive
compared with ours and are far from providing "necessary conditions" for continuous
dependence.

It is hoped that the equivalent approximations results will find applications in the
study of algorithm convergence.

2. Notation and preliminaries. The interval [0, 1] is written L
We denote by I" the Euclidean norm, and by I" 17" the supremum norm on C(T,

for T c L a nontrivial closed subinterval.
The space of nonempty, convex, compact subsets of n is written , and the space

of nonempty, compact subsets of C(I, ’) is written
Both t and c are endowed with their Hausdorff metrics:

dist (A, B) max {max {dist (a, B)}, max {dist (b, A)}}.
aA bB

(dist (x, A) min Ix a I).
c=A
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We adopt also the notation

dist (A, B) max {dist (a, B)}, Ilall dist ({0}, A)
aA

for asymetric distance and ’norm’ on g, . Functions, their values and points in their
range space will be distinguished typically as x(. ), x(t), x. Upper case letters, e.g. F(. ),
denote -valued functions, while lower case letters, e.g. f(. ), are reserved as symbols
for l"-valued functions.

We term -valued functions F(.) measurable (Borel measurable) when {t
I IF(t)f3 C } is Lebesgue measurable (respectively Borel measurable) for C ",
closed. (In view of the r-compactness of (", I" I), we could equivalently have defined
measurability in terms of open sets or, indeed, open balls.) If the -valued function
F(. on I is measurable, then F(. may be taken Borel measurable by adjustment on a
null set (this follows from [7, Thm. 1 ]), and the real-valued function IIF(" )11 is (Lebesgue)
measurable [1, Cor. 2.3]. L(L ) is now introduced as the space of measurable
-valued functions F(. on I (modulo null functions) such that liE(. )11 is integrable.

The l"-valued function f(. on I is a selector of the -valued function F(. on I
when f(. is measurable and f(t) F(t), a.e. I.

Given F(. )L(I, ) and E L a measurable subset, we write

I.F(t) dt x R"[x I. ]’(t) dt; ]’( is a selector of F( )}.
The -valued function on/, defined through

H(t) f F(-) dr, all /,
0,t]

with F(. ) L(I, ), is termed the Aumann integral.
Following [3], we introduce also the trajectory integral F(. of F(. L(I, ):

5F(. {x(. C(I, R")lx(" is absolutely continuous,

x(0) 0 and (. is a selector of F(. )}.

It is important to distinguish the Aumann integral, which is an -valued function,
from the trajectory integral, which is a subset of C(I, ).

Let A be an index set. We say that the subset {F (.)IA A} of L1(1, ) is
(i) bounded in LI(I, ) (or strongly bounded) when {I]F (’)Ilia A} is a bounded

subset of L1(/, ),
(ii) uniformly integrably bounded when there exists mA(’)LI(L ) such that

[IF;,(t)II<--_mA(t) a.e. tl, for all
(iii) uniformly integrable if, given e > 0, there exists r/> 0 such that if E c I is

measurable with Lebesgue measure smaller than r/, then (t) dtll <-_ , for all A A.
We remark that since we are dealing with a finite measure space (iii) implies (i).
Following Artstein 1 ], we define weak convergence of sequences in LI(L ):
The sequence {/7/(. )}’--1 converges weakly to F0(" in LI(L t) when, for every

measurable subset E c I, . Fi(t) dt converges to
Since we have limited consideration to convex valued functions in defining

LI(L ), weak limits in LI(L t) are unique [1, Remark 4.3]. Also the trajectory
integral is a compact subset of C(I, ").

3. A class ot differential inclusions. Let there be given nonnegative integrable
functions h (.) and k (.) on L and a ". h (.) and k (.) will remain fixed throughout the
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paper. The point a will remain fixed except in 9.
We set

I0P (t, x) I Rn lx al < h(r) dr

We take to be the set of functions D(., defined on some relatively open subset
of I I containing P (’ may possibly depend on D(., )), which satisfy:
Al" If x lies in the projection of on n, then D(., x) L(T, ), for every

compact subinterval T I such that T x {x } .
A2: For a.e. L D(t,. satisfies

dist (Ot, x), O(t, x’)) k(t)]x -x’
for all x, x’ .

m3: sup, IID(t,x)]lh(t) a.e. tI. (In A2, A3, ={x l(t, x) }.)
The set comprises the right hand sides D(.,.) of differential inclusions of

interest here. The domains of the D(., )’s are taken to be subsets of I x " rather
than the whole of I x E" to permit consideration of certain D(., )’s which are, loosely
speaking, unbounded in their x-dependence. For example, D(., defined through the
nxnmatrixAand U:

satisfies the assumptions with

D(t, x)= Ax + U

when we take

)={(t,x)llx-al< h(r) dr+e

h(t)=(IAl (lal+e)+llUII) e tat’.

(e >0)

(In the definition of h(. ),
Let D(.,.) e be given. It is known [3, Lemma 2.8] that D(., x(.)) e LI(L ) for

every x(.)e C(L R") with graph in 7. Moreover for every (, f)e P, there exists an

absolutely continuous Rn-valued function d(. on [, 1] such that

d(t)D(t,d(t))
a() , a.e. e [, 1],

and d(.) has graph in P. Existence of a local solution d(.) with graph in is established
in [3, Thm. 4.1]. Assumption A3 however assures that the graph of d(. lies in P, and
that d (.) may be developed over [, 1].

For D(.,. ) :t/, we define the solution set of

(3.2)
2(t) D(t, x(t)) a.e. /,
x(0) a,

as @ {d(. C(L 1") d(. is absolutely continuous and satisfies (3.2)}. , defined in

this way, will be referred to as the solution set of D(.,.). We have already
observed that elements in have graph in P. A standard argument, using the property
that D(.,-) is convex-valued, gives that is a compact subset of C(I, "), i.e. an

element in .
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4. Convergence of integrals. We present here results which relate convergence of
integrals of set-valued functions and convergence of their integrands:

Artstein [1, Thm. 6.4] has proved the following property of the Aumann integral:
THEOIEM 4.1. Let Fo(’), {F,.(’)}=I belong to LI(I, Rn). If {F/(.)}=I converges

weakly to Fo(" ), then _o,t3 Fi(r) dr converges to 0,t3 F0(r) dr uniformly in t. The converse
is true provided that the family {Fi(" )}=1 is uniformly integrable.

We shall need an analogous property of the trajectory integral"
THEOREM 4.2. Let Fo(’), {Fi(’)}/C=l belong to LI(I, ). If {F/(.)}7= converges

weakly to Fo(" ), then F(. converges to Fo(" in . The converse is true provided that
the family {Fi(" )}=1 is uniformly integrable.

Proof. Suppose that F(. )--> Fo(. weakly. To establish convergence of the tra-
jectory integrals we need only show that, given an arbitrary subsequence, there exists a
further subsequence such that dist (Fi(’), Fo(" )) --> 0 and dist (Fo(’), Fi(" )) --> O.

Limit attention to an arbitrary subsequence. Consider first {dist(Fi(.),
Fo(" ))}i 1. For each there exists, by compactness of F/(. ), some h(. Fi(" such
that dist (hi(’), Fo(. )) dist (F/(.), Fo(" )). Let fi(" be the selector of F/(. for
which hi(t)- [.tofi(r) dr, tL By assumption F/(. )-> Fo(" )weakly in LI(L r) and Fo("
is convex-valued; by [1, Props. 4.10 and 4.11] then, {fi(" )} o___ converges weakly to some
selector fo(" of Fo(" for some subsequence. It follows that hi(’)--> ho(’) uniformly,
where ho(t) o fo(r) dr, I, and therefore dist (F/(.), Fo(" )) --> 0.

Now consider {dist (Fo(’), Fi(" ))}i 1. For each we may choose hoi(" Fo("
such that dist (hoi(’), F/(. )) dist (Fo( ), F/(. )). Let foi(" be the selector of Fo("
for which hoi(t)=[.ofoi(r)dr, tsI. The selectors of Fo(’) are weakly sequentially
compact whence (for a further subsequence) {foi(" )}-- converges weakly in L 1(/’, ) to
some fo(" which is a selector of Fo(" ). But by [1, Prop. 4.12], fo(" is the weak limit of
some sequence {fi(" )}=1 with fi(" a selector of F/(. for each i. Set hi(t)= to fi(r) dr,

I. Since fi(’)-foi(’)--> 0 weakly, hi(’)- hoi(’)-> 0 uniformly and therefore
dist (Fo(’), F/(. ))--> 0. The first assertion is proved.

The second assertion follows from Theorem 4.1, since convergence of trajectory
integrals implies pointwise convergence of the Aumann integrals.

Bridgland [-3, Thm. 3.2] gives a dominated convergence theorem for trajectory
integrals, which is a rather special case of Theorem 4.2.

We conclude immediately from Theorems 4.2 and 4.1 a useful relationship
between convergence of Aumann integrals and trajectory integrals.

COROLLARY 4.3. LetFo(. ), {F(. )}i= belong to L (I, gt). Suppose that {F/(. )}i-_ is
uniformly integrable. Then {5F/(.)}il converges to Fo(’) in c if and only if
to,tl Fi(r) dr converges to to,t Fo(r) dr for each I.

5. Equivalent approximations. The main results, to follow in 7, concern the
stability of the solution set under perturbations of the right hand side of a differential
inclusion. Conditions for convergence of a sequence of solution sets are given in terms
of weak convergence of the corresponding right hand sides evaluated along limiting
trajectories. Such results obviously require developing in the present differential
inclusions setting an analogue of the equivalent approximations lemma, of importance
in ordinary differential equations, which asserts that uniform convergence of tra-
jectories corresponding to the perturbed ordinary differential equations is equivalent to
the convergence of the integrals of the perturbed right hand sides evaluated along the
uniform limit of the trajectories [8, Lemma 35.3].

The equivalent approximations lemma for singleton-valued functions follows
rather trivially from the assumptions on the family of right hand sides (in fact the
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Lipschitz condition A2), but the corresponding result in the present setting involves
some rather complicated constructions. We shall repeatedly use the following theorem
due to Filippov [6, Thm. 1]:

THEOREM 5.1. Given D(.,.)EJX, an interval T=[to, tl]CL and an absolutely
continuous function y (.) C(T, ") with graph in P, we write

p(t)= dist (p(t), D(t,y(t))), t6 T.

Then p(. is integrable, and there exists a solution x(. of

such that
(t) D(t, x(t)), X(to) y(to),

tl

Ix(.)- y(.)l-<_ c p(-),-

where the constant C is independent o]D(., and y(. ).
The theorem in [6] is stated for D(., )’s continuous in their t-dependence, but the

proof adapts in an obvious manner to apply under the more general hypotheses of
Theorem 5.1.

In the following results, it is understood that D(., ), G(., are elements in t/. @,
denote the corresponding solution sets (for common initial value x(0) a). 9i is the

solution set of Di(’," etc.
LEMMA 5.2. Given e > O, there exists rl > 0 such that

dist (5D(., d(. )), G(., g(. ))) -<_ e

whenever dist (9, of) =< r/and d(. E @, g(. E 03 with Id(" )- g("
LEMMA 5.3. Given rl >0, there exists e >0 such that dist (, )-<_ r/ whenever

dist (oCG(., g(. )), 5D(., g(. ))) =< e for all g(. (.

These two lemmas are proved in 6.
The lemmas combine to give the new equivalent approximations result:
PROPOSITION 5.4. LetDo(’, and {Di(’," )}7=1 belong to J/I. Then, if@i

and d(. ) d(. in C(L ) with d(. , 1, 2,. , we have that

dist (Di(’, d(. )), Do(’, d(. ))) 0.

On the other hand, if
dist (5Di(., d(. )), 5Do(’, d(. )))0

for every d(. o, then i o.
Proof. Suppose that 9i9o, di(. )d(. and that, for each i, di(. )69i. Then

d(. ) 9o. The first assertion is now seen as a restatement of Lemma 5.2.
Consider now the second assertion. This will follow from Lemma 5.3 if, under the

stated hypotheses, dist (5D(., d(.)), 5Do(., d(.)))0 uniformly over d(.)E 0.
Define ei(d) dist (Di(’, d(" )), 5Do(", d(" ))). The sequence {ei(" )}o= is an equicon-
tinuous family of functions on the compact set @0. Indeed for d(. ), d’(. )6 o

e(d’) <= dist (5D(., d’(. )), D(., d(. )))+ e(d)+dist (5Do(’, d(-)), Do(", d’(. )))

<- ei(d) + 2ld(.)-d’(.)l,. Jo k(t) dt,

whence, by symmetry, we have that

[ti(d’)- 8,(d)l, 21d(’)- d’(.)l,. | k(t) dt.
Jo
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The sequence converges uniformly to the zero function then since it converges
pointwise, l-1

6. Equivalent approximations: Proof ot the lemmas. We let {a} denote the
element x(. C(I, R") for which x(t) a, for all L

Proof of Lemma 5.2. Take d(.)@, 6(.){a}+5D(.,d(.)). Let {to
0, tl,’", tN 1} partition I uniformly into N intervals. Define 6k(’) on Ik, Ik
[tk, tk + as

(6.1) 6k(t)= 6(t)--6(tk) + d(tk),

Then 6k(" ) C(Ik, ) is absolutely continuous and

k(t)D(t,d(t)) a.e.tIk" 6(tk)=d(tk).

Furthermore

tk+l I tk+l
dist (k(t), D(t, 6k(t))) dt <- dist (D(t, d(t)), D(t, 6k (t))) dt

k tk

tk+l

<= k(t)ld(t)-&(t)l dt
tk

I tk+l ftt<- 2 k(t) h(r) dr dt.
tk

Let us apply Theorem 5.1 to the differential inclusion:

(6.2) (t) D(t, x(t)), a.e. Ik, x(tk) d(tk).

In view of the last estimate there exists a function dk (’) on Ik being a solution to (6.2)
and such that

tk It(6.3) I&(" )-- 6k(" )lIk 2C k(t) h(r) dr dt.

Notice that, by construction, dk (") must be the restriction to Ik of some element of @.
We now define a function 6(. on L by piecing together the dk(" )’s to give a continuous
function"

g(0) a,
(6.4) g(t)=dk(t)--dk(tk)+g(tk), tIk, for k =0, 1,’’" ,N-1.

In view of (6.3)

(6.5). I&.)-(,)l, <-2c k(t) h(r) drdt=2C k(t)h(t)dt
k=0 ot

where h(. is defined as

(6.6) /(t) h(r) dr, [tk, tk+l), k O, 1,. ., N- 1.

Now suppose that dist (, ) _-< r and let g(. be such that Ig(" )- d(. )1 --< n. Since
each dk (’) is the restriction to Ik of an element in N, by hypothesis we may choose, for
each k, functions gk(’) C(Ik, ), being restrictions to Ik of elements in , which
satisfy

(6.7) Igk(’)- dk("
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We now take ( to be the function on I obtained by piecing together the gk )’S tO
give a continuous function"

’(0) a,
(6.8)

(t) gk(t)-- gk(tk) + /(tk), Ik for k 0, 1," ", N 1.

In view of (6.7)

I’(" )- g(" )l,, -< 2Nr/;

it follows from (6.10) that

(6.11) I,k(t)--4/k(t)[<=2k(t)(rt+ h(r) d

We define the function yk(" on Ik as

yk(t) gk(tk) + 4A(r) dr,

By (6.11)

(6.12)

<- k(t)(Igk(t)-- dk(t)l + Idk(t)- d(t)l + Id(t)- g(t)l)

<_- k(t)(2n + 2 h(r) d e

a.e. Onlk.

13’(’)--gk(’)lt 2 k(t) dt + 2 k(t) h(r) dr dt.
tic k

Finally we define the function y(.) on I by piecing together the Yk(’)’S to give a
continuous function"

V(0) a,
(6.13)

y(t) yk(t)--Yk(tk)+ for k 0, .l, , N- 1.

Observe that now y(.) {a}+ 3G(., g(.)). Since 3;(’) was constructed by piecing
together the gk(" )’s and y(. by piecing together the yk(" )’s, we have by (6.12)

with hN(’) as in (6.6). By (6.9)

(6.14) ly(’)-(’)],-<2’r/(N+ k(t) d +2(C+ 1) k(t)ftu(t) dt.

whence by (6.5)

(619) ]3;(" )- 8(-)l, <- 2Nrt + 2C I0 k(t)lYtv(t) dt.

For each k we may select 4/k(’)Ll(Ik, R) such that 4/k(t) G(t, g(t)), a.e. on Ik, and

(6.10) I,k(t)--k(t)l=dist(k(t), G(t,g(t))), t6Ik.

This is possible by Lemma 2.5 of [3], which extends a selection lemma of Hermes to
permit unbounded set-valued functions. Since

dist ((t), G(t,g(t))) <- k(t)[gk(t)-- g(t)]
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Now taking note of the manner in which hN(" is defined in terms of the integrable
function h(. ), we see that as N- o, hN(. )- 0 uniformly. Given e > 0 then, it is clear
from (6.14) that N and may be chosen so that

It follows that dist (D( , d(. )), G(., g(. )))-<_ e. But the roles of d and g can be
interchanged in the above arguments. It is clear then, for the same choice of N and
dist (D(-, d(. )), G(., g(. ))) <- e. The proof is complete.

Proof of Lemma 5.3. We first show that dist(, )_-<r/, whenever
dist (G(., g(. )), D(., g(. ))) <- e for all g(- qd, and e > 0 is sufficiently small. Take
any g(.) d. Then g(.){a}+dG(., g(.)) and there exists 6(.){a}+dD(., g(.))
such that 16.(" )-g(" )1I -< e by hypothesis. We have

| dist (’(t), D(t, 8(t)))dt <_ | k(t)lg(t)-8(t)[ dt<-e | k(t)dt.
Jo Jo o

By Theorem 5.1, there exists d(. ) such that

Id(" )- 8(. )1, -< Ce Io k(t) dt

and

Thus it suffices to take e rl(C k(t) dt + 1)-1.
We proceed to show that e > 0 may be chosen so that additionally dist (@, ) <= r/.

Let us suppose without loss of generality that k(. has been chosen so that k(t) >= 0 > 0
a.e. on /. We write K =0 k(t)dt and let {t0=0, 1,..., ts 1} partition I onto N
intervals in such a way that

tk+l K
k(tldt=--, k=0, 1,...,N-1.

It is clear then, with the assumption on k(. ), that the lengths of the intervals within the
partition tend to zero uniformly as N--> c. Take any d(. ) . We shall construct a
sequence g0(’),’",gN(’) of elements in qd having the property that ]gk/l(’)--
d(" )]t0.,k/ll is suitably estimated in terms of Igk(" )-d(" )]to.,a, k 0, 1,’’’, N-1. In
consequence an estimate for [g(. )- d(. )tx in terms of N, e is obtained, on the basis of
which we conclude that Ig(’)-d(’)l may be made arbitrarily small by choosing
appropriately these parameters.

The sequence go(" ), , gv(" is defined inductively, go(" is taken as an arbitrary
element in ca, since only its value a at 0 matters. Suppose gk (") ca is given and set, Id(.)-g,(.

By hypothesis dist (G(., g(.)), D(., g(.)))_-< e for all g(.) ca. Since gk(’)
{a}+ JG(., gk(" )), there exists a function 8k(" on [0, tk], being the restriction to [0, tk]
of some element in {a}+ JD( gk(" )) satisfying

We extend the domain of definition of 6k(’) to [0, tk+l], by setting

8k(t) 8k(tk) + k(r) dr
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and choosing k(" Ll(Ik, ’) such that

k(t) D(t, gk(t)) a.e. on Ik
and

[d(t)-k(t)] dist (d(t), D(t, gk(t))) a.e. on Ik.

Such a choice is possibly by Lemma 2.5 in [3]. 8k (") is now the restriction to [0, tk/l] of
some element of {a } + 5D(., gk(. )). For Ik we have

]Sk(t)- d(t)[-< :k + e + Ik (z)- (z)l dr

-< : + e + dist (D(r, g(r)), D(r, d(r))) dr

<- +e + k(r)lg(r)-d(r)l dr

and

16,(" )-d(. )l, --< s + e + k(t) :k + I(r)-(z)l d dt

(6.15)
1 + k(t) d + 2 k(t) h(z) dz dt + e.

By hypothesis, there exists a function (.) on I, which is the restriction to I of
some element in {a}+ G(., g(. )) and which satisfies

(6. 0) (. - q(.), .
Set

y (t) (t) tk + g t ),

Then

(6.17) 1(tk)- g(/)1-< 1(t)- 6k (t)[ + 16(t)- gk(tk)l <- 2e

and by (6.16) and (6.17)

Iw(" )- 6k(. )l, --< [(" )- 8g(. )[, + [(t)-g(t)l-<- 3e.
It follows from (6.15)

(6.18) I/k(.)--d(.)l,k -< 1+ k(t) d +2 k(t) h(r) drdt+4e.

Since 3’(" is the restriction to I of some element in {a}+ G(., g(. )),
tk+l I tk+l

dist (4/k(t), G(t, yk(t))) dt <- k(t)[gk(t)--yk(t)[ dt
tk

tk+l ftt<= 2 k(t) h(z) dr dt.
tk

By Theorem 5.1, then there exists some absolutely continuous function g, (.) on Ik such
that

,(t) G(t, &(t)) a.e. on I; gk(t) yk(t)(= g(t))
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and

(6.19)
tk+l It<_-2c k(t) h(z) dzdt.

tk

Now define the function gk41(" on I by setting

gk+l(t) gk(t), [0, tk],

gk+l(t) k(t), [tk, /k+l],

and assigning the values of gk+l(’) arbitrarily on (tk+l, 1], but so as to ensure that
gk+1(" . This is possible since gk+1(" on [0, tk + 1] is a piecing together of restrictions
of elements in rg. By (6.18) and (6.19),

Ittk+lt) Itk+llttIgk+l.(.)--d(.)lto,,+]<--_\l+( k(t) d k+2(C+l) k(t) h(r) drdt+4e.
tk

This completes the definition of the gk(’)’s. We have along the way obtained

k+l---lgk(’)--d(’)ltO,tk+x]

( ftk+l t) Ittl+llt1+ k(t) d :k+2(C+l) k(t) h(r) drdt+4e
tk

for k 0, 1,..., N-1. Notice that :o- 0 and that in particular

Ig,(" )- d(. )l, --< sc
It remains to demonstrate that r may be made arbitrarily small by suitable choice

of e and N. To that end let us define the nonnegative numbers {sr}r=o recursively as

( -) 2(C+I)HNK
+4e, k=0,1 N-1"k+l 1 + r +

N

’0 0,

where HN=max0_<_z-i {,t+lh(z)dr}. We then have that k<_rk =<sr for k=
0, 1, , N- 1 and moreover

[ 4N] [( K) 1 [ 4N]’v 2(C + 1)HN +-e 1+ 1 <= 2(C + 1)HN +---e (e K 1).

But h (.) is integrable. Since, as previously pointed out, the lengths of the intervals
in the partition tend to zero uniformly as N , we may conclude that Hs 0. Let
be the smallest integer such that 2(e:-l)(C+l)H<=rl/2 and take e=<

Krl/(81(eI 1)). With this choice -<_ sr =< r/and the proof is complete. I--I

7. Necessary and sufficient conditions for convergence of solution sets of differen-
tial inclusions. Proposition 5.4 which replaces the lemma of equivalent approximations
for singleton-valued functions and Theorem 4.2 now come together to give our main
result. This asserts that convergence of solution sets is fully characterized by weak
convergence of the corresponding right hand sides evaluated on trajectories in the
limiting solution set. Again, @i denotes the solution set corresponding to Di(., ).

THEOREM 7.1 LetDo(. "), {Di(..)}= belong to t. Then ]:or {@} tO converge
to o it is necessary and sufficient that {Di(’, do(" ))}= converges to Do(’, do(" )) weakly
in L (I, ) for every do(" o.
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Proof. Sufficiency of the condition follows from Proposition 5.4 and Theorem 4.2.
We prove necessity. Suppose that i o in c and take any do(" ) o. For each
choose di(" i such that I&(" do(. )lg <- dist (D, Do). Notice that d(. do(" uni-
formly. By Proposition 5.4 then, 5D(., di(’)) 5Do(., do(’)) in c. But this implies
5Di(., do(-)) 3Do( do(" )) in c in view of assumption A2. By assumption A3 the
family {D(., do(’))}_-i is uniformly integrable; we conclude from Theorem 4.3 that
Di(’, do(" )) Do(" do(" )) weakly in LI(I, ) as required. [3

The above condition for convergence of the solution sets is of course the most
general possible in the present context, but it is difficult to use because it requires
knowledge of the limiting solution set. We deduce from the theorem however the
following more readily applicable, though more restrictive, condition for convergence
of the solution sets"

COROLLARY 7.2. Let Do(’," and {Di(.,. )}i=1 belong to ill. Suppose that
+, +,

It Di(r’ x) dr ft Do(’, x) d"

for each (t, x, t3) such that (t, x) P and <- + 6 <= 1. Then

@i@o

in c.
Proof. We merely sketch the steps in the proof, since they are standard ones. Let

d(. Do. Let {to 0, tl," , t,, t,/l 1} be a uniform partition of [0, 1] and let dn("
be the piecewise constant function defined by d,,(t) d(tk) for [tk, tk/l), k O, ", n.
Suppose that the hypothesis of the Corollary holds. Then for each t, each n,

( Ito.tl D(r’d"(r))dr’Ito.tl Do(r,d,(r))dr)Odist

as . But d(. is absolutely continuous whence Id.(" )- d(. )1 --’ 0 as n . Bearing
in mind the restrictions imposed on elements in the set we easily show that, for each t,

( fo,t Di(’d(’))d"fto,t D(,d(,))d,)Odist

as n , uniformly in i, and by another simple step that

( [O,t] Oi("d(’))d"f[o,,] O("d(’))d’)O(7.1) dist

as , for each t. Since the Di(’, )’s are uniformly integrably bounded, (7.1) implies
that

D,(., d(. )) Do(., d(. ))

weakly. But d(.) Do was arbitrary and the corollary now follows from Theorem
7.1. [3

8. Dynamics afline in their control dependence. Now consider dynamical systems
affine in their u-dependence:

(8.1)
(t) f(t, x(t), u(t)) a.e. L
f(t, x, u)= fl(t, x)+f2(t, x)u with u(. a selector of U(. ), x(0)= a.
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Theorem 7.1 specializes to characterize the perturbations of the control constraint set
under which the solution set is stable.

Let ha(" be a fixed nonnegative valued, integrable function on L Denote by
the nonempty, convex, compact subsets of n, and define

f {U(. ) L,(L ,.)I u(/)ll--< hn(t) a.e.}.

Now fl may be equipped with a metric topology r compatible with weak con-
vergence such that (fl, r) is compact. To see this define

s (p; U) max {p’ulu U}

for p " and U 5,,, (p’ denotes p transpose). Let {pi}=l be a dense subset in
Then if we set

p(U(.), V(.))=suPl [s(p; U())-s(p; V(sC))]dsc
tl

the metric on L (I, ,,,) defined by

,(u(.), v(.))
(u(.), v(.))= E .=, +o(u(.), v(.))

serves the purpose. Indeed, using the characterization of weak convergence given in 1,
Thm. 4.1(iii)] and simple continuity-density arguments, we establish that 12 is weakly
sequentially complete, that it is complete also with respect to the metric p(., and that
weak convergence is equivalent to convergence in the metric p(.,. ). But f is weakly
sequentially pre-compact [1, Prop. 4.9]. f, then, is sequentially compact, and r, taken
to be the topology on f induced by p(.,-), has the desired properties.

Let be some relatively open subset of I ItS" containing P (P as in 3). The
functions fl(’,’), f2(’,’) on take values in [" and the space of m by n matrices
respectively.

We assume that

(8.2) D(t, x)= {/l(t, x)}+ f2(t, x)U(t)

is an element in M for each U(. ) D.. We also assume that for all continuous functions
x(. with graph in P,/2(’, x(. )) is essentially bounded.

We write c, for the family of solution sets of the differential inclusion

(t) {fx(t, x(t))}+f2(t, x(t))U(t),
(8.3)

x(0)= a

obtained by allowing U(. to range over f, and we write s for the map carrying U(.
into the solution set of (8.3).

PROPOSITION 8.1. S: (f, r) c is continuous, and if each element in c, contains a
member d(.) such that [2(’, d(.)) is a.e. one-to-one, then s is a homeomorphism as a
mapping from (1, r) to cn, with the topology induced by %

Proof. Since (f, r), c are metric spaces, we need establish continuity only in the
sense of sequences.

Consider {Ui(’)}=I, Uo(’) in f and write {Di(’,’)}=I, Do(’,’) for the cor-
responding right hand sides, as defined by (8.2). Our assumption on 2(’, ’) permits
direct application of [1, Prop. 6.3] which gives that Ui(" ) Uo(" weakly in La(L
implies D,.(., do(" )) Do(’, do(" )) weakly in LI(L ) for every do(" @o. Conversely
if Di(. do(. )) Do(. do(. )) weakly in LI(L) for some do(’)@o such that
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fz(’, do(" )) is a.e. one-to-one, the same proposition asserts that Ui(" U0(" weakly in
La(L ,,). We may now apply Theorem 7.1. 11

The assumption of affine dependence cannot be dropped. Indeed suppose that
V c R" is a convex subset and f(., .,. ): Rl/n V Rn is a continuous function such
that F(.,. defined by

(8.4) F(t, x)= {f(t, x, u (t))}

satisfies assumptions A1, A2, A3 for every control u(.), that is to say a measurable
function taking values in V. Here each right hand side of the form (8.4) gives rise to a
solution set {x(. )}, where x(. is the unique solution of

(t) [(t, x(t), u(t)),

u(t) V a.e. 6/, x(0) a.

Let x0(’) be the solution corresponding to the control Uo(’), and suppose that
](t, Xo(t), is not the restriction to V of an affine function for all L Then, as is easily
shown, we can always find a sequence {ui(" )}i=a converging to Uo(" weakly, such that

{f(’, X0(" ), Ui(" ))} 7 {f(’, X0(" ), U0(" ))}

weakly in Lx(I, ) and hence {xi(" )} - {x0(" )} in g, by Theorem 7.1. These observations
illustrate that, in the absence of assumptions on affine dependence, the "weak"
topology r on D, is too weak to describe perturbations with respect to which the solution
set is stable. It is shown in [10] that strong convergence of the U(.)’s in Lx(L ,,) is
necessary for stability of solution sets for functions f(.,., in some prespecified class
which permits the u-dependence to be nonaffine.

Given a right hand side in with solution set @, the corresponding attainable set
@(. is taken to be the set-valued function defined as

@(t) {d(t)ld(" @}, I.

In general, convergence of the solution sets is a stronger property than pointwise
convergence of the attainable sets, thus Theorem 7.1 and Proposition 8.1 provide only
sufficient conditions for convergence of the attainable sets. Only when [(.,., is affine
in (x, u) can one immediately assert that pointwise convergence of the attainable sets is
equivalent to convergence of the solution sets. This equivalence easily follows from
Corollary 4.3 and the representation of the attainable set through the variation of
constants formula.

9. Pointwise conditions on the right hand sides. It has been established (Theorem
7.1) that convergence of solution sets and weak convergence of right hand sides
Di(’, do(" )), evaluated on all do(" )’s in the limiting solution set, are equivalent. We have
seen (Corollary 7.2) that the Theorem leads to a simple sufficient condition for
convergence of the solution sets. In this section we show that, under additional
hypotheses, such a condition, in this case weak convergence of the Di(’, x)’s for each
x ", is also necessary for convergence of the solution sets when we require con-
vergence of the solution sets for every initial condition.

We introduce the new hypotheses. Let D(.,. be a right hand side.
A1, A2, A3: D(., satisfies A1, A2, A3, respectively, with taken as

= [0, 1] R".

Notice that A3 is a significant strengthening of A3, since it excludes right hand
sides "unbounded in their x-dependence".
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A4" There exists an n-valued function d(.,. such that {d(.,. )} satisfies A1, A2
and A3 and, for a.e. L

d(t,x)D(t,x) for all x ".
Given a right hand side which satisfies A1, A2, A3, it is always possible to find some

"selection" d(.,.) such that {d(., .)} satisfies A1, A3 but such that d(t, x) is merely
continuous in x. This follows simply from [6, Lemma 6] and [3, Lemma 2.5]. The
substance of assumption A4 is that d(t, x) may be chosen Lipschitz continuous in x. A4
is of course satisfied in the situation of primary interest, namely when

D(t, x)= f(t, x, U(t))

under mild assumptions on f(., .,. and U(. ). A rather general condition for D(., to
have a "Lipschitz continuous" selection d(., may be derived from a recent result of
Ioffe 11 ].2

Under assumptions A1, A2, A3 on D(., ), assumptions A1, A2, A3 are satisfied
for arbitrary initial condition a e [. Recall that a enters the assumptions A1-A3
through definition of the set P. We need to emphasize a in the notation, since it is no
longer fixed. Let @a be the solution set for

(t)D(t,x(t)),

x(0) a,

in which D(.,.) satisfies A1-A4. We write a(t)= {x(t)[x(. ) a} for all eL The
important implication of A4 is that

(9.1) U @a(t)=N", allteL

Equation (9.1) is true when D(., is singleton-valued (see application of Lemma 6.4 in
concluding lines of the proof of Theorem 6.1 in [2]) and is true a foriori when D(., is
set-valued. We write @ for the subset of C(L )"

The following lemma is essentially a restatement in our setting of Lemma 6.2 of [2].
LEMMA 9.1. Suppose that the right hand sides {Di(’, ")}=x, D0(’,’) satisfy A1-

A3. Suppose also that Do(’," satisfies A4. Then the following two statements"
(i) Di(’, d(. ))D0(’, d(.)) weakly in LI(I, ) for every d(. ) @o, and
(ii) o Di(’, x) dr o Do(r, x) dr, [or every (t, x)

are equivalent.
Proof. Since the family {D(., a(’))}=x is uniformly integrably bounded (i) is

equivalent to

(9.2) D(r, d(r)) dr- Do(r, d(r)) dr

for every /, d(. 90.
Given any constant function x(t) x, all L and any positive number e > 0, then

there exists a continuous function d*(. and a finite partition of I into intervals I such
that Ix(" d*(" )It -<- e and such that, for each i, a*(. coincides on Ii with some element

We thank a reviewer for calling our attention to this reference.
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in 0. This is easily shown to follow from the property that

U @’(t)=R for allteI
al

and the bound on the derivative d(.), d(t)<=h(t), a.e. tel which is implied by
assumption A3.

Suppose (i) holds. By the uniform Lipschitz condition A2, we have for 0, 1, ,
Di(’, x) dr- Di(z, d*(’r)) dr -<_ e k(’r) dr,

and thus (ii) follows since e can be taken arbitrarily small.
We show that (ii) implies (9.2) following the standard argument outlined in the

proof of Corollary 7.2. 71
In view of Lemma 9.1, the following theorem now follows immediately from

Theorem 7.1.
THEOREM 9.2. Suppose that {Di(’, )}i 1, Do(’," satisfy assumptions A1, A2, A3

and that additionally Do(’," satisfies A4. Then @-@, for any initial condition
a e , if and only if

for all t, x) e (Y.

Di(z, x) dr Do(z, x) dr

10. Stability ot a class of optimal control problems. In this final section we turn to a
class of optimal control problems and apply Theorem 7.1 to characterize perturbations
of the dynamics under which the minimum cost is stable.

We consider free endpoint problems"

minimize c(x(. )) subject to k(t) e D(t, x(t)) a.e. on L
x(0) a.

Here c(. is a continuous real-valued function on C(L ) and D(.,.
Do(’, ") and {Di(’,’)}l in are given. With each Di(.,.) is associated an

optimal control problem i obtained by substituting Di(’,’) for D(.,.) in . o is
interpreted as the unperturbed problem. We denote by Ji the corresponding minimum
costs, and by @* the corresponding minimizing sets, that is the subsets of C(I, ) on
which the minima are achieved. The continuity of c(.) and the compactness of the
solution sets @g ensure that each 9/* is nonempty, compact.

THEOREM 10.1. Ji Jo for every continuous c(.), if and only if Di(’, do(’))
Do(’, do(’)) weakly in LI(I, ), ]:or every do(.)e 90. Moreover if either of these
equivalent conditions hold, dist (*, o* - 0.

Proof. Suppose that Di(’, do(" ))
90. By Theorem 7.1, i- @o in

Define the set valued mapping y(. on

Since c(. is continuous on C(L ) and 3’ is a continuous set-valued mapping in the
sense of Berge [5, p. 114], we conclude from Berge’s theorem of the maximum [5, p.
122] that the function on ,

J(7/’) min {c (x(.))[x(. e 3’(7/’)}
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is continuous, and the set-valued mapping y* on "
is upper semicontinuous (in the sense of Berge), Let Ji y*(@i). Since @i @o we have
that Ji Jo. But D y*(@) for 0, 1,. , so that in addition, dist (@/*, Do*) 0 by
upper semicontinuity.

To establish the converse, suppose that J Jo, for every continuous c (.). Choosing
in particular c(x(. )) Ix(. )- do(" )Ix, with do(" e @o, J Jo implies that do(" is the
limit(in C(I, Nn)) of some sequence {d(. )}= with di(" D*i c @i. By the compactness
of @o then, noting that do(" e @o was arbitrary, we have dist (@o, @i) 0. On the other
hand, by pre-compactness of U i=1 Di, every sequence {d(. )}=1 such that d(.),

1, 2,. , contains a subsequence converging to some element d(. in C(L [n). Set
c(x(" )) Ix(" )- d(" )Ix. Then Ji O, and, under the hypothesis, Jo 0. But this must
mean d(’) @o, whence dist (Di, @o) 0. We conclude that Di 0. By Theorem 7.1
then Di(’, do(" )) Do(’, do(" )) weakly in LI(/, ) for any do(" 6 Do.

The final assertion of Theorem 10.1 has the interpretation" if the dynamics are
slightly perturbed, then no solution for the perturbed problem will emerge which is not
close to some solution of the unperturbed problem. In particular, if the control
problems under consideration have unique solutions, then small perturbations of the
dynamics (of the form described in Theorem 10.1) give rise to small perturbations of the
solution.

We could state an analogous result to Theorem ’10.1 under the stronger hypotheses
of 9 relating weak convergence of {D(. x)} i=1, each x E, to convergence of the
minimum cost for all continuous functions c(. and initial conditions a

We have commented in 8 that Theorem 7.1 concerns stability of the solution set
@o, that is the subset of C(I, ) comprising "admissible trajectories", rather than
stability of the attainable set Do(’), as in [1]. This is advantageous in applications to
stability of control problems, since stability results are obtained for costs which are
functionals on the whole trajectory.

We consider only free endpoint problems here. Conditions for stability in the
presence of endpoint constraints are given in [10].
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CANONICAL REALIZATION OF BILINEAR INPUT/OUTPUT MAPS*

J. G. PEARLMANt AND M. J. DENHAM$

Abstract. The idea of extending the comprehensive theory of state space realization for linear systems to
certain classes of nonlinear systems has been the subject of much recent research in mathematical system
theory. One such class are those systems with a bilinear input/output map, first considered by Kalman [Pattern
recognition properties of multi-linear machines, IFAC Symposium on Technical and Biological Problems of
Control, Yerevan, Armenian SSR, September, 1968] in 1968. Kalman’s paper raised many questions
concerning the canonical realization of such an input/output map; in particular it demonstrated that the
proposed realization procedure could lead tq a nonreachable realization. More recently, Sontag and
Rouchaleau [On discrete-time polynomial systems, J. Non-linear Analysis, Theory, Methods, and Appli-
cations, (1976), no. 1, pp. 55-64] have shown that the required concept to be applied in this case is
"quasi-reachability," i.e. that the state set of the realization is the closure (in the Zariski topology) of the
reachable set.

The present paper is a further contribution to this theory, providing a necessary and sufficient condition
for quasi-reachability of a realization of a bilinear input/output map. Unexpectedly, this is given by the easily
verifiable algebraic criterion of reachability of a corresponding linear system. This leads to a constructive
procedure, analogous to the linear case, for reducing a realizatioa of the bilinear map to a quasi-reachable
one, thereby reducing the state dimension of the realization.

1. Introduction. The idea of extending the comprehensive theory of realization for
linear systems to certain classes of nonlinear systems has been central to a great deal of
recent research in mathematical system theory. One such class is the set of systems with
a bilinear input/output map

(1) f." Ux V Y

first considered from the realization viewpoint by Kalman [1] in 1968. Kalman’s paper
raised many questions concerning the canonical realization of such a system, demon-
strating that in general the procedure proposed could lead to a realization with a state
space which was not reachable. In 2 of this paper, we outline this procedure and its
module theoretic basis developed in [1].

More recently, Sontag and Rouchaleau [2] have defined the concept of "quasi-
reachability" i.e. a system is quasi-reachable if its state set is the closure (in the Zariski
topology) of the reachable set. They demonstrate that this is the correct property to
apply to certain classes of nonlinear systems in a definition of a "canonical" realization,
together with the notion of "algebraic observability" also defined in [2]. In 3 of this
paper, we introduce this property into our study of bilinear systems and prove the main
result of the paper: that quasi-reachability of the bilinear system is equivalent to
reachability of a corresponding linear system.

The condition for quasi-reachability leads naturally to a procedure for reducing
any given realization of the bilinear system to one which is quasi-reachable. This is
described in 4.

2. Definitions and realization procedure. In this section we summarize the main
results of [1] and the subsequent contributions of [3-1 based on these results.
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We use U, V and Y to denote the following spaces"

U {u R with compact support},

V {v R with compact support},

Y {y RN-o}.

DEFINITION 2.1. A map f: U V- Y is a bilinear discrete-time stationary
input/output map if it satisfies the following conditions:

(i) bilinearity: f(klUl + kEU2, v)= klf(t, v)+ kzf(u2, v)

f(u, klvl + k2v2)= kf(u, /.)1) -[- k2f(u, v2)

for all k, k2R; u, ul, u2 U; v, v, v2 V;

(ii) stationarity: f(tru, try)= o’*f(u, v)
where tr and tr* are shift operators:

O’U "--O’(""", U 1, U0)"--(’’’, U 1, U0, 0)

o’*y o’(yl, Y2," ") (Y2, Y3," ").

Introducing the backward shift operators z and z2, it is then possible to identify U V
with R[z] R[z2] and Y with the ring of formal power series (ZlZ2)-lR[[(ZlZ2)-]].
The input/output map f can then be described by a power series"

-i(2) S (ZlZ2)-1E SilZ Z2
i,]

with inputs U(Z1) and v(z2) producing an output

y(Z1Z2)-" [(ZIZ2)-1ESiIZ-fizIu(zI)V(Z2)]( k (ZIZ2)-k
i,j

(3)
--Eyk(z1z2)-k

k

where the Hadamard product q) just picks out from the term in squared brackets all the
-kterms in (ZlZ2) Clearly sii represents the output at time 1 due to unit inputs at time -i

in U and time -/" in V.
The intuitive notion of state space is introduced by means of the Nerode

equivalence relation -, i.e.
N

k--(u2, v2) if[ f(zklu+u, zkvI+v)=f(zu.+U, Z2V2+V)(U l, Vl)
N

for all k and for all u R[z], v R[z] of degree less than k. This leads to the definition
of Nerode equivalence classes

--(u, v)}JR, /)]-" {(Ul, 01) U x V" (Ul, u1)
N

and the Nerode state space

X {[u, v]: (u, v) U x V}.

In order to analyze the abstract Nerode equivalence relation defining the canonical state
set, the following three equivalence relations were introduced in [1]"

Ul ""U2 iff f(zul v)= f(z k
lU2, /.))
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for all k and for all v R[z2] with degree less than k,

/-)1 /)2 iff f(u, k kZ2/)I) f(U, Z 1/)2)
2

for all k and for all u R[Zl] with degree less than k,

(ul, Vx) "--3 (uz, vz) iff f(zul, zvl) f(z kluz, zv2)

for all k.
These equivalence relations were introduced in [1] since together they turn out to

be the same as Nerode equivalence,’i.e.

"’U2, /)1 "’/)2 and (btl, /)1)(Ul, /)1) N(U2, /)2) iff ul
2 3

A formal proof of this fact may be found in [5].
A realization procedure can then be formulated in terms of the following module

morphisms"

R[Zl]-morphism fx: R[zl] (zlz2)-lR[[(zlz2)-l]]1

U(ZI)--)[f(ZlU, 1), f(ZU, 1),’" "]

R[z2]-morphism fz: R[z2] -- (zlz2)-lR[[(zl, z2)-a]]1

v(z2)[f(1, z2v), f(1, zv), .]

R[ZlZz]-morphism f(R): R[Zl, z2] (ZIZ2)-IR[[(ZIZ2)-I]]10

W(Z1, Z2)I2 Siiz-iziw(Z1, Z2) O 2 (Z1Z2)-k.
i,i k

It follows that:

fl(Ul) =fl(U2) iff ul "uz,

f2(/)l) f2( /)2) iff /)1 "/)2,
2

"--(u,v).f(R)(/gl, /)1) f(R)(U2, V2) iff (/A1, D1)
3

By the standard but lengthy procedures from linear system realization theory, it
can be shown [1] that the dynamical state transition equations for the bilinear system
can be written in terms of state vectors xl U/kerfl, x2 V/ker/z and x
U (R) V/ker f(R). In closed form, the equations can be expressed as"

(4)

(5)

(6)

(7)

x1+1 Alxl + bluk,

X+l Azx2k + b2vk,

Xk+l AXk + QlXk/)k + OZX2kUk nt- bUk/)k

Yk h TXk.

These equations represent a solution of the realization problem when the property of
finiteness of the state module is satisfied. The condition for this property was given in
abstract module-theoretic terms in [1]. An equivalent transfer function criterion was
given in [3], i.e. the above state space realization is finite dimensional if and only if the



454 J.G. PEARLMAN AND M. J. DENHAM

formal power series s (z1z2)-1 2i,jSijZ-iz- can be expressed as"

N(Zl, Z2)
(8) s

Pl (Z 1)P2(Z2)p(z Z2)

where px(za)ER[za], p2(z2)ER[z2], p(zlz2)GR[z1z2] and N(z1, z2)GR[z1, Z2].
The above realization however is not natural, or canonical, in the sense that the

equivalence relations -, and were introduced in a somewhat arbitrary way in
2 3

order to analyze Xu. As might be expected therefore a problem arises as to reachability
of the resulting realization, as pointed out in [1]. In the following section wewill make
use of the recently introduced concept of "quasi-reachability" [2] to study this problem.

3. Reaehability. In general, the state space realization described above is not
reachable. In order to study this problem we will use two concepts. Firstly, we will
concern ourselves with the property of quasi-reachability [2] rather than reachability.

DEINITIOY 3.1. A state space realization of an input/output map is quasi-
reachable if the state set is the closure (in the Zariski topology) of the reachable set.

Secondly, we define a realization of the bilinear map f which is slightly more
general than that of (4)-(7), i.e.

(9)

(10)

(11)

(12)

X+l--Alx+blUk,

X+1 A2x + b:zVk,

X.+l AXk + Cxl @ x2 + Q1xlkl.)k ff- O2x2kUk + bUkVk,

y h x: + dxl @ x2.
Note the presence of the x , (R) x, terms in (11) and (12) and that the dimension of the
realization is unchanged. It is easy to show by induction that, given zero initial state, Yk
is a bilinear function of the inputs Uk and Vk and their past values. The advantage of
introducing these terms will become apparent but in simple terms it is evident that the
state x U (R) V/ker f(R) in the realization (4)-(7) contains some knowledge of the tensor
product of the states x (R) x 2. By including this as an input in the transition equation for
x we can eliminate that part of x relating to x (R) x 2 and hence reduce the overall state
dimension.

We can illustrate this with the simple example used in [1], i.e.

where
f: u(za)v(z2)-- h(za, Z2)bl(Zl)l)(Z2)

1
h(Z1, Z2)

(Z1- a)(z2- b)(zlz2- c)"

Using the realization procedure described in the previous section, the equivalence
classes corresponding to ---, ---, yield a four dimensional state space, with the

2 3

following state transition equations"

x+1 axl + uk,

2
Xk+l bx2 + v,,

[Xk+l,1] lab + [;]Xk+l,2 1 C LXk,2..l

2 =(axl +uk)(bx2- +Vk)=(abxl-lx-i +axk-lVk-1It is clear that if Xk,1--XkXk -1
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+DX2k-lUk-l+Uk-ll)k-1), as pointed out in [1], we can replace the last transition
equation by"

Xk+l,2 CXk,2 " Xk,1

CXk,2"- abXk-l,1 q- axlk-l Vk-1 -- bx2k-lblk-1 + Llk-ll)k-1

Hence the addition of x(R) X2k(=XIx in this scalar case) has enabled the state
dimension to be reduced by one, since Xk /1,1 can now be discarded as it plays no role in
the output, Yk Xk.2.

We now consider some intuitive ideas on reachability, first for linear systems. By a
well known theorem we know that the system

x+ Fx + gUk

is not reachable if and only if there exists a row vector a v such that a g 0 and
a TF ha for some complex scalar h. In other words a Xk+x ha Xk and, given zero
initial state, the state space evolves on a hyperplane a TXk 0.

With bilinear systems, using a certain amount of intuitive reasoning, we might
expect the state to evolve on some hypersurface pXk + qX, (R) X 0 if the realization
(9)-(12) is not reachable. We make the initial assumptions, easily checked by a linear
system criterion, that

(A1) (AI, bx) and (A2, b2) are reachable pairs,
(A2) (h T, A) is an observable pair.

If these assumptions are not satisfied, we know from linear system theory how to reduce
the dimension of x 1, x 2 and x to suit our requirements. In particular, (A2) tells us that
the A matrix is cyclic, i.e. if A is diagonalized into Jordan form, there is only one Jordan
block for each distinct eigenvalue of A. Hence, there is just one block corresponding to
the zero eigenvalues of A, a fact we shall use later.

Before stating the main result, we prove the following lemma which ensures the
linear independence of the transfer functions associated with the states x ,, x, and Xk,

under the condition of the main theorem.
LEMMA 3.1. Let

[AI@A2 ] [Al@b2 bl@A2 bl@b2]C Q1 Q2 b

be a reachable pair. Then the components of

h 1(z1) (R) h2(z2) (ZlI-A1)-lbl (R) (z2I-A2)-lb.

and

h(Zl, z2)-- (ZlZ2I-A)-l[C(ZlI-A1)-lbl @ (z2I-A2)-1b2
+ OI(ZII-A 1)-1b1 + Q2(z2I-A2)-lb2 + b]

are linearly independent.
Proof. Contrary to the statement of the lemma, suppose there exist pr and qr such

that:

(13) p Th I(Z1) @ h 2(Z2)d’- q Th(z, Z2) 0.
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The expansion of h (Z1, Z2) in powers of Z liZ- is given by:

(14)

h(Zl, z2)-- (ZlZ2)-(k+l)A k [C (A ( A/2)(bl @ b2)z-(i+l)z-(i+l)
k >=O i,iO

+ O1 A +1),b,z (’ q- O2 Ab2z-(i+1) + b
i_o o

Thus the coefficient of (Z1Z2)-(r+l), r 0, 1,’’’, is given by

C A b

and of (ZIZ2)-(r+I)z-(s+l), r, S 0, 1, is given by

(16) [0 i]lAxr Ae
k C A OlAb, J

Z2)--(r+l)x-(s+l) r, s 0, 1 is given byand of (Zl ,"

(17) [0 I]
A, (R)A2 0 bl @ 2 2]

C A O2Ab2 J"
The corresponding coefficients in the expansion of h I(Z1)() h2(z2) are

(18) (A1 @ A2)rbl @ b2, r=0, 1,...,
rAs+(19) (Aa @ Ae) ,-x, ibl(R)be, r,s=0, 1,...,

and

(20) (A1 @A2)rbl @ A+lbe, r,s=O, 1,....

Therefore, linear dependence implies that:

(21) [pT qT][AI @ ]r[bl b21q =0, r=0, 1
b J

C A

and

C Q2

But since (A1, b,) and (A2, b2) are reachable pairs, (22) and (23) reduce to"

C A Q,

and

C 02 J

which, together with (21), provide a contradiction to the condition of the lemma.
We now state the main result of this paper.
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THEOREM 3.1. Under the assumptions (A1) and (A2), the realization (9)-(12) is
quasi-reachable if and only if

C A Q1 Q2 b

is a reachable pair.
Thus, quasi-reachability of the bilinear system realization can be checked simply

by a linear system criterion.

Proo Necessity. Suppose that (F, G) is not a reachable pair. Then there exist row
vectors p and q T- such that

(26)

and

(27) [pr q:r][Al()b2 bl(A2 bl()b2]=0.01 02 b

If we expand Xk+x and X+l ( X+l in terms of x,, xl, x2, Uk and Vk using (9)-(12), then
(26) and (27) imply that"

(28) Tp Xk+l-[-qTxlk+l ()X+I =h(pxk++qxa+l ()X/+I).
2Therefore, given zero initial state, i.e. x0 x x0 0, the state of the realization

evolves on a hypersurface

(29) pxk + qx lk @ X Zk O

for all k. Thus the realization is not quasi-reachable and necessity is proved.
Sufficiency. The proof of sufficiency will be carried out constructively, i.e. by

specifying a desired state and then constructing input sequences u 6 U and v V to
reach this state at time k 1. Note that the state Xk at k 1 is given by the vector
coefficient of (zaz2)- in the expansion of X(Zl, z2)= h(Zl, z2)U(Zl)V(z2), where, using
(9)-(11),

h(Zl, z2) (ZlZ2I-A)-l[C(ZlI-A1)-lbl(Z2I-A2)-lb2
(30)

)-1+QI(ZII-A bl+Q2(z2I-A2)-lb2+b].
We assume, of course, zero initial state at the beginning of the input sequences, i.e. if J is

2the length of the input sequences, we assume x_j x_j- x_--0.
A preliminary consideration using linear system theory will determine what

flexibility exists in choosing the required input sequences. Let 41(z) and 4,2(z) be the
characteristic polynomials of A and A2 respectively. Then, given desired states x and
2x i, we know that there exist unique polynomials ql(Z) and q2(z) with degree (qi)<

degree (i), 1, 2 such that the input sequences

(31) U(Zl) pl(Zl)tl(Zl) + ql(ZX),

(32) v(z2) p2(z2)2(z2) + q2(z2)

applied to (9) and (10) respectively reach x and X2 for all Pl (Z 1) and p2(Z2). Hence, for a
given x , x and x, the reachability problem is to choose pl(Z1) and p2(z2) such that the
desired state Xx is reached.
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The construction of these polynomials is fairly long and detailed and therefore we
outline the two major stages in the proof of sufficiency of the theorem:

(i) For a suitable choice of matrix T, we apply a similarity transformation to A in
(11) such that

where Jo is the Jordan block corresponding to the zero eigenvalues of A and J1 consists
of the remaining Jordan blocks.

We then show, via Lemma 3.2, that the subset of states corresponding to Jo is
quasi-reachable and construct the input sequences necessary to reach the desired state,
i.e. pl(zl) and p2(z2) in (31) and (32).

(ii) We then construct a further input sequence in Lemma 3.3 which reaches the
remaining components of the desired x corresponding to J1. In fact we show that these
states are reachable rather than quasi-reachable. Hence, for a given bilinear system, if
A has no zero eigenvalues then the realization (9)-(12) is reachable under the condition
of Theorem 3.1, not just quasi-reachable.

LZMMA 3.2. Let A =JoR"" in (11). Then the realization (9)-(12) is quasi-
reachable if and only if (F, G) as defined in Theorem 3.1, is a reachable pair.

Proof. Using (9)-(11), the state sequence due to inputs u(zl) and v(z2) is given by
the m-vector

X(ZZ2) (ZlZ2I-Jo)-l[C(ZlI-A)-bl () (zI-A)-b

(34)

+ 01(ZlI-ml)-tbl + O2(z2I-A2)-lb2 + b]U(Zl)V(z2) Q) Z (ZlZ2)-k
k

(ZlZ

) "(ZlZ2)m-1J [ffm (Z;, Z2)
I(Z1)/2(Z2) k

1 (ZlZ2) (ZlZ2) U(Z1

Therefore, the ith component of X(ZIZ2) is given by

m--i+l

Xi(ZxZ2) =1 (Z1Z2)-iffi+j-I(Zl, Z2)) (Ol’(Zl)lx(Z1)"b

(3 5)
((z),(z) + q(z))

0 E (ZlZ2)-k"
(z)

From this expression, we make the following observation" in forming the products

(zzz)-iri+i_(z,zz)[ao+aiz+azz2+ +az], ]= 1,...,m-i+1,

we can ignore all terms of a(za) in z for k > m i, since these terms will only result in
products involving zero or positive powers of z. The operation of the Hadamard
product will eliminate these in x(z az2). A similar observation is true for/3 (z2); hence we
write these polynomials as

2 n-iOl. Z1) Ol. o -[- Ol Z -b OI. 2Z -- -]- Ol. Z

m-i(Z2) 0 -- lZ2 q- 2Zl +" q- m-iZ2

with no loss of generality.
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We now rewrite the summation of (35) in two parts"

)rm(ZlZ2)2 (ZlZ2)-Iri+i-l(Z1, z2)t-(ZlZ2)-(m-i+l
i--1

and, by the same reasoning as above, we observe that the products of a,_z’-g and
/,_gz with the first part make no contribution to x(zlz). We can rewrite (35)
therefore in the form

[ ql(Zl)]Xi(ZlZ2)-- 2i(Z1Z2) q-(ZlZ2)-(m-i+l)rm(Zl, Z2) C(Z1) q-I//(Z1)j
(36)

[ q2(z2)] -ki(Z2) if"//j2(Z2)j O k (ZlZ2)

where i(z lZ2) does not depend on a.-i or/3.-i. If we now lump all the remaining terms
not involving a.-i or/-i in (zz2) also, we get

XI(ZIZ2)-" i(ZlZ2) nt-(ZlZ2)-(m-i+1)

(37)

rm(Z1, Z2)[Olm-im-i(ZlZ2)m-i
olm_iZ ’-iq.(za)Ol.m_iz7-i([30 -b lZ2 "b" "+" [3m_i_lZT-i-1)nt-

(z)

m-iZ-iql(Zl)JQ)k (ZlZ2)-k--[m-iZ2-i(OlO’-bOllZl-[-’" "nt’Olm-i-lZ?-i-1) +
@1(Zl)

;i(ZlZ2)+ 2i(ZxZ2).

Since ;(zz2) does not depend on a_ or B_, we can prove the required result if
2i(ZlZ2) can be made to have an arbitrary term in (zz2)- by suitable choice of a_ and

We now attempt to eliminate more terms from ;i(zz2), using the action of the
Hadamard product. Rewriting 2i(ZlZ2) in the form

m-ii(ZlZ) (ZZ)-lrm(Z, Z) m-i-i + N’i(O+lZ+" +m-i-Z-i-)
Z2

_q(z)

_
() + m-. + 2 .(a0+z+...+m--z7--1)

z ’0(z) Zl

z?_6(z) (ZlZ
we observe that any term in r(Zl, z) which cancels out the (zz)-1 term will not
contribute to 2i(zz), since no negative powers of ZlZ will result. We can therefore,
with no loss of generality, write r(z, z) in the form

(39) rm(Zl, Z2) a(z) + b(z) + c

where a(zl)= 2;=1 ajzl, b(z2)= 2;=1 bjz i.e. involving no terms in zz{, i, ] : O.
We can now directly identify the required term in i(ZlZ2), the coefficient of

(ZlZ2)-1, as

(40)
~1
X Ol, m--im--iC -Jr- ol.m-i(obm-i at" lbm-i-1 "+’" at- [3m-i-lbl)

if" am-igm-i -b m-i(OZOam-i -b Ol. am-i-1 -b q- Ol.m-i-l a l) q- m-ifrn-i
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where g,-i and f,_i are the coefficients of z2 and z in the expansions of

b(z2)q2(z2) a(za)ql(zl)
and

t2(Z2) ///1(Z1)

respectively
The following special cases can now be identified:
(i) c 75 0: in this case a,_g and/3,-i can be chosen arbitrarily to give any x and the

lemma is proved. Moreover, in this case we have reachability not just quasi-
reachability.

(ii) c -0: in this case we require that a(zl) and/3(z) can be chosen so that

(41) flobm-i +" d- im_i_lbl q- gm-i 0

or

(42) aoam-i +" + am-i-lal nt- fm-i 75 0

for all i- 1,. ., m.
We first note that a(Zl) and 3(z2) cannot both be zero for c-0. Otherwise, we

could express rm(Z1, Z2) in (34) as (zlz2)r’,,(Zl, z2), recalling our reasons for choosing
r,(Zl, z2) in the form (39). Thus, the mth component of h(Zl, z2) has the form

(ZlZ2)-lrm(Zl, Z2) r(Zl, Z2)
h,(zl, z2)=

///I(Z 1) @2(Z2) //tl(Z 1)1//2(Z2)

which is linearly dependent on the components of h 1(zl)(R) h(z), in contradiction of
Lemma 3.1.

Next, assume that a(zl) 75 0 and b(z) 0. Further, let a 0, f 1, , < m 1.
Clearly, since g-i 0 for all and b(z2)= 0, (41) cannot be satisfied. However, given
the condition on a(zx), (29) requires that

(43) /0, /’=0,... ,t,

(44)

aoat+l -[- ft+l 0

aoam-1 +" + Cem-t-2at+l -[" fm-i 75 O.

We can interpret (43) as a constraint on the coefficients of ql(zl) and hence on the x
state, whereby x is restricted not to lie in a union of hyperplanes in R nl. Apart from this
constraint it is possible to choose ag, =0,..., m-t-2, such that (43), (44) are
satisfied and therefore quasi-reachability is proved.

The same argument holds for the cases a(zl) 0, b(z2) 75 0 and a(zl) 0, b(z2) 0
and hence the lemma is proved in all cases.

We can now proceed to the second stage of the proof of Theorem 3.1, i.e. the
construction of a further input sequence which reaches the remaining components of
the desired x corresponding to Jx. We recall from the proof of Lemma 3.2 that
coefficients aj in O(ZI) and/, in (Z2), for j _-> m have no effect on xi(z1z2). Thus all
inputs of the form Z/ll(Zl) and z2(z2), j > m 1, have no effect on the Jo subsystem
or on the x or x 2 states.

LEMMA 3.3. Let A Jx E R (n-m)x(n-m) in (11), where J1 has no zero eigenvalues.
Then the realization (9)-(12) is reachable ifand only if (F, G) as defined in Theorem 3.1
is a reachable pair.
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Proof. The transfer function of (9)-(11) will have the form

(45) h(z1, z2)=
S(Zl, z2)

Rn_m[(zl z2)_1]
(z 1z2)-/1 (z 1) //(z2)

where (b(zxz:) is the characteristic polynomial of Jx, 4)(z) o+ 4)1z +" -b z n-re. We
can rewrite this in the form

S(Z1, Z2)(Z1Z2)
(46) h (z 1, z2)

(ZIZ2)1//1 (Z 1)12(Z2)

where Ol(Zl)= z4,1(Zl), 1//2(Z2)-’- ZTI/Ai(Z2).
We can now consider constructing input sequences of the form

(47) u(z1) pl(Z1)l//l(Z1)-1- ll(Z1),

(48) v(z2) p2(Z2)Il12(Z2) nt- 2(Z2)

where

ql(Zl)-- Ol(Zl)Jl(Zl)-bql(Zl), 2(Z2)-- (Z2)O2(Z2)nt-q2(z)

are as constructed in Lemma 3.2 and due to the choice of 1(zl) and 2(Z2), the
remainder of the sequences has no effect on the J0 subsystem. If the bilinear map (46) is
represented by

g" R[Zl] R [z2]-+ Rn-m[(ZlZ2)-1]
(u(z1),/.) (Z2)) ’--> h(Zl, z2)u(z1)v(z2) t E (z1z2)-k

k

it follows that using (47) and (48) we find

g(U(Zl), /3 (Z2))-" g(pl(Zl)lll(Zl), p2(Z2)lci(Z2))
(49)

+ g(pl(zl)4,1(zl), 2(z2))+ g(l(Zl), p2(z2)4,2(z2))
+ g(l(Z1), 2(Z2)).

We now choose pl (z 1) and p2(z2) in such a way that the middle two terms of (49) become
zero, and use only the first term to achieve reachability, assuming the final term is fixed.

Consider then

(ZIZ2)rns(z1, Z2)
g(pl(Zl)Ol(Z1), 2(Z2))

4)(Z1Z2) 7"l(Z1)rz(Z2)qi ql
Pl(Zl)I[tl(Z1)2(Z2) Q) Ek (Z1Z2)-k

(5o)
(ZIZ2)mS(Z1, Z2)
((ZlZ2)lfC’-2(Z2) pl(Z1)2(Z2)0 Ek (ZlZ2)-k"

It is possible to set (50) to zero by choosing Pl(Zl) zlfil(zi), where mi is sufficiently
large that all terms in z’ls(zi, zs) have order in zi greater or equal to that in z:. This
choice ensures that the expansion of (50) before the Hadamard product has no terms in
(ZIZ2)-i, SO that g(Pl(Zl)l(Zl), I2(Z2)) O.

Similarly, we set P2(Z2) Z72P2(Z2) such that g(l(Z1), p2(Z2)O2(Z2)) 0 in (49).
We must now show that with this choice of pl(Zl) and p2(z2) it is possible to obtain

reachability using

g(pl(Zl)Ol(Z1), P2(Z2)O2(Z2))
(51)

Z rlz72(ZIZ2)m$(z1 Z2)
ff1(Z1)2(Z2) () E (ZIZ2)-k"

4) (ZIZ2) k
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We write

(52) ZlmlZ2m2 (Zlz2)ms(z 1, z2) N(Zl, Z2) + (ZlZ2)M(zl, z2)

such that the highest order term in (ZlZ2) Of N(Zl, Z2) is of order n-m =degree of
(ZlZ2). We maintain that the components of N(Zl, z2) are linearly independent.
Supposing the contrary, then there exists Cr such that CrN(Zl, z2) 0. Thus

(53) Z?1Z72(ZIZ2)mcTs(z1, Z2)-’- (/)(ziz2)CTM(z1z2)

and hence (ZIZ2) divides CT.s(z1, Z2) since (zlz2) has no zero roots. Thus, by (32)"

cTs(zI, Z2)Crh(zl, z2)
(Z 1Z2)//tl (Z 1) I/I2(Z 2)

k(Zl, Z2)
(54)

/-/I(Z 1) 1/12(Z2)

dr(h l(zl) () h2(z2)).
for some d r, and the linear indep.endence condition of Lemma 3.1 is violated. If (52) is
now substituted into (51), we get:

N(zI, z2)
(55) g(pl(Zl)&l(Zl), p2(z2)lll2(z2))---

(z1z2)
t01(z1)i02(z2) I Ek (Z1Z2)-k

since M(Zl, Z2)(ZIZ2) does not contribute. It now remains to show that t01(Z1) and
/72(z2) can be chosen such that the coefficient of (ZlZ2)-1 in (55) has any specified value.

The terms of N(zI, z2) will be of the form (zlz2)kZ*l, k =0, 1,..., n-m; ]=
0, 1,’" ", ll, and (Z1z2)kz, k 0, 1,..., n -m;/’ 0, 1, ., 12, for some ll, 12.

We therefore define"

ei [zg (zz2)z (ZlZ2)n-mz-i]r ]’= --12,’’’,0,

and

e]=Ez{ (ZlZ2)Z (ZZ2)"-Z{]T, ]= 1,..., ll.

Then, since N(zl, z2) is composed of independent terms from e.,/" =0,. ., -12 and

ei, ] 1, , ll, it follows from (55) that the realization of h(Zl, z2) in (45) is reachable if
and only if the coefficient of (ZlZ2)-1 in the response

Pe-l

(ZlZ2)
(56) w(zlz2)

e0 i01(Z1)i02(Z2) 1) 2 (ZIZ2)-k
k

ell

can be chosen arbitrarily by a suitable selection of Pl(Z1)ff2(Z2).
Let (C r, A, b) be a minimal realization of 1/(zlz2) and let N > la + 12 be chosen

such that (AN, Akb) is a reachable pair for all k. Such an integer N always exists if and
only if A is nonsingular; this result is proven in [4].
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(57)

We now choose/51(zl) and/2(Z2) in the following way"

Pl(Zl)----" Z2(1 "+" Zl + Z21N +""" + zn-m-1)N),

2(Z2) O l(Z2)"+" Z/O2(Z2)+’’" + z(2n-m-1)Nn-m(Z2)

where

+11Oj(Z2) 0-12, + Ol-12+1,jZ2 + + Olo,jZl + OI,jZ+1 + + Olll,jZ

for j 1,. n-m.
The following diagram illustrates the form of the input sequences /51 and /52

corresponding to time steps k taken from the beginning of the input sequences.

etc.

Note that by our choice of N > 11 + 12, there is no overlapping of the %. sequences in i2.
Considering the response (56) to these input sequences, we see that its components

have the form

(ZlZ2) Z1(59) ilZ ffl(Zl)ff2(Z2)() k (ZlZ2)-k

(ZlZ2) i+l,:,+i

(O/’, "+" (Z z2)Nj,2 +’’" "[-(Z 1Z21"(n-m-1)Nolj,n-m)(ZlZ2)

for 0,. ., n-m- 1;] 1,. .,/1, and

(ZlZ2) Z2

--72i pl(ZI)2(Z2) () k (ZlZ2)-k
(60)

(ZIZ2) i+12+

(ZxZ2) (O/’1 +(Zlz2)N]’2+’" "+(ZlZ2)(n-m-1)N]’n-m)
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for i=O,...,n-m-1;.i=-12,...,O. Hence, for all j, the terms
O,...,n-m-1, only appear in the component in the response W(ZlZ2) in (56)
corresponding to ej.

If we now label the coefficient of (zlz2)-1 in w(zlz2) corresponding to ei by
[Wj,0 Wj.n-m-1]T it follows from (59) and (60) that

wi.i
k=O

CApa
for]=-/2,. ", 0,. , l; =0,. ., n-m-1. Hence

W],O

(6) P.
kWi,n2m_ cTn-m-1

Since (C A) is observable and (A Al+ib) is controllable it follows that, for all
]=-lz,...,O,...,l,ai can be chosen to achieve any desired output vector
[wi.0, , Wi,,-m-]T. Thus the coecient of (zz)-1 in the output response w(zz) in
(56) can be chosen arbitrarily by selection of ff(Zx) and ff(Zl) given by (57) and (58).

Recalling that this ensures reachability of the realization (9)-(12) of h(z, z) in
(45), we see the lemma is proved.

Since the choice of input sequences u(z) and v(z) in Lemma 3.3, for the case
A J, was consistent with the choice of the input sequences in Lemma 3.2, for the case
A J0, the proof of suciency of Theorem 3.1 is now also complete.

It is interesting to recall the form of the resultant input sequences constructed by
Lemmas 3.2 and 3.3, namely

(63) u(z) (Zl)O(z) +(z) +px(z)z

(64) v(z) fl(z)O(z) + q(z) +pe(z)zOe(z)

where

qx(z) =input required to reach x in (9),

q(z) input required to reach x in (10),

a(Zl), (z)= inputs required to reach subset of x in (11) corresponding to J0 in (33),

pI(Z1), P2(Z2) inputs required to reach subset of x in (11) corresponding to J in (33).

We note, for example in (63), that

(65) u(z) [ (z,)+ p(z)z?]O(z)+ q(z)

where degree (a(z))< m since higher order terms have no effect on the subset of X

corresponding to J0. Hence a(z)+p(z)z represents the concatenation of two
sequences, used together to reach (in the quasi-reachable sense) the whole of the x
state. The factor O(z) ensures that this sequence has no effect on the x state.

4. Reduction to quasi-reachable [orm. As in the linear system case, the procedure
of reducing a realization which is not quasi-reachable to one that is, is based on the use
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of state transformations. We first note the existence of the three obvious similarity
transformations, namely

X I -> r x l,

x -, rx,
Xk -’> rXk

with the associated transition matrices A -> TIA T-f etc. However there is a further
transformation described in the following lemma"

LZMMA 4.1. Let (9)-(12) be a realization ofa bilinearinput/outputmapf: U V
Y. Then, if we transform

C") W(AI (R)A)+C-AW,

1 -’> 1 At- W(A @ b),

I2 -) I2 + W(bx @ A2),

b b + W(b (R) b),

dr_d hrW
for any W R, the resultant set of equations (9)-(12) is also a realization of]:.

Proof. The proof is by direct computation of the transfer function of f with and
without the above transformation.

Note that this transformation is equivalent to the transformation matrix

[I(R)IW ] applied to the linear system described by the triple

(H,F, a)= ([dT hT], [AI@A2 0] [AI@ b2 A2(R) bl bl @ b2])C A Ol Q2 b

Before describing the reduction procedure, we prove the following lemma.
LEMMA 4.2. If (AI, bx) and (A, b) are reachable pairs, then

(AI (}) A2, fax @ b bl (R) A bx () b2]) is a reachable pair.

Proof. Suppose otherwise. Then there exists v R" such that

(66) v TA ()A hv r

for some complex number A, and

(67) IAT[AI(R) b bl@A b (R) b.]=0.

In particular, v Tbl () A2 "--0 implies that
kb(68) vTbx @ A2 2 0

and v rA (R) b2 implies that

(69) v rA1bl (R) bz 0

for all k. Then, using (66), we have

(7o)

and

(71)

for all L k.

12 TAil+kb @ Aizb h iv rA klbl @ b2 0

kb=vTAilbl @ Aiz+’b2 hivrbl (R) A2 z 0
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Now (A1, bl), (A2, b2) reachable implies that

{A Jb -l’j=l n2 1}lbl@A2 2. i=1, nl

is a basis for R nine. Hence (70) and (71) together imply that )T 0, and the lemma is
proved.

To describe the reduction procedure, assume the system (9)-(12) is not quasi-
reachable. Let L denote the controllability matrix of the pair

([AI@Az 0] [Ax(R)bz b(R)Az bl@b2])C A IQ) 02 b

By Theorem 3.1, L does not have full rank.

[ I 0 ], where / is the identityUsing Lemma 4.2 we normalize L to the form
L L2

matrix of R nln"l".
Using the standard property of controllability matrices

C A L1 L2 L1 L2 E1 E2

for some El, E2. Also

Q Qz b L1 L2 E

for some E.

to L, where L3 is independent of L2, and calculateWe now append the matrix
L3

-NIL1(74)
L1 L2 L3

-N2L1 N2

Then, using (72), we calculate

-NxLx N1
[_-NzL1 N2

(75)

and

C A Lx L2 L3

AI@A2 0

NI[C+AL1-LI(AI@A2)] NIAL2
0 0

0 ]NIAL3
N2AL3

(76)

-NIL N1
-N2L N2

01
bl @ A2 b @ b2]
Q2 b

Al@b2

NI[Q1-L;(At @ b2)]
b@A2

Nl[O2-Ll(bx @ A:)]
0

bl@b2 ](R)

0
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Thus the unreachable part NzAL3 has been separated, and it follows that:

[ Aa@A2
N[C +AL1-LI(A1 (R) az)]

Al@b2
NI[O-L(AI (R) bz)]

b@A2
NI[OE-L(bl (R) a2)] Nl[b-Ll(ba (R) bE)]

is a reachable pair, representing a realization of the bilinear map f which is quasi-
reachable by Theorem 3.1. This realization has the form (9)-(12) with (11) and (12)
replaced respectively by

(77)

(78)

-k+l-- NIAL2.fk + NI[C +AL1-LI(A1 (R) A2)]x , (R) x,
+NI[Q1-La(A1 (R) bE)]xlvk +N[Q2-L(ba (R) A2)]x2uk

+ Nl[b-Ll(bl () b2)]UkVk,

Yk’-- (dT -[- h TL1)xlk ( X2k + h TLIk.

This corresponds to transforming the realization (9)-(12), according to the trans-
formation described in Lemma 4.1 with W -La, followed by the transformation of
the basis for Xk by -- N2

Xk

eliminating the component Nzx of .
5. Conelufling remarks. The realization of nonlinear input/output maps will

undoubtedly continue to attract research effort for some time to come. In this paper we
have considered a simple bilinear form of input/output map and reached the conclusion
that, somewhat unexpectedly, reachability of a realization of this map depends on the
reachability of a corresponding linear system. This result can be extended also to the
more complex multi-linear case [4]. A more detailed account of the work presented
here, together with extension to multi-output bilinear systems and results on stability
and observability of bilinear realizations can also be found in [4]. One of the major
questions to be answered now is whether any other simple form of nonlinear
input/output map can be approached in a similar way, yielding similar results and easily
verifiable algebraic conditions for reachability, observability, etc. Such a class of
systems may well be the discrete-time polynomial systems described in [2].

The constructional proof used here is long and tortuous and takes the transfer
function approach, heavily influenced by the approach used in [3]. A more elegant and
concise result might be obtainable if the module theoretic approach of [1] were to be
developed with the additional insight now available into the mechanism by which
nonreachable states occur.

Aeknowleflgments. The authors would like to thank Prof. R. E. Kalman for his
suggestions on improving the original draft of this paper.
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DETERMINATION OF UNKNOWN FUNCTIONS
FOR A CLASS OF DISTRIBUTED PARAMETER SYSTEMS*

TOSHIHIRO KOBAYASHIt

Abstract. The aim of this paper is to investigate the determination of unknown functions which give the
input distributions for distributed parameter systems. After the problem formulation, the identifiability of
input-distribution functions is discussed. The identifiability of the system does not necessarily assure that the
problem of input-function determination is well posed. A well-posed approximation method is presented and
discussed from the standpoint of regularization. The relation between the observability and the identifiability
is also clarified for the system described by i linear parabolic partial differential equation.

1. Introduction. The construction of a mathematical model for a system using
measurement data is a very important problem from both a theoretical and a practical
point of view. Even for those systems for which the system equations have been
postulated there still remains the equally important problem of identifying the initial
state and some unknown functions from the measurement data. Kobayashi [1], [2] has
studied the problem of initial-state determination for a class of distributed parameter
systems. Since this problem is not well posed in general, he has presented a well posed
approximation method by regularization.

We consider in this paper the problem of the determination of unknown functions
which give the input distribution for a class of distributed parameter systems. We seek
identifiability conditions which ensure that an unknown function can be uniquely
determined from the measurement data. Since the space of unknown functions is an
infinite dimensional one, identifiability does not generally assure that the function
determined depends continuously on the measurement data. That is, the problem of
unknown-function determination for a distributed parameter system is not necessarily
well posed.

From the above facts, it is not sufficient to investigate only the identifiability of the
distributed parameter systems when we consider the problem of the unknown-function
determination. An approximation method is necessary which reduces the ill-posed
problem to a well-posed one.

2. System description and problem statement. In this section, system description is
following Lions [3]. So let H and V be two Hilbert spaces with

(2.1) V c H, V dense in H;

the sign c denotes both algebraic and topological inclusion. This means that the
identity mapping of V in H is continuous. We denote by (.,.)v (respectively,
(’, )n) and I[" [Iv (respectively, I]" ]]H) the scalar product in V (respectively, H) and
the norm on V (respectively, H). Let V’ be the dual of V; we identifyH with its dual so
that

(2.2) V H c V’.

If f V’, v V, (f, v) denotes their scalar product; if f H, it coincides with the scalar
product in H.

* Received by the editors October 18, 1977 and in revised form November 22, 1978.
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469



470 TOSHIHIRO KOBAYASHI

We are given a continuous bilinear form a (u, v) on V. For fixed u in V, the linear
form

va(u,v)

is continuous on V; therefore it can be written

a(u, v)= (Au, v), Au V’.

We deduce also that

Ilaullv, <- Lllullv, u v,
where I1" IIv, is the dual norm of II’" IIv. Suppose the family of operators A (V; V’) is
coercive; that is

there exists/3 and c > 0 such that

(2.3) a(u, u)/tllull>-llull, u v,

Consider now the distributed parameter system described by the following equa-
tion of evolution

(2.4)
du(t)
+Au(t)= gf(t), (0, T),
dt

and

(2.5) u (0) u0, u0 given in H.

Here u’= du!dt is taken in the sense of distribution on (0, T). The function [ belongs to
the space L2(0, oo). Moreover g 6 V’ is the function to be determined.

We have the following existence and uniqueness lemma.
LZMMA 1 (Lions [3]). Under the assumption (2.3), the system (2.4) and (2.5) has a

unique solution u such that u L2(O, T; V) and u L2(O, T; V’). Furthermore the
solution u depends continuously on the data Uo, [ and g.

Remark 1. L2(0, T; F) denotes the space (equivalence class) of functions [ defined
on [0, T] with values in a Hilbert space F such that jo

From Lemma 1 the solution u of the system (2.4) and (2.5) is written

(2.6) u(t) U(t)Uo + $(t)g, (0, T),

where U(t)(H; H), S(t)(V’; H).
In physical situations, the space of observations K is finite dimensional. The

outputs of the system are given by

(2.7) z(t)=Mu(t)+m(t), t>0,

where M5(H;K) and rn is a measurement error such that m eL2(0, T;K). By
virtue of Lemma 1, we see that z 6 L2(0, T; K).

We denote by J(g) a functional which measures the distance between the obser-
vation z and the output Mu computed for each input distribution function g from the
system (2.4) and (2.5). Then the problem of unknown function determination can be
formulated as that of minimizing J(g) with respect to g under the constraints (2.4) and
(2.5). In this paper we take the functional J(g) to be

(2.8)
T

J(g) Io IIz(t)-Mu(t)ll dt.
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3. Identiiiability. In this section we investigate identifiability of the dynamical
system described by (2.4) and (2.5) with the output equation (2.7).

We start with the following definition.
DEFINITION 1. The system described by (2.4) and (2.5) with the output equation

(2.7) is said to be identifiable if the observation Mu(t), > 0 implies the function g is
unique. Moreover the system is said to be identifiable at time T if the observation
Mu(t) on [0, T] implies the function g is unique.

From (2.6) we obtain

(3.1) Mu(t) MU(t)Uo + MS(t)g.

Since the initial state Uo is known, the system (2.4), (2.5) and (2.7) is identifiable if and
only if MS(t)g 0, > 0 implies g 0. The system is identifiable at time T if and only if
MS(t)g- 0 on [0, T] implies g- 0.

Let us consider the function y(t) defined by

(3.2) y(t) Mu(t)-MU(t)Uo.

The problem of determining g from the observation Mu(t) on [0, T] is equivalent to the
problem of determining g from y(t) on [0, T]. The function y belongs to L2(0, T; g).
Thus

2 I0
T

Ilyll. (o,r;) Ily (t)[[- dt

T

(3.3) fo (MS(t)g, MS(t)g)lc dt

T

Io (S*(t)M*MS(t)g, g) dt

Here (.)* denotes the adjoint operator of an operator (.). Let us define an operator
W: V’ L2(0, T;K) by

(3.4) Wg MSg, g V’.

We get W w(V’: L2(0, T; K)). Then from (3.3) we obtain

(3.5) Ilyll ) w*L2(O,T;K) Wg, g).

This shows that the operator W*W (V’; V) is nonnegative. Thus the function g is
uniquely determined if and only if the operator W*W is positive, that is, for any g 6 V’

(3.6) (W*Wg, g)>=O and (W*Wg, g)=O implies g=O.

Moreover W*W is positive if and only if the nullspace of W is {0}. We have got the
following theorem.

THEOREM 1. The following three conditions are equivalent:
(i) the system (2.4) and (2.5) with (2.7) is identifiable at time T;
(ii) W*W is positive;

(iii) the nullspace of W is {0}.

4. Minimization of at(g). We will show that a minimizing solution of Y(g) uniquely
exists if the system (2.4) and (2.5) with (2.7) is identifiable at time T.

Since J(g) is
T

(4.1) J(g) | Ilym(t)-MS(t)gll2n dt, y,(t) z(t)-MU(t)Uo,
o
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and the operators S(t) and M are continuous, the functional J(g) is differentiable and
convex. Hence the necessary condition for optimality is

(4.2) J’(g). h 0 for any h V’.

In this case J’(g) is explicitly calculated, and then (4.2) becomes

(4.3)

that is,

(4.4)

TIo (MS(t)g- y,, (t), MS(t)h)r dt O, h V’,

(W*W’g- W*y,,, h)=0, hV’.

Since (4.5) must hold for all h e V’, the minimizing solution must satisfy

(4.5) W* Wg W*

If the system (2.4) and (2.5) with (2.7) is identifiable at time T, the optimal solution go
for J(g) is uniquely determined by

(4.6) go (W* W)-1W*ym G-1W*ym.

However the inverse G-1 is not continuous in general. Then the solution go does not
necessarily depend continuously on the measurement data z.

Now we should consider a new approximation method which presents an approx-
imate function for go depending continuously on the measurement data.

5. A well-posed approximation method. In this section, by the method of
regularization [5], we shall present the approximation method which gives con-
structively approximate functions for go depending continuously on the measurement
data. This approximation method corresponds to approximating the positive operator
G by a family of positive definite ones.

We first introduce a regularized functional J(g) corresponding to J(g):

(5.1) J(g)=J(g)+e(g, g), e >0,

where is a continuous linear operator from V’ to V such that

(5.2) (h, h) =>/x]lhllv,, h V’, /.t > 0.

We can see that for J (g) there exists a unique minimizing solution g determined by

(5.3) g =(G+e)-lW*y,,,.

The operator G G + e is a continuous linear operator from V’ to V and

(5.4) (Gh, h) >-

From this G is continuous. Therefore g depends continuously on the measurement
data z.

We now proceed to prove the following theorem.
THEOREM 2. If the system (2.4), (2.5) and (2.7) is identifiable at time T, g satisfies

the convergence property

(5.5) lim IIg g011v’-- 0.
e0

Proof. From (4.6) and (5.3) we obtain

(5.6) (Ggo W*y,, h) O, h V’,
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and

(5.7) (Gg- W*ym, h)+e(g,h)=O, hV’.

Putting h go-g in (5.6), h g -go in (5.7), and adding, respectively, both sides of
two equations, we obtain

(5.8) (G(g-go), g-go)+e(g, g -go) 0.

From this equation we have

(5.9) (g, g)--< (g, go),

since e > 0. Using (5.2), we obtain

(5.10) IIgll,,’ -< 111’11" Ilgollv,

Thus from every sequence of e - 0, we can extract a subsequence r/such that g, w
weakly in V’. As r/--> 0, (5.7) becomes

(5.11) (Gw, h) (W*y,,, h), h V’.

From (5.6) and (5.11), we get

(5.12) (G(w-go), h)=0, h 6 V’.

Here putting h w- go, we obtain

(5.13) (G(w go), w go) 0.

From the positiveness of G (the hypothesis of the system being identifiable at time T),
we have w go. Here {gn} is an arbitrary, weakly convergent subsequence and its weak
limit go does not depend on the subsequence. Thus the extraction of a subsequence is
unnecessary and g go weakly in V’. Moreover from (5.9)

((g go), g go) --<-- (go, g go).

This implies that g go strongly in V’.
Now we notice that go and g are the minimizing solutions of J(g) and J(g)

respectively with the measurement error m. Thus go is not an actual input-distribution
function (denote it by g*). We should evaluate Ilg-g*llv,. We can obtain the next
theorem.

THEOREM 3. Suppose that the system (2.4), (2.5) and (2.7) is identifiable at time T. If
the measurement error can be evaluated by

(5.14) Ilrn <
(5.15) lim IIg g*llv’ 0

e,8-O

when 8/x/e goes to 0 as e O.
Proof. Define g by

(5.16) Gg* W*y.

Then

(5.17) IIg g*ll IIg g + Ilg g*ll.
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For the second term on the right-hand side, we can apply Theorem 2 in the case of
y,, y. As a result we obtain

(5.1.8) lim IIg* g*llv’- O.
e0

Next, as for the first term, we have

(5.19) (G(g-g*)- W*(y,,,- y), h)=0, h V’,

from (5.3) and (5.16). This implies that the element (g, g*) realizes the lower bound of
the functional

T

(5.20) I(g)= Io I[m(t)-MS(t)gllZdt+e(dPg’ g)’ e >0.

Thus
T

(5.21) I(g-g* )<=I(O)= Io Ilm(t)ll2dt<=2"

From this and (5.2), it follows that

(5.22) elllg g* I1 , <-

That is,

(5.23) Ilg- g*ll’

We have proved the theorem.

6. The conditions tor identifiability. In this section we seek concrete conditions of
identifiability for the following system"

(6.1) ’(du’t-------’-e Au(t) gf(t), u(O) O,
dt

(6.2) zp(t) (w, u(t)),, p 1, 2,. ., r, > O,

where w,, p 1, 2,. ., r are given elements in H.
We assume
HYPOTHESIS 1([3], [4]). The operatorA is symmetric and the injection map of Vinto

H is compact.
Then there exists a sequence {An, qSn,, m 1, 2,..., mn, n 1, 2,. .} of eigen-

values and eigenvectors satisfying the following conditions:
(i) For a constant C

(ii) {bn,, m 1, 2,. ., mn, n 1, 2,. .} .is a complete orthonormal basis in H,
where the positive integers rnn are assumed to be finite ]:or any n.

(iii) Each 49n, satisfies
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(iv) For any g V’, the solution of (6.1) is given by

hn(t--’r)(6.5) u(t) E e E g,&,,f(r) dr,
n=l m=l

where
From (6.2) and (6.5) we obtain

(6.6) zv(t) , e W.mg.mf(r) dr,
n=l m=l

where wn. (w, bn.,).
Defining r x m. matrices W. by

W W 2 W nrn.
2 2 2

W W n2 W nmn(6 7) W. n- 1, 2,...

W W n2 W nrnn

we get the following theorem.
THEOREM 4. The system (6.1), (6.2) is identifiable if and only if the following two

conditions (i) and (ii) hold.
(i) rank W mn <= r ]:or all n 1, 2,....
(ii) The input function f(t) is not identically zero.
Proof. To prove sufficiency, assume that

(6.8) zp(t) Z e x"(t-’) Z w.,g..f(r) dr O, > O, p 1, 2,. ., r.
n=l m=l

Applying the Laplace transformation, we obtain

(6.9) n=12 S ’’n w.g.. O, p 1, 2,..., r,

for any s such that Re (s) > max (h 1, 7), where sc is the convergence coordinate of F(s).
Since f(t) is not identically zero, F(s)0. Moreover F(s) is an analytic function on
(, oa). F(s) 0 for almost every s e (sc, ). Then we have

(6.10) Z w..,g.., =0, p 1,2,. ., r,
n=l S--/n m=l

for almost every s such that Re (s)> max (, 1, so). By analytic continuation we see that
(6.10) holds for all s such that s hn, n 1, 2,. . Let C, be a circle in the complex
plane which includes only one pole s ,. We obtain

1
p=l, 2,." r,(6.11) O= 2

--h
wg, ds 2-1 2 Wmgm,

n=l S m=l m=l

for all n 1, 2,. .. If rank Wn m, _<-r, n 1, 2,. ., then (6.11) implies that gnl

g,2 g,,,,. 0 for all n 1, 2,.... Thus we have g -0 which implies that the
system is identifiable.

To prove necessity, suppose that rank Wn < mn for some n. Then there exists
a nonzero m,-vector g,=(g,l,g,2,’" ",gnm.)T satisfying (6.11). This means the
existence of a nonzero element g in V’ which satisfies (6.8). Therefore the system is not
identifiable. The necessity of the condition (ii) is evident.
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Remark 2. In Theorem 4, (i) is the condition for the observability of the system.
Therefore, if an input function [(t) is not identically zero, the identifiability of the
system (6.1), (6.2) is equivalent to the observability of the system.

Remark 3. If an input function f(t) is an analytic function in

z(t) , e E w,.g.,f(r) dr 0
n=l m=l

over an arbitrary interval 0 < =< T implies that zp(t) =- 0 for all > 0. In other words, the
system (6.1), (6.2) is identifiable at any time T if and only if it is identifiable.
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ON CONSTRAINT DROPPING SCHEMES AND OPTIMALITY
FUNCTIONS FOR A CLASS OF OUTER APPROXIMATIONS

ALGORITHMS*

C. GONZAGAt AND E. POLAK.

Abstract. This paper presents a new class of outer approximations algorithms which incorporate
constraint dropping schemes. The algorithms are based on the use of certain types of optimality functions,
which are commonly used in minimization algorithms, for defining stationary points. The algorithms are
implementable in that all the inner minimizations and maximizations need to be carried out only approxi-
mately. It is shown that any accumulation point constructed by these algorithms is both feasible and
stationary.

1. Introduction. After their introduction in 1960, by Cheney and Goldstein [1]
and Kelley [2], in the form of cutting plane methods, and, in 1966, by Levitin and
Polyak [3], who treated them in a more abstract setting, outer approximations
algorithms went through a decade of stagnation. The reason for this was simple. These
methods were intended to solve problems of the form

(1) P: min {f(x)lx X}

where X R had a very complicated description, e.g., X {x Ib (x, o) <= 0, o },
with f c R’ a set of infinite cardinality (i.e. X is defined by a continuum of inequalities).
The approach was to substitute for P a sequence of approximating problems

(2) Pk: min {f(x)] x Xk}, k 0, 1, 2, ,
where X X0 X1 X2 c" and the Xk had relatively simple descriptions, e.g. by a
finite set of inequalities, Xk {x Ib (x, o) =< 0, o D,k D} with fk a discrete set. Under
certain rules defining the properties of the Xk, one could then show that the accumula-
tion points of the sequence of solutions {xk}, of the problems Pk, were solutions of P.
Unfortunately, in all the specific schemes, the complexity of the description of the Xk
(i.e. the number of inequalities involved) grew rapidly with k and quite quickly the
problems Pk became almost as difficult as the original problem P.

The first breakthrough came when Topkis [4], I-5] and Eaves and Zangwill I-6]
proposed constraint dropping schemes which broke the monotonic growth of the
descriptions of the Xk. The Eaves and Zangwill theory in terms of cut set maps is
particularly elegant. An interesting further generalization was given by Hogan [7].
Although from a theoretical point of view the work in [4], [6], [7] was of great
importance, it still had several drawbacks from a practical point of view. These are
easiest to explain in the Eaves-Zangwill framework, using a simple problem, e.g.

(3) P: min {f(x) qb(x, oa) <- O, o) f},

where f and b are both differentiable and x e ", D, c t". The Eaves-Zangwill theory
requires that we solve, exactly, two problems at each iteration.

(4) Pk: min {f(x) ck(x, to)<-0, o) Ok},
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where Ok is a discrete subset of fl, to obtain a solution Xk and then

(5) max {(x, to)[ to fl}

to produce a point tok. Assuming that b (Xk, (.Ok) > O, we see that Xk is not optimal for P.
The point tog is then added to [’k to form "k+l. In a constraint dropping scheme, some
of the points toi, acquired earlier, may be dropped from k+l. Now, in the absence of
convexity, and since only a finite number of iterations of a program for solving (4) and
(5) can be used, the best one can hope to achieve is to find an approximation to a
stationary point for Pk (rather than to a solution Xk) and, perhaps, an approximation to
tog. The Eaves-Zangwill theory does not apply to this situation. Moreover, their
constraint dropping scheme (i.e., the dropping of points from lqk) depends on the rate of
growth of the cost sequence {[(Xk)} relative to the constraint violation sequence
{(Xk, tog)}. As a result, unless a problem is extremely well-scaled, their constraint
dropping scheme may fail to operate. The third objection to the early constraint
dropping schemes is that when constraint dropping is in operation, only the
subsequence of {Xk } at which constraints were dropped can be shown to have accumula-
tion points which are solutions of P. The first two of the above described drawbacks
were overcome to some degree by Mayne, Polak and Trahan [8], in the framework of an
algorithm for computer-aided-design.

In this paper we shall present a new class of implementable outer approximations
algorithms aimed at problems with constraints of the special form appearing in (3). This
type of constraint commonly occurs in engineering design problems. For example,
suppose that a design specification is stated as an inequality on the nominal design"
h(x) <-O. However, when the device is built, it can only be realized with a certain
tolerance - s T (e.g. +/- 10%) and hence the design constraint becomes h (x + -) <- 0 /- 6

T. Or suppose that a device is required to function over a range of temperatures or
altitudes; then, again we get design specifications in the form (5). The algorithms which
we shall present (i) utilize approximate solutions to the subproblems (4) and (5), (ii)
eliminate dependence on scaling, and (iii) have much better convergence properties in
the presence of constraint dropping than any earlier scheme. (Any accumulation point
of {Xk} is a solution to P rather than any accumulation point of the subsequence {Xki} at
which constraints were dropped, as in [6], [8].) Each algorithm in our class is completely
characterized by three features: (i) the scheme for constructing the constraint sets flk in
(4), (ii) the algorithm for solving (4), and (iii) the algorithm for solving (5).

We present two constraint construction schemes, two master algorithms, two
compatible characterizations of the algorithms for solving (4), and one requirement on
the algorithms for solving (5). The characterization of the algorithms for solving (4) is in
terms of the optimality functions on which they are based, while the characterization of
the algorithms for solving (5) is in terms of the convergence property that they must
have.

In our first constraint construction scheme, the user specifies a sequence
{ek}=o, ek >0, ek -->0 (e.g. Ek eo/(k + 1) 1/10, with e0 large), selects initial f0, and then
sets llk+l {tok}t-Jl)k if b(Xk, tog) > ek and l’lk+l fig otherwise.

In the second scheme, the user specifies a double subscripted sequence eki, (e.g.
ekj=ej--ek) such that ekj ..ej as k-> and retains toi(/’-< k) in flk+l only as long as
C (Xi, toi) > ek] holds.

By implementable we mean that all the required computations in each iteration or stage can be carried
out by means of a finite number of operations on a digital computer.
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The first scheme is intended for use in an interactive computing factility for very
difficult problems such as those found in computer aided design, where function
evaluations take minutes because of the need to integrate large systems of nonlinear
differential equations. In such a situation, the designer can keep up and successfully
interact with the computing process. He chooses a sequence {ek}=o which forces very
few ok to be included in 12k/l. He monitors the outcome of the computation on a
graphics display terminal and adds a certain number of points to fk/1 on the basis of this
observation. He usually adds ok to flk/. He may subsequently remove from flj, f >
k + 1, the points which he added to fk/ on the basis of judgement without affecting the
theoretical convergence of the algorithm. For example, suppose he monitors a step
response for its peak overshoot. Suppose that the peak occurs at time tl f c R (0 in
this case), that there are no other local peaks, that the cardinality of lk is small and that
b(xk, tl)< ek. He will most probably choose to add tl to fk/l even though he is not
required to do so by the algorithm. Next, suppose this peak occurs at tl, but there are
also large local peaks at t2 and t3. Since when the peak at tl is pushed down the ones at
t2, t3 may come up, he may decide to include t2 and t3 as well as tl in

The second scheme is intended for more automatic use. It retains points oj in
fk(k >/’) for a certain number of subproblems and then drops them automatically
when, presumably, they are no longer relevant. This scheme is a generalization of the
one in [8]. Our computational experience with the scheme in [8] was that even in this
case, a certain amount of discretionary intervention (to augment fk) can be highly
beneficial.

We characterize the algorithms for solving (4) by the optimality function2 on which
they are based (e.g., as in methods of feasible directions or of penalty functions). We
state two assumptions which are sufficient conditions for such an optimality function to
be useable in our algorithms and we show that a number of optimality functions,
associated with Phase I-Phase II feasible directions algorithms or penalty function
methods, satisfy our assumptions.

The notation in this treatment tends to become a little complex and we have
collected all of our symbols in the Appendix, for the reader’s convenience.

As was the case in [8], this work was strongly motivated by our experience in
optimization-based computer-aided-design of shock resistant structures, control
systems and electronic circuits. Given that more and more interactive computing
facilities are being set up, and that there are no competing alternatives in the literature,
we expect our algorithms to have an important technological impact.

2. New classes of outer approximations algorithms. The algorithms which we shall
present are intended for the solution of problems of the form

(6) Pa: min (f(x) gi(x) <= 0, j el; 4k (x, oo k) <=0, o k Ok, k m}

where & {1, 2,. , l}, m & {1, 2,. , m}, the functions f(. ), gi(. and b k (.,.) are

continuously differentiable3 on Rn and on n Ipk, respectively, and fk is a compact
subset of [Pk, k 6 m. The symbol lq is used to denote l)x 122 fl’. The problem
form (7) is particularly important because many engineering design problems can be
transcribed into it (see [8] for control examples).

We say that 0: R" R is an optimality function if O(x) 0 for all x solving P and O(x) <- 0 for all x R.
Differentiability in to is not required by our proofs, but is stipulated as an assumption which is usually

required by algorithms which compute approximate solutions to maxo, {bk(x, tok)ltok -k}.
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We shall approximate the problem Pa by a sequence of simpler problems of the
form (with 1, 2, 3,...)

k k(7) Pa,’min{f(x)[gJ(x)<-O, jel; Ck(x,w )_--<0, w efl/k, kem},

where II k c 1)k are discrete sets. Our aim is to approximate feasible stationary points of
Pa, i.e., points e R such that

(8) g(2)-<0, Vjel; max&k(.f,w)=<0, Vkem,

and

(9) 0() ----a min max {(Vf(.), h); gJ()+(Vgi(2), h),
Ilhll,-<_

j el; (, wk)+ (Vx(2, w), h), w

We recognize (9) as the Topkis-Veinott I-9] multiplier free form of the F. John
condition for Pa (see p. 8 and p. 182 in [10]).

DEFINITION 1. We shall say that point e is desirable if (9) and (10) are satisfied
at 2. We shall denote the set of all desirable points in

We assume that we can "solve" the problems Pa, approximately, to the extent of
finding a point xi for which the value of an appropriate optimality function 0 (x) is
near zero. The superscript is introduced to allow for the possible use of penalty
functions. The theory we are about to present is based, on our knowledge of Phase
I-Phase II type methods of feasible directions [11], [12] and penalty function methods
[10], all of which utilize real valued optimality functions a’(’), defined on for
discrete subsets f’k c 1), k e m, and all positive integers i. All of these functions have

(x)<0 for all x e N" and that if x’ is optimal for Pa’, thenthe property that 0a,
lim_, 0, (x’) 0. Some of these optimality functions are continuous while others are
not. Early examples of such optimality functions can be found in [10, p. 182]. Not all
the existing optimality functions can be used in our outer approximations algorithms.
Only the ones satisfying Assumptions 1 and 2 below are acceptable within the
framework of our convergence theorems. We need the following definition. For any
compact subset l)’ e 12, 0a’: N" [1 is defined by

(10) Oa,(x) & max {0; gi(x),jel; Ck(x,o)k),(.ok
ASSUMPTION 1. Consider the family of optimality functions {0a,(.)}, with f’ a

discrete subset of and a positive integer. For all x
0, N=>0 and ge(0,1) (possibly depending on x), such that for all x’eB(x,p)&
{x’lllx-x’ll<-p} and all discrete subsets f,k fk, k 1,2,’’’, m, satisfying 0a,(x)_->
tia(x), we have

(x’) < for all > N.(11) 0a, -/z

To obtain an intuitive understanding for the reason for Assumption 1, consider a
point x A. Let 12 c 12, 0, 1, 2, , be a sequence of discrete sets such that the sets
{x’10a, (x’) =< 0} are good approximations to the set {x’[Oa(x’) <- 0}, at x, in the sense that
Oa, (x) >- Oa(x), with e (0, 1), and let x, 0, 1, 2, , be the corresponding sta-
tionary point of Pn,. Then 0a,(xi) 0 for all and hence the xi cannot converge to x,
since this would violate (11). Thus, provided we construct the Pn, so that the sets
{x’l a,(x’) -< 0} become good local approximations to the sets {x’] 4,a(x’)--< 0} at any
limit point of a solution sequence {x}, then 2 will have to be in A.
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We shall later devote a separate section to showing that a number of common
optimality functions satisfy Assumption 1. In the present section we shall present two
schemes for constructing the fli so that the desired convergence properties are ensured.

Our outer approximations algorithms based on Assumption 1 are of the form of the
model below. They differ from one another only by the manner in which the discrete
sets fl/, k 1, 2, , n, are constructed. They all require that we have an algorithm for
solving the problem Pn,, with -i a discrete set, and another one for approximating the
values of the functions ,"E1 defined by

k(12) 4S,(x) a max {(x, o ), kern},

with D’k _c fk. To complete our notation, we define o. _. jR1 by

(13a) (x) & max {g(x), g2(x), ", g(x)}.

MASTER ALGORIT.HM MODEL 1.
Parameters. An infinite sequence {i}i= fli>0,/3i-->0 4 (0a’(’) is a family of

optimality functions.)
Data. Discrete sets riok flk, k rn.
Step O. Set 0.
Step 1. Construct the discrete sets , k m.
Step 2. Compute an xi such that

(13b) oia, (xi) >-_ -fl,.

Step 3. Set + 1 and go to Step 1.
Since our algorithms cannot be stated without ambiguity unless all the details of the

problems (6) and (7) are preserved, we shall maintain these details in the algorithm
statements. However, as far as the proofs are concerned, there is no great loss of
generality, and a great gain in notational simplification, when one restricts oneself to the
simplest case of (6) and (7), viz: l=empty set, m= {1}. In that case the superscripts
become redundant and we get

(14a)

(14b)

(14c)

(14d)

Pn: min {f(x)l(x,

Pa," min {f(x) (x, o)

0a’(x) A max {0; 4,(x, w),

4,a,(x) _a__ max

We shall need the following result.
PROPOSITION 1. Consider the simplified problem (14a). Let {Xg}i0 be any conver-

ging sequence in Rn with xg --> as --> oo and let l)i fl, 1, 2, , be any sequence of
compact sets contained in fl. Then

(15) [4,n,(xi)-Oa,()[-->O as i-->oo.

Proof. Suppose that (15) does not hold. Then there exists a 6 > 0 and an infinite
subsequence indexed by K c {1, 2,. .} such that

(16) ]ni(Xi)-- t[-i(;)] g for all K.

Now, t12i(Xi)--t(Xi, O.)i) and 4%() (2, 03i) for some 0)i, 0i in fli. Without loss of
4 For example, i Ei, for 6 (0, 1), or/3i e/i.
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generality, we may assume, therefore, that

(17) ( (Xi, O)i) - (., Oi) -[- g for all K.

Now, since Xi -’> . and ’i ’, with l’l a compact set, there exists an io such that

(18) &(,toi)>-(xi, toi)-8/2 foralliK, i>-io.

But (17) and (18) show that 0 is not a maximizer of b(, to) over i, which is a
contradiction. Hence the proposition is true.

COROLLARY. Consider the simplified problem (14a). The functions ba (.) are
uniformly continuous in l’l’ 1), .e., for any > 0 and x there exists e :> 0 such that
for any compact ’ D, [,,(x) ,(x’)[ < 6 whenever IIx

Proof. If the corollary were false, then there would exist 6, g>0, and
sequences ’i ’ and xi- such that [,a,()- l(xi)[ . But this would contradict
Proposition 1, so the corollary must be true.

Our two constraint construction schemes define the operations to be performed in
step 1 of the master algorithm model 1.

Constraint construction scheme 1: General case.
a) Specify a positive, decreasing sequence {Ei}ic-_O, with Ei "-> 0 as -> o.
b) Given i, xi,

(i) compute toll, for all km, by approximately evaluating
kmaxon b (xi, to );

(ii) set

(19) 6h(xi)- max {0, (xi); 4(xi, o/), k m};

(iii) if bh (xi) > ei, include to/ in l’l for all ] > i, and all k m such that

(20) t (Xi) ( k (xi, toki ).

In the case of Problem (14a) we get simplifications which we now state.

Constraint construction scheme 1 for problem (14a).
a) Specify a positive, decreasing sequence {Ei}i=O, with Ei --> 0 as --> C.

b) Given i, xi,

(i) compute toi by approximately evaluating maxo &(xi, to);
(ii) set

(20a) h (xi) )(xi,

(iii) if ph (xi) :> ei, include toi in 1). for all j
In its most economical form, the constraint construction scheme 1 only requires

that given the sets l’l/, k= 1,2,..., m, 1"/+ ={to/}lAl’l/ if (Dk(xi, toki):Jil"l(Xi) and
,h(xi)>ei, and /+1 =/ otherwise; i.e., the approximating constraint sets 1 are
augmented only when the corresponding functional inequalities (max,on b (x, to) _-< 0)
have been sufficiently violated.

Apart from this specified restriction, the construction of the / is arbitrary in the
ksense that any other points to c, not specifically covered by the scheme, can be

added to (or subtracted from) the sets /.
Assuming that our algorithm is being used in an interactive computing facility with

a graphics display terminal, we expect the user to proceed as follows. He will choose a
very slowly decaying sequence {ei}i=o to make the test ,h (xi)<= ei easy to satisfy. For
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example, he may set

(21) ei gd/n(Xo)/(i + 1) 1/L

with K >-100, L >-2. This forces very few took to be added to f/k in forming fk+l.
However, so as to ensure better computational behavior, we expect him to add to k to
o/k+1 if a constraint violation occurred at took (i.e. 4k(xi, to)>0) and to keep it in
f’,/" _-> + 1, for a few more problems P. on a discretionary basis, after which he will.
probably find it reasonable to drop it. He may do this, without violating the hypotheses
for convergence in Theorem 1, below.

Returning again to the special case of problem (14a), we find that here we compute
only one toi and hence

(22) Oa (xi) max {0, ((xi, to/)}.

THEOREM 1. Consider a sequence {xi}io constructed by the master algorithm model
1, using the constraint construction scheme 1. Suppose that (i) [I/tini(xi)-l[tni(xi)[’-)0 as-- O0 and (ii) the optimality functions Oa,( used in the master algorithm model 1 satisfy
Assumption 1. Then any accumulation point of {xi}i=o is in A.

Proof. Without essential loss of generality, it suffices to prove the theorem for
K

the special case of problem (14a). To obtain a contradiction, suppose that xi ,
where K = {1, 2, 3, .}, and A. We consider the various possibilities.

(i) Suppose that 4n() 0, i.e. is feasible for Pn. Let 6 (0, 1), t3 >0, )Q >0 and
/2 > 0 be as specified in Assumption 1 for a?. Then, since n,(x) -> 0 for all x and any

(23) 0n,() => On(f) for all i.

Consequently, there exists an integer in >= ]Q such that xi B(, t3) for >= i0, K and

(24) 0 (x) < -/2 <n, =-/3 for alli_->io, iK,

which contradicts the construction in step 2 of master algorithm model 1.
K

(ii) Suppose that On(2) > 0. Then, since ei -* 0 as --> oo, since Pn(xi) --> 4,n(2) > 0 by
continuity, and since 14’[a(x)-4’n(xi)l->O as i-> on, there exists an in such that ei <
g/ (xi) 4,(xi, toi) for all 6 K, _-< in. Furthermore

K

(25) cb(xi, toi) 0n() as - eo.

Since 1) is compact, we must have

(26) I49(xi, toi)- 4)(xi, to/)[ 0 as no, i,/" 6 K, /" > i.

Now, to O, for all K,/" > >- in, by construction. Hence we obtain that

(27) 0n(x) >- ni(X/’) (/)(X], toi),

for all i, f K,/" >i_-> in. Taking (25) and (26) into account, we conclude that
K

(28) 4%(xi) -->0n() as -> co.

K
Making use of Proposition 1, we now conclude that ton, (2) - On(2) as --> no. Let

Kg (0, 1),/Q > 0, t2 > 0 be as specified in Assumption 1. Because 4,n,() -->$n(,f), there
exists an il --> such that for K, _-> i1,

(29a)
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and

(29b)
and therefore

(29c) Ol’ii (Xi) "-- -- < --[i for all s K,

which contradicts the construction in step 2 of the algorithm model.
Since (i) and (ii) are the only two possibilities, we conclude that the theorem

holds.
Our second constraint construction scheme is a generalization of the ones pro-

posed by Eaves and Zangwill [6] and by Mayne, Trahan and Polak [8]. Like those
schemes, it will retain a particular constraint for a certain number of approximating
problems, and then drop it. However, it utilizes somewhat more information than the
schemes in [6] and [8] and therefore leads to a more interesting convergence theorem.
On the basis of our experience with the algorithm in [8], we predict that the constraint
dropping scheme below, when used in an interactive computing facility, is bound to
result in much better computational behavior than the earlier outer approximations
algorithms.

Constraint construction scheme 2: General case.
a) Specify a double indexed sequence {Eii}iC=o,j<i such that

(i) eii 0, e0 > 0 for all i,/" < i;
(ii) eii--> g as --> , uniformly in ];

(iii) gi>eii for i>=], and g.-->0 as ]-->. (For example, ei=6-6 i, with
(0, 1), or eii gi-gi, where gi,l,O.)
b) Given xi,

(i) compute o/ fl, k 1, 2, m, by approximately evaluating
max,,o b (xi, w );

(ii) set 4,ia(xi) as in (19);
(iii) for all/’ s{1, 2,..., i} such that 0(x.)> eii, include w in fl+, for all

k m such that Oia(xi)=,bk(xi, w).
Again, for problem (14a) we get a simplification"

Constraint construction scheme 2 for problem (14a).
a) Specify a double indexed sequence {Eij}iC=o,j<=i such that

(i) Eii O, Ei] > 0 for all i, ] < i;
(ii) ei --> as --> , uniformly in j;

(iii) ei < /i

_
j and f --> 0 as ] -> c.

b) Given xi,

(i) compute (.D ’ by approximately evaluating maxo, &(xi, to) and set
t(Xi)--- (Xi, O)i)’

(ii) for all ] {0, 1, 2, , i} such that p (xi) > eii, include to in i+x. 71
Note that once the test (xi) --< eii is satisfied, the pair (0 (xi), to.) need no longer

be stored.
For a comparison with the Eaves-Zangwill scheme [6], we set eii f(xi) --f(xi), >=

]. Their rule is to store only the last 0a(x.), to and [(xi) at which constraints were
dropped and to include all to in flk, j _<- < for all k 6 m satisfying 4,c(Xl) 4,(Xl, tokl),
whenever 0a(xi)> eii. The Mayne-Polak-Trahan scheme [8] is similar to the Eaves-
Zangwill one, except that it sets

f(xi)--f(xi) d" [Jb[3
Eii i)’(1 -/3

where/ (0, 1) and - > 0,/z > 0. Thus, the schemes in [6] and in [8] slowly accumulate
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constraints (i.e. 0), then drop them en masse, then accumulate them again. This type of
oscillatory behavior results in poor computational properties. Also, since only one
4,a(xj) is utilized at any time, convergence properties in [6], [8] can only be established
for the subsequence at which constraints were dropped, rather than for the whole
sequence. Our constraint construction scheme 2 was evolved to avoid the type of
oscillatory behavior mentioned above and, in addition, to enable the establishment of
convergence properties for the entire sequence {xi}. It shares with the schemes in [6], [8]
the property that it retains a certain o in l’l/ until -/" has become sufficiently large for
IJ (Xj) Eij to take place, and then drops it.

TZORM 2. Consider a sequence {xi}= constructed by master algorithm model 1,
using the constraint construction schdme 2. Suppose that

(i) ]i(Xi)--ta(Xi)[-’>O as i->,
(ii) the optimality functions 0a’ (") used in the algorithm model 1 satisfy Assumption

1.
Then any accumulation point of the sequence {xi}i=l is in A.
Proof. We note that since eii < . for all ->/" and all j, when scheme 2 is used, a point

k
toi satisfying ia(xi)= b(xi, to) is always included in all 1)/k, i>j, whenever 4’ (xi)>
gi. Since the i satisfy the properties of the {ei} specified in scheme 1, Theorem 2 follows
directly from Theorem 1. lq

It may sometimes be difficult to show that an optimality function 0, (.) satisfies
Assumption 1. In that case one can make use of Assumption 2, below. It is satisfied by
the optimality functions used in [8].

ASSUMPTION 2. Consider the family of optimality functions {0 ai(’)}, where the 12i
are discrete subsets of fl. If {xi }i is a sequence in n such that xi --> , with a() 0, and
o (xi --> O as --> o, then s A.

When Assumption 2 is in force, we use a different algorithm model.
MASTER ALGORITHM MODEL 2.
Parameters. An infinite sequence {/3i}i0,/g > 0,/3i 0.
Data. Discrete sets D,0, k m contained in f.
Step O. Set 0.
Step 1. Construct the discrete sets f, k m.
Step 2. Compute an xi such that

(30) --[i Ol’li(Xi) 0 and i(Xi) i"

Step 3. Set + 1 and go to Step 1.
THEOREM 3. Let {xi}=o be a sequence constructed by master algorithm model 2,

using the constraint construction scheme 1 or 2. Suppose that
(i) I, (xi) d/a(xi)l- 0 as - o;

(ii) the optimality functions 0,(. used in the master algorithm model 2 satisfy
Assumption 2.

Then any accumulation point of the sequence {xi}i is in A.
Proof. We only need to prove this theorem for the case where the constraint

construction scheme 1 is used, since scheme 2 is a special case of it. Without essential
loss of generality, we restrict ourselves to the special case of problem (14a).

K
Thus, suppose that Xi "">, with K c {1, 2, 3,...}. First, suppose that 6a()= 0.

Since 0h,(xg)->0 as i-> by construction, it follows from Assumption 2 that
Hence we only need to show that assuming 6a()> 0 leads to a contradiction.

K
Therefore, suppose that ffa()> 0. Then, since 6a(x) -->a() by continuity, and

K
16a(x)- 4,a(x)[--> 0 as ->oo by assumption, we must have 4,(xi) -->4,(x). Therefore,
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since ei 0 as oo, there exists an integer io > 0 such that 61a (xi) b (xi, toi) > ei for all
-> i0, 6 K, and thus, o)i lIj for all j > >= io, K. Consequently,

(31) aj(xi)>=4)(xi, ooi) for all j> >-io,

Now, because b is continuous and I) is compact,

(32) I((Xj, O)i)- l)(Xi, (.Oi)l-- 0

K
as i, j - oo, i,/" 6 K, i > i. Since [a (Xi) ((Xi, 0)i) -"> I/tD() as -> oo, we obtain from (32)
that

(33)

as i, j - oo, i, j K, j > i. Hence, because of (31) and (33), there exists an il io such that

(34) Oa,(xi) >- 0a()/2 >/3i for all -> il, K.

But this contradicts (30) and hence we are done.

3. Optimality tunctions for outer approximations algorithms. We shall now
present a few optimality functions which satisfy Assumptions 1 and 2. To avoid even
more subscripts or superscripts, we shall denote them all by the same symbol 0(’) or
0n(" ). They will be treated one at a time and so no confusion should arise among them.
First we show that any family of optimality functions satisfying Assumption i must also
satisfy Assumption 2.

PROPOSITION 2. Suppose {0,(" )}, ’i C -, is a sequence of optimality functions
satisfying Assumption 1. Then it also satisfies Assumption 2.

Proof. Suppose that xi- as oo, with On(2)= 0, and that On,(xi)
Then e A, for otherwise, by Assumption 1 (since Oa, (2) => g0a() for any g (0, 1) and

(xi) < -/2 for all > io, which contradictsall i) there exists a/2 > 0 and an io such that 0n,
0l)(Xi)->O as i-> oo.

The first two optimality functions that we consider are independent of the
superscript and hence we shall drop it for these cases. These optimality functions are
normally used in methods of feasible directions (see [10], [11], [12]) for computing
descent directions. Since these optimality functions satisfy Assumption 1, we conclude
that methods of feasible directions based on these optimality functions are suitable for
solving problems Pn’ in a scheme based on either master algorithm model 1 or on master
algorithm model 2.

Consider the functions, with 1)’
_

fl, compact, introduced in [13] by Pironneau
and Polak,

(35)

0n,(x) a__ min {1/21lhllz + max {(Vf(x), h ); gi (x) + (Vg (x), h ), j !;
h

b (x, w) + (V,b (x, o) ), h ), w fl’, k 6 m}} 6a,(x ).

Since (35) is an extremely messy expression, we shall show (without much loss of
generality) that it satisfies Assumption 1 by considering only the special case where
m 1 and 0, i.e., problem (14a). In this case superscripts can be dropped, and (35)
simplifies to

(36) 0a,(x) =rnn {1/2llh[[2 +max {(7f(x), h); b(x, w)+ (Vxb(x, w), h), w D’}}- 0a,(x).
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ASSUMPTION 3. For every x n, 0 coao(x Vx(X, to), where

(37) D,o(X) {w w)

and co denotes the convex hull of the set in question.
This assumption states that the gradients of the constraint function at the most

violated points are positive linearly independent. We recognize it as a sufficient
condition for the Kuhn-Tucker constraint qualification to be satisfied at every x En.

THEOREM 4. Suppose that Assumption 3 is satisfied. Then the family of optimality
functions defined by (35) satisfies Assumption 1.

Proof. We shall only give a proof for the special case (36). It is quite easy to see that
A {x[Oa(x) 0, (x) 0}. Since b, assumption 0 co,a,(x) Vb (x, to) for all x ,
and co,oao(x) Vb(x, to) is closed, there exists an h " such that (Vb (x, co), h)< 0 for
all to fo(X). Hence it is easy to see that Oa(x) < 0 for all x " such that (x) > 0 and
therefore

(38) A={x]Oa(x)=O}.

Now, suppose that 2 A; therefore 03(2) < 0. Then, for any x N", ’ c f, compact, we
get from (36)

(39) 0n,(x) <_- 0a(x)+ [0a(x)- 0a’(x)].

Since 0a(" is continuous and 0a’(" is continuous uniformly in f’ (by the corollary
to Proposition 1), there exist g (0, 1) and t3 > 0 such that

(40) d6a() _-> Oa(2) + x0a(x),

(41) On(x)<=5Oa(2) forallx B(,t),

and for any fl’ c 12 such that 0a’(f) --> gOa() _-> a(.f) + 0a(x),

0(42) 0a,(x)=>0a(x)+5 n(x) forallxB(,)

Hence, from (39) and (42), for all x B(, ),

(43) Oa,(x <= Oa(x <- a(x1/2O(x o
which completes our proof. [-I

Next, continuing in the simplified framework of the problem
Pn" min {f(x)[ b(x, o)<-0, o f}, which results in no essential loss of generality, we
define a new optimality function, which we obtain from the test in Polak’s method of
feasible directions [10, (p. 164)] as follows. For any e => 0, f’ f compact, and x
let the set of "e-active" o D, be defined by

n’Xx) {o a’l,b (x. ,o) _-> ..(x) e }(44)

and let

(45) y[a,(x) A min max {(Vf(x), h)-n,(x); (V,(x, to), h), to l)’(x)}.
Ilh][l

This function is used to find a descent direction in one of the Phase I-Phase II algorithms
in 11 ]. Unfortunately, it is not continuous, which prompts the development, below. Let

(0, 1), p > 0 be given.

(46) 0a,(x) min {-e Yfi (x) N -e, e {0} U {olk 0, 1, 2, 3,...}}.

It is easy to show (by extension of the results in 4.4 of [10]) that an equivalent
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characterization of A (see Definition 1) is

(47) A={x Rn 3,(x)= 0, Oa(x) 0}.

Since ’a (x)=> , (x) for all e >= 0 and 0 ya (x) always holds, we must have also that

(48) a {x lO.(x) 0, 6.(x) 0}.

LEMMA 1. Suppose that Assumption 3 is satisfied and let f’ c_ f be any compact set.
Under these assumptions, we have the following"

a) If is optimal ]’or Pa’ then 0,() O. Furthermore,

(49) .a {x " 0.(x) 0}.

b) For any " such that 0a,()<0, there exist <0 and g>0 such that
Oa,(x <- lor all x B(, ).

c) If is such that Oa,()= 0 and ’ is discrete, then 0,(. is continuous at .
Proof. a) Referring to [10, p. 181], we see that if is optimal for Pa, then

0
y,, () 0. Hence, since /, () -< ,/,, () for all e >= 0, it follows from (46) that 0,() 0.
The fact that (49) holds follows from (48) and Assumption 3, which guarantees that
y (x) < 0 for all x such that a(x) > 0.

b) Suppose that 0,()< 0 (i.e. 3,,(a?)< 0). Our first observation is that the map
(x, e I)’(x) is upper semi-continuous, i.e., given (, 0) and > 0, there exist to > 0 and
t3o > 0 such that

(50) tq’(x) c Ng() for all e 6 [0, go], x 6 B(2, t3o),

where Ni is a neighborhood of D,;(,f) defined by

(51) N &{ 1 ’ g, for some ’ a;()}.

Let > 0 be such that for

(52) ,(x)& min max {(V/(x), h)-Oa,(x); (V$(x, ), h),
Ilhlla

we have

(53) ,2 ()--< ,()/2.

Note that 35,(. is a continuous function.
Now, let o>0, t3o>0 be such that (50) holds and let t3 (0, o] be such that

,(x)-_< ,,(2)/4 for all x B(2, t3). Then, for all e [0, Yo] and for all x

’y,, (x) <- , (x)<= 1/, ()/4
where the first inequality holds because l)(x) Ng(). Let/ =>0 be any integer such
that 3,, ()/4 -< -/30 & -g and g (0, go]. Then for all x B(,f,

(54) y,(x)_<- -Y
and therefore, by definition, 0a,(x) =<-g for all x B(2,

c) Now suppose that 0n,()= 0, and, for the sake of contradiction, suppose that
0a,(2) is not continuous at 2. Then there exists a sequence xi,f as ioo and a
t flkp > 0 such that

(55) 0a,(x)_-<-8 < 0 for all i.

Since f’ is discrete, there exists a t3>0 such that f/2( =D.;(.) for all x B(2, t3).
Hence, by continuity of 35,(. )(g= 0 in (52)), and because 35,(f)= ,,(2)= 0, there
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exists an io >= 0 such that

(56) -/36 < /,(xi)<=y,(x,) for all i>=io.

But this implies that Oa,(xi) >- -6 for all > io which contradicts (55). This completes
our proof.

THEOREM 5. Suppose that Assumption 3 is satisfied, then the optimality functions
Oa,(" defined by (46) satisfy Assumption 1.

Proof. Suppose ; A. Then, by Lemma 1, 0a(;) < 0 and there exist Oa > 0 and ? > 0
such that

(57) Oa(x)-<_- for all x B(;, Pl).

Let 6 (0, 1) be such that

(58) g@n() >= @(;)- g/4.

Since f is compact, b(., w) is continuous, uniformly in w 11, and hence there exists a
t3 6 (0, pal such that for any discrete subset f’ = f and for all x

(59) Oa,(x)- @a,() ->-- qb(x, 03)- qS(;, o3) _-> 7/8,

where 03 arg maxima, 4(2, o), and also (by continuity of On(" ))

(60) @a(x) -<_ 4a(2) + /8.
Now suppose that ’= f is a finite set satisfying

(61) Oa’() ->- gOa() ->- On()- g/4,

and suppose that x B(, t3). Then, making use of (59), (60) and (61), we obtain

(62) Oa,(x) Oa’()- ?/8 _-> Oa(.)- g/8- g/4 _-> Oa(x)- /2.

Therefore, since D.;/z(X) c fl;(x) f(x) always holds, for all x e B(2, t3) we obtain

,/,(x) min max {(Vf(x), h)-Oa,(x); (Vx(X, w), h),
Ilhlloo=<l

(63) =< min max {(Vf(x), h)-Oa(x)+ ?/2; ?/2 +(V4(x, w), h),
Ilhlloo=<l

e (x) + g/2 -<"/a /2.
The last inequality follows from (57) and (46) because, with e(x)a__ 0a(x), for all

xB(,),

(64) ya’) (x) <= -e(x) <-_ -g:,
which implies that g -<_ e (x) for all x 6 B (;, t3) and therefore,

(65) /(x)<=’),a)(x)<--g: for all x B(;, t3).

It now follows from (46) and (63) that

(66) Oa,(x) <= -/2 __a _/2 < 0, for all x

which completes our proof.
To conclude this section, we show that penalty function algorithms can also be used

for solving the problems P, in our outer approximations methods. We continue to
restrict ourselves to the special case where P is min {f(x)l(x, w)_<-0, w 12}, since
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there is no essential loss of generality in doing so, but the notational simplification is
great.

Let {sg}=l be an infinite sequence such that si >0 and si-O as -c (e.g. si so/i,
or sg -/3 i, with/3 (0, 1)), and let ’ c f be any discrete set with cardinality ua,. Then we
define pa," " 1 and, for 1, 2, 3, , ," n it1 by

(67) pn,(x) a_ i_ [max {0, & (x, to)}]2
PIT F

and

(68) fia, (x) = f(x) + l__pn,(x).
Next, we define the optimality functions 0a, (.) by

(69) oi, (x i-- 1,2, 3, .,
with f’ always a discrete subset of 13,. A standard assumption in penalty function
methods is that for any x such that p,(x)> 0, Vp,,(x)# 0 or the somewhat stronger
assumption that 0 coo,a,(x)/ V(x, to), for all x such that a,(x) => 0, where

(69a) f’(x)+ A {to fF (x, to)>-0}

and co denotes the convex hull of the set specified. When extended to the problem Pa,
the latter assumption becomes 0 coo,a(x)+ V&(x, to)for all x such that pa(x)-<_ 0. This,
in turn, leads to the following strengthened assumptions which we shall need to show
that the optimality functions (69) satisfy Assumption 1.

ASSUMPTION 4. (i) Forallx "such thata(x) >-0, 0: co,oa(x)+ V&(x, to). (ii) For
every e >0, there exists an rl >0 such that for any x and any f’ f finite, if
q.,(x) >= e, then IlVp.,(x)ll >-- .

THZORZM 6. Suppose Assumption 4 is satisfied. Then the family of optimality
functions defined by (69) satisfies Assumption 1.

Proof. Let R" be such that h.
a) Suppose that Oa(2)= 0 and that the 0a’(’) do not satisfy Assumption 1 at 2.

Then, since 0a’(2)=>gOa(2) for any g>0 and compact D,’cf, we can construct
sequences {x} 1, {f}g x, {}-- x, such that xi as c, Og are discrete subsets of
f, txg > 0,/xg 0 as - m, and

(70) 0 (Xi) Vf(xi) "[--- E max {0, (x, w)}V.(x, w) > tz,
Pi oli Si

where
If there exists an infinite subsequence {llg}g:, K c{1, 2,...} such that either

K
fig or 4’a,(xg) 0, for all K, then (70) implies that Vf(xi) -->0 as and hence
that V/() 0. But this is impossible since 2 A. Hence no subsequence satisfying (70).
can exist. Therefore, we assume that fg b, Oa(xg) _-> ,a,(x) > 0 for all i. Now let

(71) 7Ti
__a _1 E _2 (x, to)Vx(X, to).

Pi o’i(xi)..i- Si

Then, since Vf(xi) -> 7f(3), as --> o, by continuity, (70) implies that 7rg --> Vf(.) as --> ,
which shows that the 117rgll are bounded. Next, since 0co,,a(x/ V,&(x, to) for x e
{, x, x2,’" "}, it is easy to see from a compactness argument that

(72) inf min{llyll[y co
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Writing ’7/’i as

(73) 7"/’i---
Sili

where A/(W) b(xi, w)/o,<x,)/ qb(xi, w), we conclude, since [[oa/<x,)/ A/(w)
Vx4(xi, w)]] >= d by (72), and since 7"/’i --> Vf(), that the coefficients

(1/SiPi)ooi(xi)+ (Xi, 09) are bounded from above for all i. Consequently, there exists a
bound M, such that, because of Carath6odory’s theorem [14],

/9+1

(74) 7/’i--" E /kiTxt(Xi, O)/k), i-- 1, 2, 3," ",
k=l

with w ki E -i(Xi)+ and 0 <= A/ < M. Since fl is compact, there must exist an infinite subset
K’

K’ c {1, 2, 3,...} such that o
1, 2, , p + 1, as -> . Substituting into (70) and taking limits, we get that

p+l

(75t vf() +
k=l

Also, since b(xi, w/)=>0 for all i=0, 1, 2,..., and k 1, 2,...,p+1, and since
4,a(a?)=0, we must have b(, o3)=0 for k 1, 2,...,p+l. But this shows that
satisfies the Kuhn-Tucker conditions and therefore E A(which only requires the F.
John condition), and hence we get a contradiction. Thus the 0, (.) satisfy Assumption 1
at any A such that b(.f)= 0.

b) Now suppose that 4’-(:)> 0. Let > 0 be arbitrary. Then, by Assumption 4,
there exists a/ > 0 such that [IVp,(x)l[ >- t2 for all x and all fl’ c finite, for which

Since the 4’’(" functions are continuous, uniformly in f),’ (see the corollary to

Proposition 1), there exists a t3 > 0 such that if fl’= lq is finite and if 4,,(,f)--> n(),
then 4,,,(x) >= 64,(x) for all x B (, t) and consequently IlVp,(x )l[ --> t2 for all x
B (,f, t3). Hence, if 4’n’(,f) => 4’n(,f) and x B (,, t3),

(76) o’,(x) x7f(x)+ Vp,(x) ---< -[IVpa,(x)[[+l[Vf(x)[I <----t2 +
Si Si

where M’: max {llVf(x)lllx B(, )}. Since si --> 0 as -> oo, there exists an N such that
-((1/si)12 +M)<=-12 for all >=N and hence we see that Assumption 1 holds at . This
completes our proof. El

Conclusion. The algorithms described in this paper differ from the earlier versions
of outer approximations algorithms in three important respects. They have better
convergence properties, they are implementable, and they are designed for use in an
interactive computing facility. The last property makes them particularly suitable for
use in solving computer-aided engineering design problems in which function evalua-
tions are extremely expensive and for which it is generally not possible to specify in
advance scaling and algorithm parameters which ensure good computational behavior.

Appendix: List of symbols.
A.1. General problem (7).

: ff" --> , cost function

gi. __>, simple constraint function
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k. i, R. - [1, functional constraint function

lqk compact subset of

D AQ x ’12 x

fl , discrete subset

6a,(x) max {0; gi(x),

=ma,(x) (x,

(x Amax {g(x), gE(-x),..., gl(x)}

P: min {f(x)(x) O}

Pa,: min {f(x )l fro, (x)

Oa()A min max {(Vf(), h); gi()+(Vg(), h),jl;
Ilhlll

& (,) +((, ), h), , k m}

0, (x)" optimality function

a {x " Ca(x) O, O.(x) O}

B(x, p)= {x’ n
1{,2,...,}
m{1,2,... ,m}

(10)

(12)

(13a)

(6)

(7)

(9)

A.2. Simplified problem (14a).

f: -> 1 cost function. n Rp - [, functional constraint function

12i
___

discrete subset

a,(x) & max {0; (x, ), ’}, ’
.,(x) max (x, ), ’
Pa: min {f(x)lOa(x) O}

Pal: min {f(x)l,(x) O}

a’(x)+ { e a’[ (x, ) o}

pa,(x) &1 [max {0, (x, w)}]2, a’
_
a

f, (x) Af(x) + pn’(x)
S

(14c)

(14d)

(14a)

(14b)

(44)

(69a)

(67)

(68)
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A.3. Optimality functions for simplified problem (14a).

Topkis-Veinott:
0a,(x) min max{(Vf(x),h),c(x,o)+(V(x,o),h),il’},f’_f

hllhlloo

Pironneau-Polak"

Oa,(x __a mn {llh = + max {(Vf(x ), h ); & (x, o + (Vxb (x, o), h), o iT}} 4,a,(x)

(9)

(36)
Zoutendijk:

y,(x) ___.a min max {(Vf(x), h)- .g,9,(x); (x(X, ), h), f’,(x)}, I’
_
f (45)

h llhlloo=<

Gonzaga-Polak:

Oa,(x) a= min {-e lYh (x) <= -e, e {0} LI {flplk O, 1, 2, 3,...}}

Penalty function methods:

V ’’ ,...

(46)

(69)
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UNIQUE IDENTIFICATION OF EIGENVALUES AND COEFFICIENTS
IN A PARABOLIC PROBLEM*

ALAN PIERCE

Abstract. This paper discusses uniqueness questions for identification of coefficients in a second-order,
linear, one-dimensional, parabolic partial differential equation. Here, the unknowns are spatially-varying
coefficients appearing in the equation. The solution of an initial-boundary value problem is observed at one
point over a finite time interval. Conditions are given under which the eigenvalues associated with the
problem are uniquely determined by such an observation. The coefficients are not uniquely determined. If,
however, the equation is in normal form, the single coefficient which appears is, in certain cases, uniquely
determined. This can be established b.y obtaining the spectral function or by obtaining the eigenvalues for two
different boundary value problems and applying existing results (I. M. Gelfand and B. M. Levitan (1959),
N. Levison (1949)).

1. Introduction. As part of their work on parameter identification in parabolic
problems, Kitamura and Nakagiri [6] gave conditions under which coefficients in a
parabolic equation could be determined by point-wise measurement. If these
coefficients are constant, observation of the solution of the equation at one point for all
time,, under conditions they specified, determines eigenvalues of the equation. The
coefficients in the equation they considered are then easily obtained.

The situation is naturally more difficult in the case of nonconstant coefficients. A
number of results exist for problems whose coefficients depend only on the solution 1]
or on the time variable [5]. For problems whose coefficients are functions of the space
variable, it is still possible to carry out the program of Kitamura and Nakagiri to a
certain extent.

In this paper it is shown that, under certain conditions, eigenvalues of a parabolic
partial differential equation are uniquely determined by an observation of the solution
at one point in space. The coefficients of the equation may be functions of the space
variable. In addition, the observed solution need not be known for all time but only on a
finite interval.

In contrast to the case in which the coefficients are constant, knowledge of the
eigenvalues does not directly yield the coefficients. If, however, the equation is in
normal form, in which one coefficient appears, then this coefficient can be uniquely
determined by observation at one point in space.

(1)

2. Eigenvalue identification. Consider the problem

(aux)x bu,- cu O on (0, 1) (0, T],

(2) u=u0, t=0,

(3) aou-(1-ao)Ux =q0, x =0,

(4) clu + (1-Cl)Ux =ql, X 1.

In all that follows, it will be supposed that a and b are positive and that they, with c,
Q, Uo, q0, and ql, are sufficiently smooth to guarantee existence of a unique solution u
with continuous partial derivatives on [0, 1][0, T] (see, e.g., 1-7, pp. 320-321] for
appropriate H61der continuity and compatibility conditions).

THEOREM 1. Let a, b, c be unknown functions ofx in [0, 1 and let ao, a be given.
Let {&n} be the nontrivial solutions of
() (a6’n)’ + (Anb c)&, =0,

* Received by the editors April 13, 1978 and in revised form October 9, 1978.
Amoco Production Company, Tulsa, Oklahoma 74102.
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(6) aoCn (1 ao)’ 0, x 0

(7) 01 +(1-al)b’ =0, x 1

ordered as ho < h (/2 <" Let u be a solution of (1), (2), (3), (4). Suppose Xo is not in
the countable set N {x e [0, 111n(x)= 0 for some n}. Assume that exactly one of the
inputs Q, Uo, qo, qx is nonzero. Then the sequence of eigenvalues {An} is uniquely
determined by knowledge of that single input and of u (Xo, t) for 0 <-_ <= T in the following
cases:

(i) /f Q has the form h(x)q(t) with q vanishing in no interval about 0 and if, for
all n, h (y)n (y) dy 0,

(ii) if, for all n,

Io b(y)uo(y)n(y) dy 0,

(iii) if qo vanishes in no interval about 0,
(iv) if ql vanishes in no interval about O.
Proof. If the coefficients a, b, and c in (1) are not known, then (5), (6), (7) cannot be

solved directly. Nevertheless, the eigenfunctions may be chosen to be a complete
orthonormal set on [0, 1] (with weight function b). Further, the generalized Fourier
expansion

may be rewritten as

(8)

u(x, t)= nEo= b(y)u(y, t)n(y) dy Cn(X)

[11, pp. 215-216]. Here

and

(Uo, n)= Io b(y)uo(y)n(y) dy

Q,,(t) Jo O(y, t)n(y) dy.

Case (i). Now let Uo, qo, and qa be zero. Let O(x, t)= h(x)q(t) be known. Then,
from (8),

U(Xo, t)=- ., e-’"(t-’)n(Xo) h(y)&n(y) dy q(’r) d’r

for ON t_-< T. Since q does not vanish identically in any neighborhood of 0, the
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integral equation

U(Xo, t)= f(t-’)q(z) d"

has a unique solution f [12, pp. 324-325]. By the above, this solution must be

f(t) 2 e-X’bn(Xo) h(y)bn(y) dy.
n=0

Whatever the coefficients a, b, and c, the eigenfunctions are uniformly bounded
and the eigenvalues are asymptotic to a multiple of n 2 [4, pp. 270-273]. Thus this
Dirichlet series converges for all > 0 and, in fact, on the right half of the complex plane,
so f can be extended to an analytic function on the right half plane. Since a function can
be represented in at most one way by a Dirichlet series [10, p. 435], the exponents {An}
(as well as the coefficients) are uniquely determined.

Of course, only those exponents actually appearing in the series are determined in
this way. But Xo is not in N, so no #n (Xo) is 0. Likewise, each of the integrals is nonzero.
Thus, the observation U(Xo," uniquely determines all the eigenvalues.

Case (ii). Suppose now that Uo is nonzero but that Q, qo, and ql are everywhere
zero. In this case, the series in (8) is already a Dirichlet series:

U(Xo, t)= Y’. (Uo, ckn) e-X"tn(Xo).
n=0

As before, the exponents which appear are uniquely determined by the observation
u (Xo,’). By hypothesis, no coefficient is zero so all the eigenvalues are determined.

Case (iii). Suppose that Q, Uo and ql vanish everywhere. In this case (8) becomes

U(Xo, t)= a(O)[ckn(O)+ck’,(O)] e-X"(’-)ckn(xo) qo(r) dr.

In the same manner as before, if qo does not vanish identically in any interval about
0, then this relation uniquely determines the exponents appearing in the Dirichlet

series

E a (0)[@, (0) + b ’, (0)]@n (Xo) e -x"’.
n-----0

A full determination of the eigenvalues from this series requires, once more, that each
of the coefficients be nonzero. Here, however, the form in which the driving force is
supplied to the system is sufficiently "impulsive" to avoid an assumption involving the
unknown sequence {bn}.

The function a was assumed to be positive so there is no problem with a(0). The
factor b, (0) + 4’, (0) is always nonzero. For, otherwise, it follows from (6) that 4n (0)
b ,(0)---0 from which, in turn, the eigenfunction @n would have to vanish identically.
Again, each dn (X0) is nonzero. Thus the observation u (Xo, uniquely determines all the
eigenvalues.

In particular, if ao 1 it follows from (6) that 4n(0) 0. Likewise, if al 1, then
4n(1) 0, so that an observation at Xo 0 or Xo 1, respectively, is sufficient to
determine the eigenvalues.

Case (iv). The situation in which qo 0 but q is nonzero may be treated in the
same way as Case (iii).
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3. Identification of a coetticient. In additional contrast to the case of constant
coefficients (cf. [6]), the determination even of all the eigenvalues associated with (1),
(2), (3), (4) does not identify the coefficients a, b and c. For, by the transformation

z= fo [b(y)/a(y)]l/2 dy (1= fo [b(y)/a(y)]l/2 dy),
v =[ab]l/gu,

the operator of (1) may be brought to Liouville normal form

Vzz -vt-dv

on 0 < z < l, 0 < <_-T (see, e.g., [2, p. 292]). Clearly, the system is governed by the
coefficient d, rather than a, b, and c themselves.

Suppose that the problem is given in this form, that is, a -= 1 and b 1 in (1). If
neither Co nor c is 1, then the problem (1), (2), (3), (4) may be taken to be

(9) L(c)U=Ux-Ut-CU=O,

(10) U=Uo, t=O,

(11) Bo(h)u ux(O, t)-hu(O, t) qo,

(12) B(H)u u(1, t)+Hu(1, t)=q.

Consider the following result of Levinson [8] for the associated Sturm-Liouville
problem" if the eigenvalues of

0" + ( -c)=0
are known for the boundary conditions

Bo(h)O O, Ba(H)O 0

and for the boundary conditions

Bo(h)O=O, BI(H1)O=O

where H # H1, then c is uniquely determined.
Eigenvalues are uniquely determined by u (x0, t) under the circumstances given in

Theorem 1. If the system can be observed under conditions described by two different
boundary conditions in the form (11) and (12)that is, for two different pairs (h, H)
and (h, Ha)then this shows that the coefficient c is uniquely determined.

The following result describes circumstances under which observation at a point
for a single set of boundary conditions is sufficient to uniquely determine the coefficient
c. (For a similar approach, in which the coefficient a in (1) is determined under the
assumption that b --- 1 and c --0, see [9].)

THEOREM 2. Suppose U and u2 satisfy

L(cl)ul =L(c2)u2=O

for some continuously differentiable Cl and c2, and

Ul u2 0, t=0,

Bo(h )u Bo(h )u2 qo,

BI(H)ul=BI(H)u2=O.

Let qo be continuous and not identically zero in any interval about O. Suppose further
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that observations Of U1 and U2 at 0 agree, i.e., that ul(O, t)= u2(0, t) for O<-t <- T. Then
Cl --C2.

Proof. Let {h.,1}, {0.,1}, and {h..2}, {..2} satisfy the associated homogeneous
Sturm-Liouville problems, i.e., let

n,i "- (ln,i Ci)n,i O,

Bo(h )tn,i =0,

B (H)O..i O,

for 1, 2. Let the orthogonal functions {O.,i} be normalized so that

n,i(O) 1

and let

In the same way that (8) was obtained, it follows that

u(x, t)=- F O,iO,i(O)O..i(x) e-’(-’qo(r) dr.
=0

In particular,

bli(O, t)=- Z Pn, e -"’’(’-) qo(r) dr.

But, since ul(0, t)= u2(0, t), it must follow that these two integral equations have the
same solution:

Z On,1 e -x"’’t-- Z On,2 e
n=O

for 0 < <= T. As noted in the proof of Theorem 1, the two Dirichlet series must have the
same exponents and coefficients. Thus

An,1

and

Pn,1 Pn,2

for all n. Let {A,} and (p,} denote these two sequences.
The problem may be converted, if necessary, to one with a nonnegative spectrum

by considering

lt ttn, nt- [ --(Ci- t O ]n, 0

where/,. a.- ao. The spectral function for both of these problems is

The proof is completed by following Gelfand and Levitan [3] and considering the
function

F(x, y)= I sin /zx sin /y
dcr(tz)
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where o’(/z)= p(/x)-(2/rr)x/. As shown in [3],

is continuous and the integral equation

f(x, y) + g(x, s)f(s, y) ds +g(x, y) 0

has, for each fixed x, a unique solution K(x, y).
This solution K satisfies

and

(O=< y <=x <= l)

$.,i(x) cos 4-. x + K(x, t) cos /- dt

ci(x)-ho=2K(x,x)
for 1, 2. It follows from either of these relations that Cl cz.

Acknowledgment. The author is indebted to Dr. Kenneth R. Driessel for a number
of helpful discussions of this problem. Thanks are also due to the reviewer for
suggesting improvements in the exposition.
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ALGEBRAIC THEORY OF LINEAR TIME-VARYING SYSTEMS*

EDWARD W. KAMENt AND KHALED M. HAFEZt

Abstract. An algebraic theory of linear time-varying discrete-time systems is developed in terms of a
module structure defined over a noncommutative polynomial ring. The module setup is induced from a

semilinear transformation that is derived from the given system. Various structural properties of the module
framework are explored including the concepts of cyclicity and n-cyclicity. The module theory is then applied
to the study of reachability and state feedback. Results on the construction of feedback controllers are
obtained that resemble pole or coefficient assignability in the theory of time-invariant systems.

1. Introduction. In 1965, R. E. Kalman [1] presented an algebraic theory for the
class of linear time-invariant discrete-time systems defined over a field K. The central
component of Kalman’s theory is a module structure on the state space defined over the
commutative ring K[z] of polynomials in z with coefficients in K. In this paper we
present an algebraic theory for linear time-varying discrete-time systems, which is also
based on a module structure. However, in contrast to Kalman’s theory, the approach
developed here is based on the concept of a semilinear transformation S defined on a
function space V containing all possible state trajectories. The main component of the
algebraic framework is an S-induced module structure on V defined over a skew
(noncommutative) polynomial ring.

Skew polynomial rings have been applied to various problems in the theory of
time-varying networks and systems, such as network synthesis (Newcomb [2]), system
realization (Kaman [3]), and structural analysis of input/output operators (Salovaara
and Blomberg [4], Ylinen [5]). The utilization of skew polynomial rings in the

state-space theory of linear time-varying systems was first considered by Kamen in an
unpublished report [6]. Several of the results in the present paper were first given in the
Ph.D. thesis of Hafez [14].

In the present work, time-varying systems are specified by a triple, of matrices
defined over a ring of time functions. This leads to a characterization of systems in terms
of a semilinear transformation S defined in 2. In 3, we use S to induce a module
structure over a skew polynomial ring. Here we introduce the concepts of cyclicity and
n-cyclicity. As shown in 3, n-cyclicity is equivalent to the existence of a canonical
form which is the discrete-time counterpart to the phase-variable form constructed by
Silverman [7] in the theory of linear time-varying continuous-time systems.

In the last section of the paper we study reachability and state feedback in terms of
S and the induced module structure. Using the concept of n-cyclicity, we present a new
approach to the construction of state-feedback controllers. The theory yields results
that resemble coefficient assignability of the characteristic polynomial in the theory of
time-invariant systems. This framework is then compared to pole assignment-type
results based on a discrete-time version of index invariance defined by Morse and
Silverman [8] for continuous-time systems.

2. System description and basic properties. Let Z denote the set of integers and let
K denote a fixed field (finite or infinite). Let R denote the set of all functions defined on
Z with values in K. With pointwise addition and multiplication given by (a + b)(t)-
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a(t)+b(t), (ab)(t)=a(t)b(t), a, bR, R is a commutative ring. The function 1: Z
Z" 1 is the multiplicative identity of the ring R.

Let o’: R R denote the right-shift operator on R given by or: a(t) a(t- 1). The
operator o" is a (ring) automorphism on R that is, r is bijective and o-(a + b) era + o’b,
cr(ab) (o-a)(o’b) for all a, b R. The inverse O"-1 of cr is the left-shift operator on R.
The ring R with the automorphism o" is said to be a difference ring.

Finally, for any positive integer n, let K denote the vector space consisting of all
n-element column vectors over the field K. In terms of these constructions, we have the
following notion of a system.

DEFINITION 2.1. Let m, n, p be fixed positive integers. An m-input p-output
n-dimensional linear time-varying discrete-time system over the difference ring R is a
triple (F, G, H) of n n, n m, p n matrices over R, together with the dynamical
equations

x(t+ 1)=F(t)x(t)+G(t)u(t),

y(t)=H(t)x(t)

where x(t) K is the state at time Z, u(t) K is the input or control at time t, and
y(t) Kp is the output at time t.

For notational convenience, we shall work with the following modified version of
the standard equation (2.1). Apply the right-shift operator to both sides of (2.1) and let
D(t) F(t- 1), E(t)= G(t- 1), so that we have

(2.3) x(t) D(t)x(t- 1)+ E(t)u(t- 1).

From here on, we shall work with the system representation given by the dynamical
equations (2.2)-(2.3). The system given by (2.2)-(2.3) will be denoted by the triple
(D,E,H).

Our first objective is to characterize systems over R in terms of a semilinear
transformation defined as follows. Let R denote the free R-module consisting of all
n-element column vectors over R. Given an n x n matrix M over R, let S denote the
operator on R defined by S" R-R" v-M(o-v), where (o-v)(t)=v(t-1). The
operator S is clearly additive; i.e., S(va+v2)=S(v)+S(v2) for all v, v26R .
However, given a R and vR, we have that S(av)=M(o-(av))=M(o-a)(rv)=
(o’a)S(v), so S is not linear with respect to the R-module structure on R . The operator
S is said to be a semilinear transformation relative to o- (see [9]).

Now let (D, E, H) be an n-dimensional system over R. We shall refer to the
operator $" R R" v D(rv) as the semilinear transformation (s.l.t) of the system
(D,E,H).

As we now show, the state and output responses of a system over R can be
expressed in terms of the system’s s.l.t. First, given to Z and Xo K", let 20 denote the
element in R" defined by o(t) Xo when to and o(t) 0 when # to. Let S

O I
identity operator on R ", and for 1, 2,. , define (SiE)(t) D(t)(si-lE)(t 1).

PROPOSITION 2.2. Let (D, E, H) be a system over R given by the dynamical
equations (2.2)-(2.3). The solution x(t) of (2.3) resulting from initial state Xo K at
initial time to Z and input u >= to, can be expressed in the form

t-1

(2.4) x(t) (St-to)(t)+ E (St-g-aE)(t)u(i), > to.
i=to

Proof. Solve (2.3) using iteration and then apply the definition of S. Q.E.D.
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COROLLARY 2.3. Let u(t) R be an input function with support bounded on the
left. Then the output response y t) resultingfrom input u t) with zero initial state is given by

(2.5) y(t)= E (nst-i-lE)(t)u(i)

Proof. Combine (2.2) and (2.4). Q.E.D.
The expressions (2.4)-(2.5) are very interesting since they are identical in form to

the expressions for the state and output responses in the time-invariant case. In fact, if
the matrix functions D(t), E(t), H(t) are constant, replacing S by D and 0 by x0 in
(2.4)-(2.5) we get the response functions for the time-invariant case.

Since there is an operator theory for time-invariant systems based on a D-induced
module structure (i.e. Kalman’s K[z ]- module theory), the expressions (2.4)-(2.5)
suggest the possibility of an operator theory for time-varying systems constructed in
terms of an S-induced module structure. The primary objective of this paper is to
develop such a theory. But before we begin to do this, we need to consider the notion of
system equivalence.

DEFINITION 2.4. Let (D, E, H) and (D, E,H) be m-input p-output n-dimen-
sional systems over R. Then (D, E, H) and (D, E, H) are equivalent if there exists an
n n matrix P over R, with inverse P-1 also over R, such that / =P-aD(erP),

P-XE, and/- HP, where (erP)(t) P(t- 1).
As is well known, equivalent systems are related by a coordinate change in the state

space Kn" Let x(t) (resp. (t)) denote the state of (D, E, H) (resp. (/, ,/-)) resulting
from initial state X(to) (resp. (t0) with (t0) P-l(to)X(to)) and input u(t), >= to. Then
x(t) =P(t)(t) for all => to. Since H(t)x(t) =H(t)P(t)(t) =H(t)(t) for t-> to,
equivalent systems produce the same output response when excited by the same input
with zero initial state.

Let $ (resp. ) denote the s.l.t, of the system (D, E, H) (resp. (E3, ,/-)). If there
exists an invertible matrix P over R such that/ P-aD(erP), the s.l.t.’s S and are said
to be similar. Thus, equivalent systems have similar s.l.t.’s.

3. S-Induced module structure. Given an s.l.t. $ on R", in this section we use $ to
induce a module structure on R defined over a skew polynomial ring, and then we
study various aspects of the resulting operator framework. The results obtained here
will be utilized in the next section in the study of reachability and state feedback.

Let R[z] denote the set of all finite sums of the form Ei aizi in the symbol z with
coefficients ai g written on the left. With the usual addition and with multiplication
defined by ziz z i+i, za (era)z, a R, R[z] is a noncommutative ring, called a (left)
skew polynomial ring 10].

Let 77"(z)---’iaiz be an element of R[z]. We define the degree of rr(z) by
deg -(z) max {i: ai 0} when 7r(z) 0, and deg 7r(z) - when 7r(z) 0. If
deg rr(z)= n and an 1, 7r(z) is said to be monic. Monic polynomials are nonzero
divisors, i.e., if 7r(z) is monic and 7r(z)O(z)=O for some O(z)R[z], then 0(z)=0.

Given 7r(z), O(z)R[z], it is easily verified that deg(Tr(z)+0(z))<=
max {deg rr(z), deg 0(z)}. However, in general deg (Tr(z)O(z))deg r(z)+deg O(z),
since R is not an integral domain.

Now let S be the s.l.t, of the system (D, E, H). Then S induces a left R [z ]-module
structure on R with addition and scalar multiplication given by

(v + w)(t) v(t) + w(t),

aiz v 2 aiS (v)

where v, w 6 R", a,. 6 R.
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Note that this construction resembles the manner in which a K[z]-module
structure is induced on the state space in Kalman’s algebraic theory of time-invariant
systems [1], [11].

NowR has both an R-module structure and an R [z]-module structure. As will be
seen, there is a good deal of interplay between these two structures. In studying the
R [z ]- module framework, we shall need the following results involving the R-module
structure on R

Given a positive integer q and elements Vl, v2,"’, Vq belonging to R n, let
(vl, , Vq)R denote the R-submodule of R consisting of all R-linear combinations of
vl,’", Vq. Let [Vl," , Vq] denote the n x q matrix whose ith column is equal to vi.
Finally, we say that vl, , Vq are R-independent if i aivi 0 implies that ai 0 for all
i. We then have the following (known) results.

PROPOSITION 3.1. Suppose that q >= n. Then the following are equivalent:
(1) (Vl," ", 13q)R
(2) rank [Vx," ", v](t) n for all Z;
(3) for every e Z, there is an n x n submatrix of [vl,’", v,](t) with nonzero

determinant.
PROPOSITION 3.2. The following are equivalent:
(1)
(2) Iv1,""’, vn] is invertible over R;
(3) the determinant of [Vl," , vn](t) is nonzero ]:or all Z;
(4) Vl," ", vn are R-independent.
We begin the study of the R [z ]- module structure by considering the notion of

cyclicity: An s.l.t. S on R is said to be cyclic with generator g R if R is cyclic as an
R [z ]- module with generator g. That is, any v R can be expressed in the form
v zr(z)g, where zr(z) is some element of R[z] depending on v. If R is cyclic with
generator g, then R R[z]g {zr(z)g: zr(z) R[z]}.

A necessary and sufficient condition for S to be cyclic with generator g can be given
in terms of the R-module structure on R as follows.

PROPOSITION 3.3. An s.l.t. S on R is cyclic with generator g ifand only if there is a
positive integer q such that (g, Sg, , sq-lg)R R

Proof. If (g, Sg, , S-ag)R R n, for any v 6 R"n there exist ao, a 1, , a-I 6 R
such that v ]=-0 aiSg ( azi)g. Conversely, suppose that S is cyclic with generator
g. Let wl," ", wn be a basis for R n. Then for each i, there is a r;(z)6 R[z] such that
w ri(z)g. Since the w generate R n, for any v 6R n, there exist al, a2,’’’, an R
such that v=i=lawi=i=lairi(z)g=(ar(z))g. Hence R is generated by
g, Sg,..., S-lg, where q max {deg ri). Q.E.D.

Suppose that S is cyclic with generator g, and let q be the smallest integer for which
(g, Sg,..., S-lg)R R . It is very possible that q is strictly greater than n. This
situation can occur because, in contrast to the theory of linear transformations, there is
no Cayley-Hamilton theorem for semilinear transformations. In other words, it may
not be possible to express S as an R-linear combination of/, S,. ., Sn-1 (see [10, p.
300]). A class of s.l.t.’s for which q n + 1 is constructed in the following example.

Example 3.4. Given the s.l.t. S: R - R v - D(o’v) and g 6 R n, let C(t) denote
the n x n matrix [g, Sg, ., Sn-ag](t). Suppose that the determinant of C(t), denoted
by det C(t), is zero when to and nonzero when # to. Then by Proposition 3.2,
(g, Sg, , Sn-lg)u R n. Now SC D(rC), so det (SC) (det D)(det (o-C))
(det D)(o-(det C)). Therefore, if det D(to) O, det (SC)(to) O. Hence for every 6 Z,
there is an n x n submatrix of [g, Sg,..., S"-lg, Sng](t) with nonzero determinant.
Thus by Proposition 3.1, (g, Sg,. , Sng)u R n, showing that q n + 1.
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If the elements g, Sg, , sn-lg generate R", the s.l.t. $ is said to be n-cyclic with
generator g. In this paper we restrict attention to cyclic s.l.t.’s that are n-cyclic. The
theory of cyclic s.l.t.’s with q strictly greater than n will be developed in a separate paper
using results derived below for the n-cyclic case.

We shall now characterize n-cyclicity in terms of the R [z ]- module structure on
R n. Again let S be a fixed s.l.t, on R n. Given w R", let Ann w denote the annihilator of
w defined by Ann w {7r(z) 6 R[z]" zr(z)w 0}. It is easily checked that Ann w is a left
ideal of the ring R[z].

THZORZM 3.5. Given g R , the s.l.t. S is n-cyclic with generator g if and only if
Ann g R[z]O(z), where (z) is a monic polynomial of degree n.

Proof. Suppose that S is n-cyclic with generator g. Then since
,S g)R=R there exist ai6R, i=0,1,,...,n-1, such that Sg=(g, Sg, ’-

in=’ aiSig. Thus (z --iaizi)g 0, SO 0(z) z --iaiz Ann g. Clearly, R[z]O(z)c
Ann g, so it must be shown that Ann g R[z]O(z)" Let zr(z) Ann g. Since 4,(z) is
monic, there exist polynomials q(z) and r(z) such that 7r(z)=q(z)4,(z)+r(z), with
deg r(z)<deg O(z). The existence of q(z), r(z) can be shown by a straightforward
modification of the proof of the polynomial division theorem [12, p. 120] for com-
mutative polynomial rings. Now since zr(z) and q(z)O(z) belong to Ann g, r(z) must
also belong to Ann g. But since deg r(z) -< n 1 and the elements g, Sg, , s-lg are
R-independent (by Proposition 3.2), r(z) must be zero. Thus 7r(z)R[z]O(z). Con-

versel, suppose that Ann g R[z]p(z)with .!;) z +-1i=o biz bi R. Then S g
-/=0 bi$ g, which lmphes that (g, Sg, S g, (g, S, , s-lg)R. Now suppose
that (g, Sg,...,S-lg}g R. Then by Proposition 3.2, g, Sg,...,sn-lg are R-
dependent. Hence Ann g contains a nonzero polynomial with degree strictly less than n.
But deg zr(z)O(z) => deg 0(z)= n for zr(z)R[z], since O(z) is monic with degree n, so
that the degree of every polynomial in Ann g is strictly greater than n 1, resulting in a
contradiction. O.E.D.

Suppose that S is n-cyclic with generator g so that Ann g R[z]O(z) by Theorem
3.5. We shall call O(z) the order of g and write ord g O(z). We have the following
result on the computation of ord g.

n-1PROPOSITION 3.6. Let g/(z)= z +Yi=o agz denote the order of g and let a

(ao, al,’" ,an-l)g, where TR denotes the transpose. Then a =-C-I(Sg) where
C=[g, Sg, sn-lg].

n--1
Proof. By definition of (z) and a, S g -i=o aiS g -Ca. Since S is n-cyclic, C

C-1is invertible, so a (Sg). Q.E.D.
The next result interconnects n-cyclicity and similarity.
THEOREM 3.7. Let S" v- D(crv) and S" v- D(rv) be s.l.t.’s on R , and suppose

that S is n-cyclic with generator g. IfS and S are similar, so that there is an n n invertible
matrix P with P-ID(rP), then is n-cyclic with generator ,=P-g and ord
ord g. Conversely, ifS is n-cyclic with generator , and ord g ord g, then there is an n n
invertible matrix P such that P-ID(crP) and g p-lg.

Proof. Let S and S be s.l.t.’s on R and suppose that S is n-cyclic with generator g
and ord g=ff(z). Let R] (resp. R]) denote R with the R[z]-module structure
induced by S (resp. S). Now S and S are similar if and only if R s and R g are isomorphic
as R [z ]- modules [9]. Since S is n-cyclic, it follows from Theorem 3.5 that R] is
isomorphic to the left R [z ]- quotient module R[z]/R[z](z). Thus S and S are similar
if and only if R] is isomorphic to R[z]/R[z]tp(z), and this is the case if and only if S is
n-cyclic with generator g for some R with ord ord g. Now suppose that R ] is
isomorphic to R g and let b" R g R s denote the isomorphism. Then there is an n n
invertible matrix P over R such that b(v) Pv for all v R, and PD D(o-P). Lastly,
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since R] is n-cyclic with generator g, R] must be n-cyclic with generator g b-l(g), so
g =p-lg. Q.E.D.

As we now show, n-cyclicity of $ is equivalent to the existence of a canonical
representation (which is very useful in the study of state feedback).

THEOREM 3.8. Given an n-cyclic s.l.t. S on R with generator g and ord g $(z)
n--1

z +g=o agz, let $ denote the s.l.t, on R defined by S(v)= D(rv) where

(3.1) D

0 1
0 0

0 0

0 0

-ao -o-
-1

al -0"-2a2 O’-(n-1)an-l_

Let C [g, Sg, ", sn-lg] and [g, ,qg, ", q,-l,] where (0 0 0 1)TR.
Then is similar to S with p-ID(o-P) and g P-ig, where P C()-.

Proof. By direct computation, it can be shown that the/’th element of S’g is 0 for
] 1, 2, n landlfor/’ n iandthat" -’YJ -i_

aiS g. Hence det =-1
and @(z) 0, so S is n-cyclic with generator and ord g @(z). The desired result
then follows from Theorem 3.7. Q.E.D.

The last result of this section is the converse of Theorem 3.8.
PROPOSITION 3.9. Let S be an s.l.t, on R" and suppose that S is similar to

S" v D(rv) with D given by (3.1) ]:or some ag R. Then S is n-cyclic.
Proof. Apply Theorem 3.7. O.E.D.

4. Reachability and state feedback. Let (D, E, H) be a system over R with s.l.t.
S: v D(rv). In this section we first study reachability in terms of S and the R[z]-
module structure on R induced by S. We then present a new approach to state
feedback based on the concept on n-cyclicity. The results obtained below are very
similar to results in the algebraic theory of time-invariant systems.

We start with the usual definition of reachability.
DEFINITION 4.1. The system (D, E, H) is completely reachable at time if, for any

x(t)6K, there is an integer N>0 and inputs u(t-N), u(t-N + 1), , u(t- 1) that
drive the system from the zero state at time t-N to the state x(t) at time t. If there is a
fixed N for all x(t) K, (D, E, H) is completely reachable in N steps at time t. The
system (D, E, H) is completely reachable in N steps at all times if it is completely
reachable in N steps at each 6 Z.

Suppose that the system (D,E,H) is completely reachable at time t. Let
X1, X2," Xn be a basis of Kn. Then Xi can be reached in Ni steps for some N/> 0, so
any xK can be reached in N=max{Ni} steps. Thus (D,E,H) is completely
reachable at time if and only if it is completely reachable in N steps at time for some
N>0.

Criteria for reachability, expressed in terms of the system’s s.l.t. S and the induced
R [z ]- module structure, are given in the following two propositions.

PROPOSITION 4.2. Let be a fixed element ofZ. An n-dimensional system (D, E, H)
is completely reachable in Nsteps at time ifand only if rank [E, SE, , sN-1E](t) n.

Proof. Given a fixed andN > 0, from (2.4) the state x(t) at time starting from the
zero state at time t-N is equal to Y.i-t_N(St-i-lE)(t)u(i). This expression defines a
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map from (Kin)N into K with matrix representation [E, SE,... ,sN-1E](t).
Obviously, the system is completely reachable in N steps at time if and only if this map
is onto, which is the case if and only if rank [E, SE,. , sN-1E](t) n.

PROPOSITION 4.3. Write E [el, , e,n] where ei is the i-th column orE. There is
an integerN > 0 such that (D, E, H) is completely reachable in Nsteps at all times ifand
only if R 2i=1R[z]ei; that is, the columns orE generate R as an R[z]-module.

Proof. It follows from the definition of the R [z ]-module structure that R can be
generated from the columns of E if and only if there is an integer N > 0 such that
(E, SE, , sN-1E)R R . By Proposition 3.1, (E, SE, , sN-1E)R R if and
only if rank [E, SE, , sN-1E](t) 17 for all Z, and by Proposition 4.2 the rank
condition is equivalent to reachability of the system in N steps at all times. Q.E.D.

COROLLARY 4.4. Let (D, e, H) be a single-input (m 1) n-dimensional system.
Then (D, e, H) is completely reachable in N steps at all times ]:or some N > 0 (resp.
completely reachable in n steps at all times) if and only if S is cyclic (resp. n-cyclic) with
generator e.

Given the system (D,E,H) with the dynamical equation x(t)-
D(t)x(t-1)+E(t)u(t-1), we now consider state feedback by setting u(t-1)-
-W(t)x(t-1)+r(t-1), where W is an m n matrix over R, called the feedback
matrix, and r(t) is an external input or disturbance. The resulting closed-loop system is
given by the triple (D- EW, E, H) which defines the following dynamical equations

x(t) [D(t)-E(t) W(t)]x(t- 1)+ F_,(t)r(t- 1),

y(t)=H(t)x(t).

We shall let Sw denote the s.l.t, of the closed-loop system, i.e. Sw(v) Dw(rv) for all
v 6 R" where Dw D EW.

Now suppose that there is a feedback matrix O over R such that So is 17-cyclic with
n--1

generator g Eu for some u 6 R ". Let (z) z +i=o aiz denote the order of g. We
shall show that, given any monic polynomial X(z) of degree n, there is a feedback matrix
W such that Sw is n-cyclic with generator g Eu and ord g X(z). In other words, we
claim that it is possible to assign the coefficients of the order of g using feedback.

Let So denote the s.l.t, on R defined by So(v)= Do(rv) where Do is given by
(3.1). Let C=[g, Sog,. ",S)-lg] and (=[,S-o," ",-1] where g-
(0 0 0 1)TR. By Theorem 3.8, o is similar to So with/o p-1Do(rP) and, p-lg where

(4.1) P= C(d)-
n--1Now pick X(z) z + i--o biz, bi R, and let

(4.2) --n+l-hi)" o" (an-l-bn-1))/3 (ao- bo (r- (al

In terms of these constructions, we have the result claimed above.
THEOREM 4.5. Suppose that So is n-cyclic with generator g=Eu. Given

bo, bl, , b-i R, let W O- ufl(rP)-1 where P is given by (4.1) and fl is givei n by
nt_ vn-1(4.2). Then Sw is n-cyclic with generator g Eu and ord g ’(z) z z-i=o biz
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Proof. Let W=O-u[3(o-P)-1 and define lw=p-1Dw(o-P) where Dw
D EW. Then

lw p-aD(o’P)-P-aE(o- u/ (o-p)-l)(o’e),

Dw Do +

(4.3) Dw

0 1 0 0
0 0 1 0

0 0 0 "..1
_-bo -0" lbl -0"-2b2 -0" -1_

It follows that the s.l.t. Sw" v Dw(rv) is n-cyclic with generator g and ord g h’(z).
Since Sw and Sw are similar by construction, it follows from Theorem 3.7 that Sw is
n-cyclic with generator P g and ord g ord X(z). Q.E.D.

The above result resembles coefficient assignability of the characteristic poly-
nomial in the theory of time-invariant systems. In fact, as in the time-invariant case,
assignability implies that we can specify (up to an invertible matrix) the free response of
the closed-loop system"

THEOREM 4.6. Suppose that there is a feedback matrix Q over R such that So is
n--1n-cyclic with geherator g Eu and ord g z + /=0 aiz Given bo, ba, , bn-a R,

let W Q- u/(o’e)-1, where P is given by (4.1) and fl is given by (4.2). Then the state
x(t) of the closed-loop system (D -EW, E, H) resultingfrom initial state X(to) K, with
zero input for >- to, is given by

It-n+lx(t)=P(t) t-n+2.
y(t)

where y(t) is the solution of the n-th-order difference equation

n--1

y(t) + E bi(t + i)7(t- n + i) O, > to,
i=0

with initial data y(to-n +j)= f-th component of p-l(to)X(to) ]:or 1, 2,..., n.

Proof. Let (t) denote the state of the system (Dw, E, H) where Dw is given by
(4.3). The theorem follows from the form of Dw and the relation x(t)=
P(t)(t). Q.E.D.

As a special case of the above result, note that if we set bi 0 for all i, then 3,(t) 0
for > to, so the free response x(t) is zero for all > to + n. This is sometimes referred to
as "dead-beat control".

In the remainder of this section, we shall consider conditions under which there
exists a feedback matrix O such that So is n-cyclic with generator g Eu. We begin
with the single-input case (E e).

PROPOSITION 4.7. Given the single-input system (D, e, H), there is a O overR such
that So is n-cyclic with generator g eu for some u R if and only if (D, e, H) is
completely reachable in n steps at all times, in which case Q can be taken to be zero and u
can be taken to be the unit function.

Proof. By multilinearity of the determinant function, it follows that So is n-cyclic
with generator g eu if and only if S is n-cyclic with generator e. By Corollary 4.4, the
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latter condition is equivalent to complete reachability of (D, e, H) in n steps at all
times. Q.E.D.

One might expect that complete reachability in n steps at all times is also a
necessary and sufficient condition in the multi-input case. Reachability is necessary
(Corollary 4.10), but it is not sufficient as seen from the following example.

1
Example 4.8. Let D(t)=

0
andE(t)=

0

0 t-1 0 ][E, SE](t)=
0 0 t-1

which has rank 2 for all Z. Thus the system is completely reachable in n 2 steps at
all times. Now let Q be a 2 2 matrix over R and let g Eu, u R 2. Then g tu and
det [g, Sog] t(det [u, Sog]). Hence (g, Sog)R R 2, so So is not n-cyclic.

The next result gives a necessary and sufficient condition for the existence of an
n-cyclic So.

THEOREM 4.9. There is a Q overR such that So is n-cyclic with generator g Eu for
some u R if and only if there exist elements Uo, Ul,"’, Un-lR such that
(go, gl, , gn-1)R R where go EUo and gi D(ogi-1) + Eui for 1, 2, , n 1.

Proof. Suppose that there exist Q and g Eu such that (g, Sog,’", S,-lg)R
R n. Let Uo=U and ui---Q(o’gi-1) for i=l,2,...,n-1, where go=Euo
and gi D(trgi-1) +Eui. Then gi D(o’gi-1)-EQ(o’gi-1) (D -EO)(o’gi-1) for
1, 2, , n 1. Thus gi Sog for 0, 1, 2,. , n 1, so (go, gl, gn-1)R R n.
Conversely, suppose that there exist Uo, Ul," , U-lR such that
(go, gl, gn-1)R R where go Euo and gi O(crgi-1) + Eui. Let Q
-[ul, u., , U,-l, 0][o-go, o’gl,’’’, o’g-l]-1. It will be shown that
(go, So, go," s-lgo)R =R n" By definition of Q, Q(o’gi-1) =-ui for
1, 2,... ,n-1. Then for i=0, 1, 2,... ,n-2, $ogi=(D-EQ)(crgi)
O(o’gi)-El(o’gi)=D(crgi)+EUi+l gi+l. Thus Sogo gi for =0, 1, 2,.. , n 1,
which proves the claim. Q.E.D.

COROLLARY 4.10. Given the system (D, E, H), there is a Q over R such that So is
n-cyclic with generator g Eu for some u R only if the system is completely reachable
in n steps at all times.

Proo[. Suppose that there exist Uo, Ul," ", u-i such that (go, gl,’" ", gn-1)R
R where go Euo and gi D(o’gi-1)q-Eui. By definition, gi is an R-linear combination
of the columns of E, SE,..., SiE. Then since the gi generate R", the columns of
E, SE,"’, Sn-IE must generate R . By Proposition 4.2, the latter condition implies
that the system is completely reachable in n steps at all times. Q.E.D.

It is interesting to note that Heymann’s result [13] on the existence of cyclic
transformations in the control theory of time-invariant systems resembles the result
given in Theorem 4.9 with Ui 0, S1, $2, Srn} where sj (0. 0 1 0. 0):R

R with 1 in the ]th position. However, here the constraint that the ui belong to
{0, sl, , s,,} is too severe.

A procedure is given below for determining a set of elements
Uo, ul, , u,-1, go, gl, , gn-1 satisfying the condition in Theorem 4.9 (if such a set
exists).

Given the system (D, E, H), first compute a rio R" such that o(t) E(t)rio(t) 0
for all Z. Such a rio must exist if g0 Erio is to be a basis element of R". Now for some
fixed {2, 3, , n 1}, suppose that rio, ril, , ri;-1 R have been found such
that rank [o(t), l(t)," , i-1(/)]-- for all Z, where o Eao and .
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D(o’i-1) + ’ti for /" 1, 2, , i- 1. We shall attempt to find elements
Uo, Ul, , ui-1, ui R such that rank [go(t), , gi-l(t), gi(t)] + 1 for all 6 Z,
where go EUo and gi D(rgi-1) + Eui for j 1, 2, , i. Let T denote the subset of Z
consisting of all such that rank [go(t)," , gg-l(t), ’(i-1)(t)] i. There are three cases
to consider:

Case 3. If J is not empty, find elements q,o)R such that rank
so that gi S(i-1) and gj . for j 0, 1, , i- 1.

Case 2. Suppose that T is not empty. Let J denote the subset of T consisting of all
for which there is no AtK such that rank [g0(t),"’, i-l(t), S(i-)(t)+E(t)At]
+ 1. If J is the empty set, we can take tti(t) At, T, ui(t) 0, Z T and u. tii for

/’=0, 1,..., i-1. Thus gi =S(gi-x)+Eu and g.=ff, for j=0, 1,..., i-1.
Case 3. If J is not empty, find elements q,wR such that rank

[o(t), i-2(t), i-(t) + E(t)q(t), S(gi-1 + Eq)(t) + E(t)oo(t)] + 1 for all 6 Z.
Then we can take ui-x i-1 + q, ui w, and u. ii for j 0, 1, , 2. If no such q
and w exist, set ui-2 fti-2 + ,1, ui-a ii-1 + q, and ui o) for some r/, , w belonging to
R m, and so on.

This procedure works well if Cases 1 and 2 are the only ones that arise in the
computation of a solution. If it is necessary to consider Case 3, the "rate" at which the
procedure converges to a solution (assuming one exists) depends on the manner in
which q, w, etc. are selected. This issue will be considered in a separate paper, as the
details appear to require an extensive amount of development.

Example 4.11. Consider the system (D, E, H) where

D(t)= -1 1 0 and E(t)
0 -1

Taketio=
0
’sthat

o= and [o,S(o)]= 0 -1
0 0

The rank of [go(t), S(go)(t)] is equal to 2 for all tZ, so we can take tTa =0 and
1 S(o). Then

1 t-1 2-!t+21[go(t), l(t), S(l)(t)] 0 -1 + 1
0 0

The rank of this matrix is 3 for all Z except 0. Thus we need to find q, o) R 2 such
that rank [o(t), l(t) + E(t)o(t), S(1 + Eq)(t) + E(t)o(t)] 3 for all Z. This is

satisfied with q(/)= o)(t)= []. We then have the following elements which satisfy the
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condition in Theorem 4.9"

Uo=tio= u=tT+qg= u:z=w= go=o=

gl=x+Eq t- g2=S(,x+Eo)+Eto
-t t2-2t

In contrast to the approach given above, assignability-type results for time-varying
systems can be obtained by requiring that the given system with feedback be equivalent
to a pole-assignable time-invariant system (the output matrix may be time-varying). For
time-varying continuous-time systems, this approach is presented in [8] where it is
required that the given system be index invariant. In the discrete-time case, a system
(D,E,H) is index invariant if, for each i=l,2,...,n+l, rank [E, SE,...,
si-lE(t) qi =constant for all 6 Z and qn q,,/l. Clearly, index invariance is a very
restrictive requirement, which is not necessary for the existence of an n-cyclic So with
generator g Eu (for instance, the system in Example 4.11 is not index invariant).
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EXISTENCE OF OPTIMAL CONTROLS FOR
STOCHASTIC JUMP PROCESSES*

C. B. WAN" AND M. H. A. DAVISf

Abstract. Sufficient conditions are given for existence of an optimal control policy for a class of controlled
jump processes. The processes are specified by a family of "local descriptions" depending on a control which
is a function of the complete past of the process. Conditions for optimality were given in a previous paper [M.
H. A. Davis and R. J. Elliott, Optimal control of a lump process, Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete, 40 (1977), pp. 183-202]. Here it is shown that, under fairly stringent conditions on the form of the
local descriptions, an optimal policy can be constructed as long as a certain "Hamiltonian" function can be
minimized.

1. Introduction. In this paper sufficient conditions are given for the existence of an
optimal control policy for a controlled family of stochastic jump processes. This work is
a continuation of that started in [8]. The formulations of the controlled jump process
and the optimal control problem will be essentially the same as there.

The jump process xt is first specified under a basic probability measure P to which
corresponds a pair of entities (A, A) called the local descriptions of the process; A
determines the rate of occurrence of jumps while A determines their positions. By using
an indexed pair of Radon-Nikodym derivatives (a",/3u), we achieve control of the
jump process xt through mutually absolutely continuous transformation of the local
descriptions from (A, A) to (A", A ").

The control policy u will be assumed to be nonanticipative and to depend on the
complete information of the past of the process. The optimal control problem is then to
select a control policy so as to minimize a cost function of the form:

(1.1) J(u) E, c(s, u,, w) dAs + Gr

(See Definition 3.2.)
Necessary and sufficient Hamilton-Jacobi type conditions for optimality for the

above problem can be found in [15] and also in [8] for a slightly different cost structure.
Here we use these results to construct an optimal control policy, using an approach
similar to that developed by Davis I-6] for controlled processes described by stochastic
differential equations. For that problem an alternative method, used by Bene 12] and
Duncan and Varaiya 10], is to prove compactness of the set of densities corresponding
to admissible controls. Such an approach cannot generally be used here; see 5 below
for further comments on this point.

In 2 we give the mathematical formulation of the jump process and some related
results; this is a summary of material in [5] and [8]. In 3 we formulate the control
problem and give an example (Example 3.1, to which the reader may refer immediately)
which illustrates the type of problem to which our formulation applies. The main result,
stating conditions for existence of an optimal policy, is Theorem 4.2 in 4. This depends
on some technical results on compactness of certain sets of densities; these are collected
in an Appendix.

2. Outline of mathematical description of jump process and some related results.
The jump process formulation is very similar to that in [5], [8] but we include a brief
outline here in order to establish notation and to make this paper more self-contained.

* Received by the editors January 31, 1978, and in revised form July 7, 1978.

" Department of Computing and Control, Imperial College, Londoo, SW7 2BZ.
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We consider piecewise-constant processes {x,} taking values in a Blackwell space
(X, 5) and having isolated discontinuities. Such a process is defined by a countable
family {Sg, Zg, 1, 2 ;} of random variables, where {Si} are the "interarrival times"
and {Zg} the "states". Formally, let z0 be a fixed element of X, define

Y, ) ((R + x X) LI {(oo, zoo)}, cr {_B (R +) * , {oo, zoo}}),

and let (yi i) be a copy of (Y, 0) for i= 1 2,...
Then the basic measurable space is (f, o) where

= l-I yi, -O=o.
i=l i=l

yi be the projectionLet (Sg, Zi)" fl--> yi be the coordinate mapping and ok k I-I=
onto fk, i.e.

() (S,(), Z() &(), Z()).

We also define Zo(o)= Zo (another fixed element of X). Now let

To(w) 0,

k

Vk(O)) E Si(o0),
i=1

The sample path of the process {Xt} is given by

e [T/(w), T/+l(O))[
t>Too(

A measure P on (fl, -o) is given in the following way: The interarrival times {Sk } are
independent with survivor functions Ft P[Sk > t] determined by the corresponding
"integrated rates" which are functions Ak: [0, dk[-->R/(0 < dk -<o0) satisfying:

(i) Ak (0)= 0; Ak( is increasing and right-continuous;
(ii) Ak(t)’oo as t’oo if dk=

(iii) AAk (s) < 1 where AAk (s) Ak (s) Ak (s-);
(iv) There exist constants 01, 02 > 0 such that

Ak (t) <- 02 for [0, 01] and k ’{, where

ff{" is an infinite subset of the integers 1, 2,. ..
In terms of Ak, Fk is given by

(2.1) F =exp (-AkC(t)) H (1-AAk(s)).
st

(The product is over the countable set {s _-< :AAk(s)# 0}, and AkC(t)= Ak(t)
2s<__tAAk(s).)

This formulation enables continuous- and discrete-time models to be handled
simultaneously; for example if Ak (t)- then the Tk sequence forms a Poisson process,
whereas if Ak (t) 1/2[integer part t] then the Sk’s can only take integer values. Note that

d k inf {t" Ff 0}.
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Condition (iv) is introduced to ensure that the Tk’s do not accumulate at any finite time,
as the following result shows.

LEMMA 2.1.
T oo ao$o

Proof. For _-< 0 and k Y{, __<, AAk (s) _--< A (t) _--< 02 and hence

]-I (1- AA(s)) > O.

Thus for k 2/" there exists a constant 03 >0 such that Ft _-> 03 for t_-< 01. Let Ak
{to" Sk > 01}. Then PAk Fol and hence Y.k PAk o. Since the Ak are independent, the
Borel zero-one law gives P[lim sup Ak] 1 and this implies that To- oe a.s.

The specification of P is completed by giving a family of functions h k" ’k-I X R x
[0, 1] satisfying the following conditions"
(i) h k (.,., A) is measurable for each A ;
(ii) h

g (tog-l, t, is a probability measure on o for each (tog_l, t) k-l X ]0, d
such that h (tog-l, t, {Zk -l (to )}) 0.

h k specifies the conditional distribution of Zk given .the past. Formally, the measure P is
defined recursively by setting

P[S > t, Zg A IFrk_, 3= -I3,.oo Ak(tok-, S, A) dF.

According to [5], this procedure defines uniquely a measure P on (lq, -o). Now let @t be
t completed with all P-null sets of ,0.

The fundamental family of martingales associated with the jump process {xt} is
given as follows. For A ow, _>-0 let

p(t, A) I(t>=Ti)I(zieA).

Now define

At(to) A(S1) + A2($2) +" + A’-(S,-) + A (t- rk-1

and

for e ]T_, T]

A(t,A)(to)= E I(tark_l,Ta)A (toi_l;t-Tl-x,A).
k=l

q(t,A)=p(t,A)-(t,A)

is a local martingale of o, and the martingale representation theorem [5, Thm. 2] states
that any local martingale {M,} of -, is of the form

Mt f g(s, z, to)q(ds, dz)
O,t]xX

:io, t]xx
g(s’ z’ to)p(ds dz)- I]o, t]X g(s, z, to) (ds, dz)

Then

The pair (A, A) is called the "local description" of the process {xt}. Now let

/(t’ A) I0,t A(t,a)dA,.
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where the integrals are Stieltjes integrals in the sample paths and the integrand g is a
[locpredictable process belonging to --,1 (P) (see [5]).

3. Formulation of the control problem and some previous results. The method of
control of the jump process is through absolutely continuous transformations of the
local description from the basic pair to a pair (A", A"), where u is the control
variable and q/ is the class of admissible controls. This transformation is achieved
through a pair of controlled Radon-Nikodym derivatives (a",/3"), where
dA"/dA, "= dh"/dh. To render this precise, we first give some definitions. Let
(U, ) be a measurable space.

DEFINITION 3.1. The class of admissible controls q/is the set of t-predictable
processes with values in U.

Now let a" R+ U f-R + and fl" R+X U R/ be functions measur-
able with respect to the appropriate product o--fields and satisfying the following
conditions"

(i) For each (x, u) X x U, a (t, u, w) and/3 (t, x, u, w) are t-predictable pro-
cesses;
(ii) There exist positive constants el, c_, c3, 6’ such that

0<cl <-a(t, u, w)-<min C2,
AAt ]’

(3.1)
O<c<=B(t,x,u,w)<-_c3

for all (t,x,u,w)R+xXxUx;
(iii) x(t, x, u, w)h (dx, t, w)= l for all (t, u, w) R+ x U x fl.

As is customary, the w-dependence of a and/3 will often be suppressed.
For each u 6 ag, let a",/3" be the functions defined by

a"(t,w)=a(t,u(t,w),w),

B"(t, x, w) B(t, x, u(t, w),

In view of (3.1) (i) above and the structure of ,-predictable processes, there exist, for
each k Z+ and u , functions a," ilk-1XR+R and/3," Ok-1 xX xR+R such
that

(3.2) a (t, w) 20lk(Wk-1, t-- rk-l(W))I(t]Tt,_l, Tk]),
k

(3.3) flu(t, X, W)= fl(Wk-1, X, t-- rk-X(W))I(t]Tk_l, Tk]).
k

For a given u q/, a measure P is defined on (fl, ) by giving the Radon-
Nikodym derivative of its restriction to rN, N 1, 2,. ., as

(3.4) dP. 1-I Lk (w)
dP , k

where

and

g (1- o c(Wk_l, s)AA(s))
__<, (1- AAk(s))
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It is shown in [8] that Pu is the probability measure corresponding to a jump process
whose local description (A", h u) is related to that of P by

(3.5) A’ Io,t] a"(s) dA, h"(t,A)=Io,t (t,x)h(t, dx).

The fundamental family of martingales of the jump process under measure P is
{q(t, A)iA 0} where

q(t, A) p(t, A)-U(p, A) and /"(t, A) fhu(t, A) dA’.
3x

Due to the bounds (3.1) (ii), P and Pu are mutually absolutely continuous on
for each N. It is shown in Lemma A.1 below that Pu[T oo] 1 and it follows that P,
are mutually absolutely continuous on t for fixed > 0, since any set A -t differs
from U kAf’lBk by a P,-null set, where Bk (Tk-1 =<t < Tk) Tk"

In the proof of the main theorem (Theorem 4.2) we need the following technical
result. It follows directly from some compactness properties of densities (see Lemma
A.2; details are relegated to the Appendix since they are messy and the results are of
only subsidiary interest.)

LEMMA 3.1. For u ql andN Z+ letL(N)(u) denote the restriction ofdP,/dP to
as given by (3.4) above. (Then L(N)(u)LI(,TP)). If {u} is any sequence of
admissible controls then there is a subsequence {u} and an element O ofLx(, Tu, P}
such that p >0 a.s. and L(U)(u,k)- p weakly in La(lq,, P) as k

We now define the cost structure of the control problem, which takes place on a
finite interval [0, T].

DEFINITION 3.2. The cost rate is a function c [0, Tt] U f- R satisfying:
(i) c(t, u, to) is an -predictable function of (t, to) for each u U;

(ii) There is a constant c4 such that

O<--c(tu,(.O)<--C4 forall (t,u, oo)[O, Tf]xUxO.
The terminal cost Gf is a nonnegative r-measurable random variable, also bounded
by c4. The cost corresponding to u 0//is then

(3.6) J(u) E,{ I]o,7, c(s, Us, oo)dA(s, w)+ Gf(w)}.
The optimal control problem is to find a control u q/such that

(3.7) J(u*)=J*= inf J(u).

In [3] the integral part of the cost function was of the form

(3.8) Eu Ia x(x, s, u)"(ds, dx)
O, Tf]xX

where/(t, A) is the compensator for p(t,A) under measure P, as defined above.
Expression (3.8) is equal to

E, I] (Ix(X, S, U)"(s, x)h (s, dx)) a’(s) dAs
O, Tf]

and is thus included in our framework (3.6), taking

c(s, u, oo) a"(s, oo) Ix K(x, s, u, w)fl"(s, x, w)h (s, dx, ).
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Before proceeding with the formal development, let us consider the following
example which illustrates the type of control problem which can be formulated in the
above framework.

Example 3.1 (The market trader’s problem). A market trader starts the day with
a stock of N slightly over-ripe pineapples which, if not sold by the end of the day, must
be thrown away. He can vary the price continually throughout the day and this will
affect the number of customers and their buying patterns. How should he set the price so
as to maximize his revenue?

Here the jump process {xt} is the number of items in stock and the control is the
price per item ut [0, zi] where ti is a maximum reasonable price. We assume that the
arrival of customers at the stall is a point process with rate l(t, u) which in an simple
model might be of the form/(t)(1- b(u,)) where l(t) is the rate of arrival of potential
customers and 4(u) the fraction who are turned off by a price of u. The customers are
assumed to buy at most M items (M << N), their propensity to buy being measured by a
price-dependent probability distribution ql(u)’" qM(U) on {1,..., M}, qi(u) being
the probability of buying items. This will have various obvious properties" for example
the average purchase Y iq(u) should be decreasing with increasing u. There is a disposal
cost d(x) for x left over items (for example, d(x) dI(>o) where d is the cost of a trip to
the dump).

In terms of our abstract model, we take X {0, , N} and z N. For Z_(w)
1 we define A(t)= and

A(W_l,t,{i})= l/M, i=Zi_I-I,Z_-2," ,(l v(Z_-M)),

1)/M, MZ_a,
(w-l, t, {0})

O, M < Zk_1.

For Z-I 0 we take A (t) 0 and arbitrary (This means that A" actually depends
on W-l, which was not allowed for earlier; but the lack of w_a-dependence in the
general model is only used in Lemma 2.1 whose conclusion holds here anyway.)

Now let

(t,u,)=l(t,u),

(t,i,u,w)=Mq(,__i)(u), i=x,_-l,’",((xt--M) vl),

qi(u) I(x,_M).fl(t, O U, W)
M-X-+ I i=

These satisfy conditions (3.1) as long as l(t, u) is bounded and l(t, u), q(u) c for some
Cl > 0. These are not unreasonable assumptions. Then under measureP constructed as
above the jump rate is l(t, u) and the jump distribution corresponds to a demand
distribution {q(u)} as it should. The trader’s gross revenue for the day’s trading of Tf
hours is then

R(u)= -UsX,-d(xr)
=W

Xs Xs

and the control problem is thus to minimize J(u)=-ER (u). To get this in the form
(3.2) we have to introduce the fundamental martingales associated with the process, but
in this case it is more economical (since M < N) to classify them by jump size rather
than, as above, by jump location. Thus we define for =-1,-2,...,-M

p(t)= I(a=.
sNt
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This is a point process whose rate under measure Pu is

r(t, x,_, u) A (t, u,) qi(ut)I(,_>i + q(u) I(,_=

The expected cost is thus

J(u) Eu Usi dpi(s)+
i=1

Eu usr(s, x_, u) ds + d(x)

where r(t, x, u)= iiri(t, x, u).
The formulation of the market’trader’s problem is now entirely in accordance with

our abstract model.

4. Eseee fil emrMs. The value unction for the control problem is the
process { W} defined by

(This is the lattice infimum in L(, , P,o) for arbitrary u0 ; see [3], [8].). Note that

W0 J*= lim J(u).
u

The value function satisfies the following principle of optimality" [8, Thm. 4.6].
TOM 4.1. For any u the process {M } dened by

M2 [ c(s, Us) dA, + W
0,]

is an (, Pu) submartingale. B is a martingale i and only i u is optimal.
Take any u . Since {M2 } is a bounded submartingale it admits a Doob-Meyer

decomposition

(4.1) M =J*+N +a
where {N} is an {, P,} martingale and {a} a predictable increasing process with
ag 0. The martingale representation theorem [5, Thm. 2] can thus be applied to {N2
to give

(4.2) N g(s, x)q(ds, dx)
0, t]xX

for some g L(p). The crucial point is that due to the form of the decomposition (4.1)
and the definition of q(t, A), g does not depend on u. (This is seen in the proof of
Theorem 4.2 below, where we calculate the decomposition corresponding to another
control u*.) Now define the following Hamiltonian" process

H(t,u,)=c(t,u,)+(t,u,) xg(t,x,)a(dx, t,).

The minimum principles given in [3], [8] state that an optimal control must
minimize this Hamiltonian pointwise. Since the function g is defined independently of
the existence of an optimal control this suggests that such a control can be constructed

This example is included mainly to demonstrate how such problems can be formulated in terms of
measure transformations. As it stands, the example is a Markovian decision problem which could be handled
by the methods of, for example, 14], but it is clear that various forms of non-Markovian dependence could be
introduced into it without leaving our general framework.
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simply by picking out, for each (t, o), the value of u that minimizesH(t, u, w). This is the
idea used below, and it is similar to the argument used for the stochastic differential
equation case in [6]. We need the following additional conditions"

(i) For each (s, x, w)R+X fl, a(s,., o), fl(s, x,., w),
(4.3) c(s, x,., w) are continuous on U.

(ii) For each (t, o)R/xi2 there is a u0 U such that

Y(t, o)= H(t, Uo, w)= inf H(t, u, w).
uU

This assumption is satisfied if for example U is compact.
THEOREM 4.2. With the formulation of 3 and the assumptions (4.3), an optimal

control u* exists in the class ql of, predictable controls.
Proof. Let denote the predictable or-field on [0, Tr]x il. From (4.3)(i), H is

continuous in u for fixed (t, w) and hence

Yg(t, w)= inf H(t, u, oo)
uS

where S is a countable dense subset of U, so that for any constant a,

{(t,w):Yd(t,w)<a}= {(t,w):H(t,u,w)<a}.
uS

Since H(., u,. is a predictable process for each u U, this shows that W is -measurable. Also (4.3)(i) means that

Y(t, w) H(t, U, w) for all (t, w).

According to Bene,’ implicit function lemma in 1] these facts guarantee the existence
of a -measurable mapping u* [0, Tr] x ll-> U such that

(4.4) g(t, w)= H(t, u*(t, w), o).

u* is an admissible control in accordance with Definition 3.1.
We now show that u* is optimal in . From (4.1) and (4.2)

(4.5) M J* + f g(s, x) dq" + a.
O, t]X

Using the control u* constructed in (4.4) we obtain, using obvious shorthands
(* stands for u*),

(4.6)

u[u)g(a** a dhs dAs + a,
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where

and

(4.7)

at* a’-a’

* (a"/Su ,d’ (Cs c + g a /3*) dAs dAs.

The calculations above do not depend on the particular form of u*, and hence (4.6)
confirms our earlier assertion that the integrand g is not control-dependent. What we
do get from the construction of u* as in (4.4), however, is that {a’} is a predictable
increasing process. To prove that u* is optimal, it suffices to show that a 0 a.s. since
then Mt* is a martingale (see theorem 4.1). From (4.5) and (4.7) we have

and hence

(4.8)

=J* I1MT, +
O, Tf]xX

g dq* + a} + drr

J(u E.Mre >-_J* + E,ar >- O.

Now, since J* inf, J(u), we can choose a sequence of controls {un} such that J(u,),J*,
which from (4.8) implies that

(4.9) E,,, [a },3 -> 0, no.

Fix N, K Z+ and define

Y (a*T,4XTN)^ K;
then YL(,FT,P) and Eu.[Y]0 in view of (4.9) and the fact that at* is an
increasing process. But now we have

E,.[Y]=E[L(N)(u,)Y]
(see Lemma 3.1), and according to Lemma 3.1 there is a subsequence {u,k} such that
L(U)(u,k) converges weakly to an a.s. positive random variable p as k - oo. Thus

0 lim E[L(N)(um,) Y] E[pY]
k

and hence Y 0 a.s. Since this holds for every N and K, letting N and K tend to infinity
(in that order) gives

a =0 a.s.

This completes the proof.

5. Concluding remarks. Theorem 5.1 is a much less satisfactory result than the
corresponding theorem in [6] concerning control of systems described by stochastic
differential equations. There, only minimal conditions on the system functions were
needed to ensure that the measures corresponding to all admissible controls are
mutually absolutely continuous whereas here we are obliged to impose the rather
unnatural conditions (3.1) to achieve this. These conditions, though essential to our line
of argument, are probably more stringent than necessary in particular cases. (For
example, they are not satisfied in Pliska’s Markovian jump process formulation [14]).

In [2] and 10] existence for the stochastic differential equation case was proved by
establishing a compactness property of the set of densities corresponding to admissible
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controls. The approach is not generally applicable here, since the crucial convexity
property of the set of densities only holds in special circumstances. Indeed let L,(u)
denote E[dP,/dP[ot] and consider the process

L, OLt(Ul)+(1-O)Lt(ue)

where Ul, U2 E / and 0 < 0 < 1. Using a similar approach to that employed by Beneg in
[2] one can show that L, is the density obtained by replacing a", 3 in (3.4) by c, i
defined as follows. Let

Id,t-" OL,-(u)/Lt-.

Then

and

where

a(t, o))= tza (t, w)+(1-lxt)au(t,

(t, x, oo)= ut"(t, x, w) + (1- pt)uz(t, X,

Thus different convex combinations are required for d and/, which will therefore not
be equal to a",/3" for any u , even if a(t, U, ) and (t, x, U, m) are convex, except
in special circumstances. This argument does, however, show that the sets D(g)
introduced below in the Appendix are convex.

Appendix. The purpose of this Appendix is to give a proof of Lemma 3.1. Indeed,
Lemma 3.1 follows immediately from Lemmas A.3 and A.4 below.

DEFINITION A.1. Let gl and g denote respectively the sets of measurable
functions d" R + x R + and " R + xX x R + satisfying conditions (3.1) with the
u-dependence deleted. Now define

Note in particular that (a", ") for each u . To each (,) there
correspond families of functions {(, )" k Z+} related to (& ) as in (3.2), (3.3) and
we can define a measure on (,) by specifying its Radon-Nikodym derivative in a
manner analogous to (3.4). For N Z+ let fi be the restriction of fi tor defined by
this procedure, and define

d

and

DN() {LN (c,/3i) (8, ) E J}.

Then D()cL(a, r, P).
LEMMA A. 1. For any (, ) , Too oe a.s.().
Proof. From (3.1)(ii) ck(t)<_-c, so that

=fl ak(s+ Tg-1) dA<c2A(t-T-I)
O,t--rk-x]

Thus for k

A+r_ czAk(s) < [0, 0].
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It follows as in Lemma 2.1 that there is a constant 0 > 0 such that

P[Sk > 01lOTk_l] >- 0’3 a.s. (/3)
and hence Y’.k/3[B @Tk_l] OO a.s., whereB (& > 01). Now by a result of Doob, [9,
Cor. 1, p. 323] this series converges on the same set (modulo a null set) as the series
IB,. Thus Bk occurs infinitely often and consequently T -+ oo a.s. (P).

LEMMA A.2. For each N Z+, e > 0 there exist 6 > O, p < oo, D @rN such that, for
all (d, fi) q3, PN(D)>= l-e and 6 <=LN(& fi)(w)<-p for o D.

Proof. First note from (3.4) that for (c,/3) cg we can write

N

LN(&/) I-I Lk((.ak-1;Sk, Z)
k-1

where

t(lk }Lk(oo-l; t, X)= &k(t)[(t, X) exp[ (s)-- 1) dAkc

(A.1)
(1 -&(s)XA)

s<t (1- aA) )"

kFix k and for notational convenience, let {s’lA>O}={t,t2"’s "} and ai=lAt,.
Observe that 0 a < 1, so that from standard analysis

H (1-ai)>0 :> E an<oo.
i=1 n=l

Hence for any constant c, 0_-< c < 1, we have

1-I (1--ai)>0 z Fl (1--cai)>O
i=1 i=1

Denote

Now from (A. 1) and (3.5)

(A.2)

k
3’ (s) min (c2AAs, 1 6’) < 1.

ai <oo.
i=1

Pk(cO-l; t)=/5 [Sk > OT_l]

I0=exp{ c(s) dAk I] (1-c(s)AAsk)
st

<=e-ClA}C H (1--Clai) <= H (1--clai),
ti <=t ti <=t

and from (A. 1)

(A.3) c e-(C2-1)a’c l-I (1--T(ti))<--L(o&_I; t,x)<=C2C3 e(I-cl)A’c I-I (1-clai)

ti<t (1-ai) ti.<__t (l--a/)

There are now two separate cases to consider"
Case 1. d k oo, or d < oo, A (d k -) oo. Clearly in this case At’oo as d.

Suppose ,__<dk ai oO SO that

kI1 (1-c (ti))=O H (1--ai) H (1--c,ai).
ti <=d t --d tid
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Then for any e’> 0 there exists a r
k < d k such that

(A.4)

and

1-I (1--clai)<e’
ti"k

-it
k(1 3/ (ti)) > O,

ti
H (1-ai) > 0.
<=

Now define a set Dg c -g and numbers tk, Pk by

Dg g_l x [0, r
g x X,

(A.5)
6g c 2 -(c2-)A)Z (1-- yg(ti))

le I-[
ti<-k (1 ai)

(1
O cc3 e(-ca

t, (l-a/)
kSince Ag

is deterministic 6g, 0k, r are not dependent on tog-l, and depend only on
e’ and k.

Using (A.2)-(A.4), we now conclude that

(A.6) 0 < 6g <= Lg (tog) <= Ok < o0, all tog E Dg

with
N(tog(to) E Dg) >= l e ’.

On the other hand if Eti<__dk ai < oo, SO that

kI-I (1-a (t,))>0, H (i-a,)>0,
ti<d ti<d

1-I (1 clai) 3> O,
ti <d

we must then have

AC]’e as t’a g.
k k AHence for given e’>0, there must exist a z <d such that e- - <e. Again

defining Dk, 6k, Pg as in (A.5) we see that equation (A.6) applies.
Case 2. d k <, Ag

(d-) <. In this case since ,d a <,we know that

kH (1-ai), H (1-clai), H (1-c (ti-1)
d t .--<_d tid

and all strictly positive, and A] <
k k,Thus choosing r =d equation (A.6) applies with fiu(tog(to)6Dk) 1, since

# =0.
We have thus shown that (A.6) is true in general, for each k 1,..., N.
We can now apply the above argument for each k 1,. , N and for each e’> 0

2 Npick times-,r,...,z such that

g) ’, L DPN(Sk 3> 7 < e all

Hence for any e > 0, we can choose e’ small enough so that

(P {S <- r >=l-e,
=1
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and since on Dk, Lk has bounds 6k, Pk, we conclude that

for 0)S E D all Ls Du (6),O ( t <= Lk
tON <= p 03,

/5(D)_-> 1- s,

where

N

k=l

N

k=l

N

/9= t {T_-<r}.
k=l

This proves the lemma.
LEMMA A.3. For each N Z+, the set of densities DN((6) LI(-N, O-TN, PN) is

weakly sequentially compact.
Proof. It is sufficient to show that Ds ((6) is uniformly integrable, i.e. for each e > 0,

there exists a > 0 such that PN (A) < 6 implies/Ss (A) < e, where A @T,.
Let D @T,, be as in Lemma A.2; then

N(A IA LN dPN + IA LN dPN.
(3D D

From Lemma A.2 we then have for e’> 0

N(A)<=p’Pu(A)+s all Lu Du() some p’<03.

Hence, for e > O, choosing

2p"
e =2’

we see that if P(A)< 6 then

N(A)<e, all LNEDN((6),
This proves the lemma.

LEMMA A.4. Suppose {Ln} is a weakly convergent sequence in Du ((6) with limit
L LI(I)N, T,, Pu). Then L > 0 a.s. PN.

Proof. Let A (L 0) and take s > 0, D 6 TN as in Lemma A.2. Then PN(A
Dc) < e and

O=IALdPN=limIALndPN>=limIA,-,,-, cDL"dPN>----PN(AD)"
Thus PN(A 71 D) 0, so that PNA < e. The result follows.
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ARMA SPLINES, SYSTEM INVERSES, AND
LEAST-SQUARES ESTIMATES*

H. L. WEINERT," U. B. DESAI AND G. S. SIDHU

Abstract. Many of the optimal curve fitting problems arising in approximation theory and numerical
analysis have the same structure as certain problems of least-squares estimation of stochastic processes. This
structural correspondence implies that optimal curve fits (splines) are sample functions of linear least-squares
estimates. As a result, recursive estimation techniques can be used to solve these ,spline problems. Previous
work has dealt with splines determined by differential operators; these so-called Lg-splines are sample
functions of estimates of autoregressive stochastic processes (generated by all-pole systems in response to

white noise). The present work examines splines determined by certain integro-differential operators defined
in terms of the system inverse; these splines are sample functions of estimates of autoregressive-moving
average (ARMA) processes (generated by systems with zeros).

1. Introduction. In this paper we investigate splines determined by certain
integro-differential operators. These are natural generalizations of Lg-splines [1],
which are determined by differential operators. This generalization was motivated by
the following considerations. The properties of, and recursive algorithms for, Lg-
splines are intimately connected with dynamical systems whose transfer functions have
no zeros. This is a rather special class of systems, and one might wonder about the
properties of splines associated with systems having numerator dynamics (zeros). One
problem for which such generalized splines are needed is the minimum-energy control
of a linear system having functional constraints on its output [2]. (The zero-free case is
discussed in [3], [4].)

The particular integro-differential operators we consider are defined in terms of
reduced-order system inverses [5]. The generalized spline of interest is defined as the
solution to an optimization problem involving this operator. We have named these
splines autoregressive-moving average (ARMA) splines because, as is also shown, they
are sample functions of least-squares estimates of ARMA random processes. This
stochastic correspondence is used to develop recursive algorithms for ARMA splines.
Finally, the structural and continuity properties of ARMA splines are investigated.

Splines determined by general continuous linear operators were apparently first
considered by Atteia [6], [7] and then Anselone and Laurent [8] and Sard [9]. At this
level of generality, not much can be said about actual spline algorithms or structural
properties, although existence and uniqueness results can be established, and the spline
can be characterized as a projection. Results similar to some of ours have been obtained
recently by de Figueiredo 10], who relied heavily on our earlier work [11 concerning
Lg-splines. He takes a different approach to the ARMA spline problem by using two
separate Green’s functions rather than the reduced-order system inverse. No results on
structural and continuity properties of the splines are given. We note that the foun-
dations of our present work were laid in [2].

2. ARMA splines and system inverses. In order to motivate our definition of the
ARMA spline, let us review the definition of the Lg-spline. Let H be the Hilbert space
of functions whose nth derivatives are square-integrable on the interval [0, 1]. Let

* Received by the editors August 23, 1978.
? Department of Electrical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218.
t Instituto de Investigaciones en Matematicas Aplicadas yen Sistemas, Universidad Nacional Autonoma

de Mexico, Mexico City, Mexico.
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be linear functionals, let {r.} be real numbers, and let L be the differential operator

(1) L Dn+ aDj.
/’=0

The Lg-spline interpolating {r.} with respect to {A.} is a function cr(.)H that
satisfies the constraints A.cr r-, 1 =<j _<-N, and that minimizes 0 (Lf)2 among all
functions f(. )H that satisfy the foregoing constraints. The operator L determines
the functional form of the spline, and is chosen by the analyst. Lg-splines are intimately
connected with the nth order linear dynamical system having transfer function 1/L.
Note that if u(.) is a square-integrable input to such a system, and f(.)H is the
corresponding output, then u(. can be recovered from f(. via

(2) u =Lf.
Equation (2) represents the reduced-order system inverse (see the Appendix) forthe
system with transfer function 1/L.

Now let us introduce another differential operator

(3) M= E cD
i=0

with c, # 0 and m < n. We assume that L andM have no common factors. Consider the
system with transfer function M/L. This nth order system can be written in state
variable form as (see the Appendix)

(4)
fl(t) Ax(t) + bu(t)

f(t) cx(t)

where

(5a) A [ 0 I
-ao -al an-1

(5b) = [1, 0,..., 0]

(5c) b [0, , 0, b,..., b,]’.

Here the parameter ce n- m, and is called the relative order of the system (4). The
parameters {b-} are found via the recursions

(6)
j-1

b,+i c,_i , an-j+kb+k, 1 <= j <- rn.
k=0

The state vector can be written as

x(.)=[x(.),..., x(.)]’

where in this particular coordinate system the first a state variables are determined
solely by the output and its derivatives; i.e.,

(7) xk (.) f(k-l(. ), 1 -<k _-<a.

Determination of the remaining state variables requires knowledge of both output and
input. The initial value x(t0) for (4) will be specified at some point to e [0, 1] to be chosen
later.
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As shown in [5] and summarized in the Appendix, the reduced-order inverse of (4)
is the ruth order system:

O(t) 0(t)+ [IF(t)
(8)

u(t) O(t) + f(t)
where

F(t) If(t), f(1)(t),""", f()(t)]’.
The parameters in (8) are given in the Appendix in terms of the {ai} and {bi}. The initial
value for (8) is 0(t0) [x,+l(t0), Xn(tO)]’. If f(. H is the output of (4) in response
to a square-integrable input u(. ), we can recover u(. from (. via (8) only if we know
0(t0). Since this initial condition cannot be determined from f(.) alone, and since its
value has nothing to do with the choice of L and M, we set it to zero. That is,

(9) 0(t0) 0

and thus

(10) x(t0) =[f(t0),’’’,f(-l)(to), 0,’’’, 0]’.

The choice in (9) does not restrict the range of the system (4); that is, every function in
H can be generated by (4), (10) in response to some square-integrable input. That
input is simply the output of the inverse system (8), (9). As we shall see later, the choice
in (9) is also essential to the development of the proper topology forHa. A similar initial
condition problem arises in the study of innovations representations for smooth
processes 12], 13].

It is clear now that the reduced-order inverse (8), (9) can be written as

(11) u Tf
where T is a bounded linear integro-differential operator that maps H onto the space
of functions square-integrable on [0, 1]. We can now state the definition of the
autoregressive-moving average (ARMA) spline.

DZFINITION 2.1. A function s(. H is an ARMA spline interpolating {ri} with
respect to {A-} and T if

(12) As r, 1 _-<j =<N,

and

(13)

where
U={fH’: Af =r, I <=]<-N}.

We are assuming here that {A.} are linearly independent and bounded on Ha. We
know from [8] and [1] that a solution to the optimization problem (12), (13) always
exists, and that the solution is unique if {A.} are linearly independent on the null space
of T, which, as can be seen by examining the zero-input response of (4), (10), has
dimension ce. By a straightforward generalization of the results of 14], it can be shown
that this uniqueness condition is equivalent to a strong type of observability for the
system (4), (10). In particular, {A.} are linearly independent on the null space of T if
and only if the initial state (10) of (4) can be recovered uniquely from measurements
{A.f}7 when the input u (.) is zero. We will assume in what follows that this uniqueness
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condition is satisfied. It should be clear that the ARMA spline reduces to the Lg-spline
when m 0 and Co 1.

3. Reproducing kernel structure. We now show that H is a reproducing kernel
Hilbert space. This will allow us to compute the ARMA spline as a projection in Ha.
First we need a certain representation for functions in Ha, but before proceeding, we
will restrict our attention to a specific broad class of constraint functionals {hi} called
extended Hermite-Birkhott functionals. These functionals have the form

(14) hif Y’. yikf(k-1)(ti), 1 <=j <=N,
k=l

where 0-<tl-<t2=<...-<tu -< 1 and the {Yik} are known real numbers. For future
reference let h be the n-vector

(15) hi=[’yil, Yi2, "gia, O, O], I <-i<-N.
Also, as discussed later on, the best choice of initialization point is

to=0.

Now from (4) we have, for any f H

(16) f(t)=eb(t)x(O) + eb(t-r)bu(z) dr,

where

Since (4), (7), (14) and (15)imply

b(t) exp (At).

(17) a;f= h.x(ti),

we have

(18) A.f= h.6(t.)x(0) + h4)(t r)bu (’) d’.

We can write (18) in matrix form as follows: let W be the a x a matrix formed from the
first a columns of the c x n matrix

and let 4(. be the a x n matrix with ith row Zl(" given by

If also

and

XI(t)
r
/ t),
0, otherwise.

Xo , (0)]’
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then for/" 1, 2,..., a, (18) becomes

(19) 1 Wxo + M’)bu (r) dr.

Our uniqueness assumption guarantees that W is invertible [14] and thus

(20) Xo W-l-W-a z()bu (r) dr.

Now substituting (20) into (16), and recalling (10), we have

(21)

where

(22)

f(t) E (Aif)zi(t)-z’(t) A(r)bu(r) dr + cd(t-r)bu(r) dr,
/’=1

Now let

g(t_r)= {cd(t- r)b,
O,

Recalling the definition of ,(. ), we can write

(23) fof(t) Z (xl)z(t) + o(t, )u() d,

where

(24) O(t, r)= g(t- )- z’(t)z(r)b.

From our discussion of the system inverse (11), we know that u (.) can be replaced by
T]’(. )in (23); thus,

f01(25) f(t) E (Aif)zi(t) + G(t, r)[ T/(r)] dr.
i=1

Equation (25) is the desired representation for functions in Ha. It can now be easily
checked that the following is a valid inner product for

(26) (e, f)= (Aie)(Aif)+ fo (Te)(Tf).
/’=1

The norm induced by this inner product is

f01(27) Ilfll- 2 (;f)=+ (r)=,
1=1

Since the first term in (27) is fixed for all f U, we can restate the ARMA spline
definition as

DEFINITION 3.1. The ARMA spline s(. )H interpolating {rj} with respect to
{,.} and T satisfies

(28) ,s r,
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and

(29) IIs[I= min I1112.
f U

Now if {di} are the representers of {Ai}7; i.e., if

(f, d.)= Aif, 1 _-< j N,

then according to the projection theorem, the ARMA spline is the projection of any
function in U onto the subspace ofH spanned by {di}. IfH has a reproducing kernel
K(.,. ), the representers can be found via

di(t) aiK(., t).

In fact, the reproducing kernel for H relative to the inner product (26) is given by

o(30) g(t, r)= 2 z(t)zi(r)+ G(t, )G(r, ) d.
/=1

To verify this, we must check that [15]

(31)

(32)

K(.,t)H for all 6 [0,1],

(f(.), K (., t)) f(t) for all f Ha, [0, 1].

A little algebra will show that

1, i=/’,
l =< (i, /’) =< c,(33) Tzj O, Aizj

O, i],

(34) TG(., r) i3(r- .), AiG(., ’) O, 1 <= j <= ce, r [0, 1].

Thus {zi} span the null space of T and G(.,. is a Green’s function for T. As a result of
(33), (34),

(35) AiK(", r) zi(r), 1 _-</’_-< c

(36) TK (. -)= G(r, ).

These equations show that (30) is just a special case of (25), so that (31) is established.
Equation (32) can be verified by simply substituting (30) into (26) and using (35), (36)
and (25).

Inner products and reproducing kernels for H have also been characterized in
terms of the individual Green’s functions of L and M by Hajek [16], Parzen [17],
Wahba 18], and de Figueiredo 10]. Our approach avoids the separate inversion of the
operators L and M by using the reduced-order inverse of the system (4), (10). The
inverse system (8), (9) can be constructed by simple algebraic manipulations of the
original system. In addition, the basic equations (25)-(36) remain in precisely the same
form as the corresponding equations in the Lg-spline special case as reported in [19],
[20].

4. ARMA splines and least-squares estimates. Since the reproducing kernel
K(.,.) is symmetric and nonnegative definite, it is the covariance function of some
zero-mean random process {y (t), [0, 1]}. Proceeding in analogy to the Lg-spline case
[19], we can establish the following theorem.

THEOREM 4.1. Let (t) be the linear least-squares estimate of y(t) given random
variables {A.y} and let (t) be the sample function of (t) obtained by setting Aiy ri,
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1 <=] <-N. Then

(37) s(t) (t), for all [0, 1].

We see from the above that any algorithm for (.) is an algorithm for s (.) once we
replace {Z/y} by {ri}. We can develop a recursive algorithm for s(. without computing
K(.,.) by using the system that generates y (.) in response to white noise. This system is

(38) (t) Ap(t) + bw (t),
y(t) cp(t),

where w(. is zero-mean, unit intensity white noise and A, h, e are as in (5). The initial
conditions on (38) are

(39) E[p(0)]=0, E[p(O)w(t)]= /-[-] A(t)b’ t[0, t],

0, otherwise,

(40) E[p(0)p’(0)] I + A(r)bb’A’(r) d

The derivation of (38)-(40) again follows that in [19]. The process y(.) is called an
autoregressive-moving average process.

5. Recursive ARMA spline algol.ithm. We now give a recursive algorithm for the
ARMA spline. The derivation, which is similar to that in 19], is based on the stochastic
correspondence discussed in the previous section; that is, the estimation problem is
solved recursively for 33(" using (38)-(40), and then {A/y} are replaced by their sample
values {ri}.

Now

(41) s(t) =cx(t/N)

where the n-vector x(./N) is computed via the following steps.
Step 1. Initialization.
Let

Let

Io I /[5:]P(t/c) =+(t) A(r) +(-- T) bb’ A(T) +(-- T) dr+’(t,).

Step 2. Compute the following for a <- ] =< N- 1:

E]+I ri+l-hi+ax(ti+l/]),

Ri+ hi+lP(ti+l/l)hi+l,

K]+1 P(ti+1//)h+1,
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where

f(t/j) Ax(t/j), <-_ <-_ ti+l

’(t/j) AP(t/j) + P(t/j)A’ + bb’, <= <= ti+l,

x(ti+l//+ 1)=x(ti+l/j)+ Ki+IR -1
i+IEi+l

P(ti+l/j+ 1) P(ti+l/j)-Ki+lR -1

Step 3. Starting with the value of x(tN/N) obtained from Step 2, compute x(t/N)
by integrating

(42)

where for 1 =< ] =< N

(43)

(t/N) Ax(t/N) + bb’ix(t)

ixi(t), ti-1 < < ti,
ix(t)=

0, t>tv,

and

(44)

(45) ixi(ti)

#i(t) -A’ixi(t), ti-1 <- <-

h ’2vRleu, j N,

[I -1 (ti)+hRilei, a+l</.<N_ 1-hiRi Ki]ixi+I

ixi+l(ti) h;/3;, 1 --<i ---c,

6. ARMA spline structural properties. In this section we shall restrict attention to
point evaluation constraint functionals; that is

or, equivalently,

xf f(t), 1 <-_ j <- N,

hi=c, I <=j <=N.

To begin, note that the structure of the matrices A, b, c given in (5) implies

(46) cA/b { 0, 0 =< =< a 2,
bi+l, a l <= <- n -1.

By successively differentiating (41) and using (42), (44) and (46), we get for t {tg},u,

(47) s
cAix(t/N),

(i) (t)= cAix(t/N)+[i )i-1 1-,]
=o-1

(-1 -cAbb’(A’)i- ix(t),

O<-j<-_a-1,

Now the Cayley-Hamilton theorem and (5a) imply (here an 1)

(48) E aiAi 0 ai(A’)i.
=0 =0
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Then using (47) and (48),

Ls(t) as() (t)
]=0

(49) =c aiA x(t/N)+ (--1)i-l-kaicAkbb’(A’)J-l-k Ix(t)
k =a-1

Differentiating (49) we get

(51)

and for 1" _>- a,

’[Ixi+(ti)--Ixi(ti)], l <-i <=N-1,
(52) s(i)(ti + )-- S(i)(ti

--0"; IxN(tN), N,

where the vector r is the bracketed term in (47). Now from (45),

{ C’i, --1(53) Ixi+l(ti) Ixi(ti)-- c,[RlKiIxi+l(ti)_Ri

and IxN(tN)=C’R)leN. Equation (46) implies

ric =0, a <-j<-_23-2,

and therefore, using (52), (53),

(54) si)(ti + s<i)(ti O, a <= j <= 23 2, 1 <- <= N.
Now for j _-> 23 1,

(55) o’:c’= Z (-1)/--cAbb’(A’)-1-c’.
k -1

The alternating sign in (55) implies

rc’ 0, ] 23, 23 + 2, 23 + 4, ,
and thus for 1 =< =< N,

sCi)(ti + sCi)(ti O, ] 23, 23 + 2, 23 + 4,. .
The above results are summarized in the following theorem.

(Ls)(i)(t) (- 1)’(A’)ix(t)
and thus, using (48),

(50) L*Ls(t) ’ a;(A’); (t) O, t {ti}l.

Next we will examine the behavior of derivatives of s(. at the points {ti}v. From
(47), we have for 0 _-< j _-< a 1,

s(i)(ti + s(i)(ti O, 1 <-_ <- N,

l<=i<=a,
a+l<_i<=N-1,

’ix(t).

Now if L* is the formal adjoint of L,

L*Ls(t)= (-1)ia(Ls)(i)(t).
/’=0
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THEOREM 6.1. The ARMA spline s (.) of Definition 2.1 satisfies
(i) L*Ls(t) O, t {ti},
(ii) s(.)e C2-2[0, 1].

Jumps in derivatives of odd order greater than 2a- 2 can be computed via (52),
(53), (55). Now recall [1] that Lg-splines interpolating point evaluation functionals
satisfy condition (i), but instead of (ii), all of the first 2n- 2 derivatives are continuous
on [0, 1]. Thus the introduction of numerator dynamics via the operator M of (3) does
not change the functional form of the spline; it simply produces discontinuities in
derivatives of order greater than 2a- 2.

It is clear from 2 that the operator T, and therefore the ARMA spline s(.),
depends on the value of to. In 3 we chose to 0 because any other choice produces a
spline with unsymmetric continuity properties. For example, if to t, the spline satisfies
conditions (i)-(ii) above except that at t only the first a 1 derivatives are continuous.

7. Example. In this section we will solve for the ARMA spline in the case that
L D2 andM D + 1, and ,.f f(ti), j 1, 2. Thus a 1 and N 2. This choice for L
and M implies

0
A=

0 1] b=[1 1]’, c=[1 0], (t)=[1 t]0 0 1

W=I, zk(t)-[1 tl-t] ift[0, tl].

From results in the Appendix, the operator T is given by

Tf(t) ](t)- I,, e-’-)l(r) dr.

Using the algorithm of 5, we have [rom Steps 1 and 2,

0
X(tl/1)=[rl 0]’, P(tl/1)=

0

x(t2/1) [r 0]’, e2-- r2- r,

(1/3)[(1 + tz-tl)3-1]+ ta(t2-tx)a]K2= (1/2)[(l+t2_ta)2_l]+tl(t2_tl) J’

x(t2/2) [r 0]’ + KzRI (r2- r)

and from Step 3,

s(t)

R2 (1/3)[(1 + t2- ta)3-1]+ tl(t2- q)2,

b’lx2(t) R-I(1 +t2-t)(r2-r), b’ll(t)=Rl(t2-t)(r2-r),
r2 + R] ((1/2)(1 + t2-ta)- 1/2 + tl(t2-tl))(r2-ra)(t-t2), => t2,

r2 + R1 ((1/6)(1 + t2 t)3 -(1/2)(1 + t2- t)2 + (t- t)((1/2)(1 + t2- tx)

+ta(t2-t))+(1/3)(rz-r), tl <=t<=t2,

ra +g ((1/2)(1 + t- tl) + t(t- t1)(-1/2)(t2- ta)(r2- ra), <-- t,

The structural properties of Theorem 6.1 can now easily be checked.

8. Conclusions. The familiar Lg-spline is associated with an all-pole linear
system. We have generalized this by introducing an autoregressive-moving average
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spline that is associated with a linear system that has zeros (numerator dynamics). The
concept of reduced-order system inverse was used to define the ARMA spline.
Reproducing kernel Hilbert space methods were used to establish the fact that the
ARMA spline is a sample function of a certain least-squares estimate. A recursive
spline algorithm could then be derived using estimation techniques. Finally, we derived
the structural properties of ARMA splines and thus showed the precise changes that
occur in the Lg-spline when numerator dynamics are introduced.

Generalizations are possible in several directions. First, under mild conditions, our
development will carry through for variable-coefficient operators L and M. Second, our
results generalize to vector-valued ARMA splines along the lines of [21]. Structural
properties for ARMA splines int6rpolating general extended Hermite-Birkhoff
functionals can be derived using the techniques of [20]. When the measurements
contain errors and exact interpolation is not desirable, the ARMA spline smoothing
problem can be formulated and solved in a similar fashion to the Lg-spline case
considered in [22].

Finally, interpolation and smoothing error bounds can be derived for ARMA
splines with the methods of [23].

Appendix. In this appendix, we will outline the method detailed in [5] for inverting
the linear system (4), (5). First, in order to obtain the representation (4)-(6), write the
system having transfer function M/L in state-variable form as

(A.1)

where A is as in (5a) and

(A.2)

=Ao +fu

6=[0,. .,0, 1]’

= [Co, c,’’., c,, 0,...,0].

It can easily be verified that (A. 1)-(A.2) has the designated transfer function. Next let

(A.3)

where

Q [Zz’lA’z’l... I(A’)n-l’] ’.

Substituting for to in (A.1) using (A.3), one obtains (4)-(6). To invert (4), differentiate
the output a times to obtain (recall (46))

(A.4)

Now let

and partition A as

f() cA’x + bo,u xo,+l + bo,u.

A12]A--
A21 A22J

where All is a x a. Then, recalling (7), we have

(A.5) I A21[/,""", f(o-X) ],
__
A2zO + fu.
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If el --[1, 0,..., 0], then (A.4) implies

U -bSle’10+b lf().
Substituting the above into (A.5) yields the reduced-order inverse (8).
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THE RICCATI INTEGRAL EQUATIONS FOR OPTIMAL CONTROL
PROBLEMS ON HILBERT SPACES*

J. S. GIBSONI"

Abstract. The two Riccati integral equations for linear-quadratic control problems involving evolution
operators on Hilbert spaces are derived and shown to have a common solution, which yields the closed-loop
structure of the optimal control. Riccati integral equations, instead of differential equations, arise because
evolution operators are used to represent system dynamics. The operator representing the closed-loop
control perturbs the evolution operator representing the uncontrolled system to, produce a second evolution
operator, representing the optimally controlled system, hence the two Riccati integral equations in terms of
these two evolution operators, respectively. Having both Riccati integral equations facilitates the extension of
the analysis of optimal control on finite time intervals to the analysis of optimal control on infinite time
intervals, and then existence, uniqueness, and stability results for periodic solutions of the Riccati equations
are obtained. Finally, sufficient conditions are given for convergence of approximate solutions of optimal
control problems on both finite and infinite time intervals.

1. Introduction. In recent years, investigation of the optimal control problem for
infinite dimensional, linear dynamical systems with quadratic cost criteria and uncon-
strained controls has led, as would be expected from experience with finite dimensional
systems, to a feedback control, whose structure is given by the solution of a Riccati
differential equation. The systems are usually described either by partial differential
equations--see Lions [10], Lukes and Russell [11], and Vinter and Johnson [13] for
examplewor by functional differential equations--see Curtain [1], Datko [4], and
Delfour and Mitter [7] for example. It has been found natural to model such systems by
representing the state and control vectors as elements of infinite dimensional Hilbert
spaces, so that the linear-quadratic nature of the control problem leads to the mini-
mization of a quadratic functional on a Hilbert space.

Different types of differential equations on infinite dimensional spaces lead to
different types of solutions---strong, weak, mild, etc.--and, for this reason, although
experience suggests that almost any linear-quadratic control problem entails an optimal
control with linear feedback structure, most results to date are limited to problems
involving particular types of partial or functional differential equations. Thus, a
mathematical model is needed that is sufficiently general to encompass a very wide
variety of dynamical systems, but sufficiently structured to allow the important proper-
ties of the optimal control to be deduced. Such a model is available in the concept of an
evolution operator, which is usually the fundamental solution, in an appropriate sense,
of a differential equation. Lions, Lukes and Russell, Delfour and Mitter, and others
showed that their systems could be represented by evolution operators, but, in varying
degrees, these authors relied upon the properties of particular classes of differential
equations. Of course, to obtain certain useful information for a given problem--for
example, convergence of numerical computations or smoothness of solutions--it is
necessary to refer to the specific type of differential equation involved; however, the
feedback structure of the optimal control, the dependence of the cost on the initial
conditions, and appropriate Riccati equations can be derived without reference to a
differential equation, when the system dynamics are represented by a very general
evolution operator. Actually, the closed-loop structure of the optimal control seems to
follow more naturally from this formulation than from formulations explicitly involving
differential equations, where the linear feedback control often appears to be a lucky
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guess. From this more general formulation, the linear feedback structure of the optimal
control follows as the direct result of two properties of the optimal control problem: its
linear-quadratic nature, and the principle that any segment of an optimal trajectory is
an optimal trajectory.

For control systems described by evolution operators, the input-output relations
are integral equations, and the structure of the optimal control is given by the solution of
Riccati integral equations. There are two Riccati integral equations, which are shown in
this paper to have a common solution. One equation involves the evolution operator
which represents the original dynamics of the control system, and the other involves the
"perturbed" evolution operator which represents the dynamics of the system after it has
been modified to implement the feedback control. The reader who is familiar with finite
dimensional control theory should be reassured to know that, at least formally, both
Riccati integral equations yield the same differential equation; however, in infinite
dimensions, the Riccati differential equation is not always well posed. For instance, in
[2], Curtain and Pritchard were unable to establish the uniqueness of a solution of their
Riccati differential equation resulting from Lions’ parabolic systems, although the
solution of Curtain and Pritchard’s Riccati integral equation for these systems is unique.

Lukes and Russell used the Riccati integral equation involving the semigroup
representing the original dynamics of a class of autonomous distributed systems, and
Delfour and Mitter derived the Riccati integral equation involving the perturbed
evolution operator representing the optimal control scheme for their hereditary
systems. But the most comprehensive results to date on Riccati integral equations are
the results of Curtain and Pritchard in [2], where the Riccati integral equation involving
the perturbed evolution operator was derived for the control problem on a finite time
interval, using only the properties of a very general evolution operator. Also for control
systems modeled by evolution operators, Datko, in [3] and [4], obtained some quite
useful results on the structure of the optimal control for problems on both finite and
infinite time intervals; however, Datko did not obtain a Riccati equation.

Although the technicalities involved in demonstrating that the solution of a
particular type of differential equation is given by an evolution operator should not be
underestimated, the references cited here and many others have established ample
precedent for studying control systems represented by evolution operators. The
purpose of this paper then is to derive as much as possible without reference to a
differential equation, for only by avoiding the use of differential equations altogether
can one hope to obtain results which hold for all differential systems. For problems on
both finite and infinite intervals, the two Riccati integral equations and the relationships
between their respective solutions are derived, using only the properties of an
evolution operator of sufficient generality to represent almost any realistic linear
dynamical control system. Having both Riccati integral equations is especially useful for
analysis of optimal control on the infinite interval, and existence, uniqueness, and
stability results for periodic solutions of the Riccati integral equations follow rather
easily from this analysis. As a special case of the periodic problem, the Hilbert space
version of the familiar Riccati algebraic equation is obtained. Finally, with a view to
numerical computations, sufficient conditions are given for the solutions to a sequence
of finite dimensional optimal conti’ol problems to converge to the solution to an infinite
dimensional problem.

2. Evolution operators. In the theory of partial and functional differential equa-
tions, several definitions have been used for evolution operators. The variations in these
definitions involve the types of continuity and differentiability assumed for the evolu-
tion operators. So that the results here will not depend upon any specific type of



THE RICCATI INTEGRAL EQUATIONS 539

differentiation, we will make no assumption of differentiability for our evolution
operators, and the properties we assume should leave us with a class of evolution
operators of sufficient generality to include practically all well posed linear models of
realistic dynamical systems.

DEFINITION 2.1 Let -eO<to-----tf<oo, and let H be a real Hilbert space.
T(. ,. ): {(t, s): to_-< s <_- _<- tf} (H, H) is an evolution operator if

(2.1)

(2.2)

(2.3)

T(t,r)T(r,s)= T(t,s), to<=S<-_r<-t<-tf,

T(t, t)= I,

T(t, s) is strongly contiriuous in s on [to, t] and strongly continuous in on

[s, tr].

This definition includes the evolution operators of all the references cited in the
Introduction, except the "mild" evolution operator of Curtain and Pritchard in [2],
where weak continuity was used in (2.3). The careful reader should observe that the
important results here concerning the optimal control and the Riccati integral equations
hold if we replace strong continuity of T(., .) with weak continuity and require H to be
separable. We need either strong continuity in (2.3) or weak continuity and separability
of H to guarantee strong measurability of T(., .) in either argument (see Appendix A),
which will be needed in our integral equations. We assume strong continuity in (2.3)
because the response of a physical system normally should be continuous in an
appropriate space. Also, since strong measurability of T(.,. implies only weak
measurability of the adjoint operator T*(.,. ), we must require additionally that
T*(. ,. be strongly measurable in either argument. This is certainly the case if either
T*(., is strongly continuous, as in (2.3), or H is separable.

We will need one more condition on T(., ): we assume that there is a constant M1
such that

(2.4) liT(t, s)ll <= M1, to =< s <- <- r.

It should be noted that the uniform boundedness of liT(" ," )ll does not follow from
Definition 2.1, as Curtain and Pritchard mistakenly.supposed in [2]. (For a counter
example, see Appendix B.) However, this inaccuracy does not diminish the usefulness
of [2]; the norm of the evolution operator is uniformly bounded on finite intervals of
time for practically any realistic linear system. If T(. ,. is jointly weakly continuous,
(2.4) follows from the principle of uniform boundedness; and, even without joint
continuity, reasonable dependence on initial data will usually guarantee (2.4).

While we do not assume any differentiability for T(.,. ), the reader may find it
helpful to compare the results of this paper with more classical theory by differentiating
formally some of the integral equations here, using

d
(2.5) td--ST(t’ s)= A(t)T(t, s),

d
Tss (t, s)=-T(t, s)A(s).

Such formal differentiation of the Riccati integral equations should be especially en-
lightening. Of course, in finite dimensions, our equations may be differentiated
immediately to obtain the standard results for control systems governed by ordinary
differential equations.

The following perturbation theorem from [2] will be very useful.
THEOREM 2.1. Let T( be an evolution operator which is uniformly bounded as
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in (2.4), and let C be in 9(t0, tt; H, H). Then the operator integral equation

(2.6) S(t,s)x= r(t,s)x + T(t, q)C(q)SOq, s)xdrt, x H,

has a unique solution S(.,. in the class of strongly continuous (as in (2.3)) bounded
linear operators on H. S(.,. is an evolution operator and is called the perturbed
evolution operator corresponding to the perturbation of T(., by C. S(., ) is also the
unique solution of

(2.7) S(t,s)x r(t,s)x + S(t, l)COq)r(rt, s)xdq, x 6H;

i.e., T( is the perturbed evolution operator corresponding to the perturbation orS(.,
by -C. IfM1 is the uniform bound of (2.4), we have

(2.8) [IS(t, s)ll <_- M1 exp (MIlICII(t- s)).

The theorem is a generalization of a similar perturbation result for semigroups,
given by Phillips in 12] and later in [8]. The proof, which is given in detail in [2], is based
upon the construction of S(.,. according to

(2.9) S(t, s)= 2 S,(t, s),
n-----0

where

(2.10) So(t, s)= T(t, s), S,(t, s)x T(t, r/)C(r/)Sn-1 (r/, s)x drl.

For analysis of optimal control on the infinite interval, we will need an asymptotic
stability result for linear evolution operators. Suppose (2.1)-(2.3) hold for t0-< s-< <
oc. We say that T(.,. is uniformly exponentially bounded if there are constants m2
and a such that

(2.11) liT(t, s)x[[<--M2 e ’’-s) to < s < <

We say that T(., is uniformly exponentially stable if (2.11) holds for some c < 0. The
following theorem is due to Datko [5].

THEORF.M 2.2. Suppose (2.11) holds ]’or someM2 and a. Then T(., is uniformly
exponentially stable if and only if there exists a constant M3 such that, ]:or all x H and
to <=S <OO.

(2.12) liT(t, s)xll 2 at M[Ixll2,

Datko proved this result for H a Banach space and noted that it remains valid if the
power 2 is replaced by any p, 1-< p < co, in (2.12). Also, though Datko did not give a
decay rate explicitly in terms of the original bounds M2, m3, and a, a rephrasing of his
proof shows that, if M3ce -> 1,

(2.13) liT(t, s)[I <- M4 e -(t-s) to < s < <

x(to, tt,; H, H) is the Banach space of strongly measurable, essentially bounded functions from (to, tr)
to (H, H). Also, the vector valued integrals in Theorem 2.1 and throughout this paper are Bochner
integrals. For the results concerning strong measurability and Bochner integration that are important to this
paper, see Appendix A.
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where

6MzM3ce)- In 2.(2 14) M4 4MzM3a and /3 (1 2 2

While this is not the sharpest estimate possible, it will be quite useful for Theorem 5.3 to
know that M4 and/3 can be given in terms of M2, m3, and

3. The optimal control problem. We consider an evolution process defined by

(3.1) x(t)= T(t,s)x(s)+ T(t, rt)B(rt)u(rl)drl, to <-S<=t<=t<,

where x(t) is in a real Hilbert space H, T(.,. is an evolution operator on H, u
Lz(t0, tt; U) where U is a real Hilbert space, and B 6 Y3(t0, t; U, H) and B*
(to, t; H, U).2 The optimal control problem is to find a control u which minimizes
the cost functional

(3.2) J(to, X(to), u)= (Gx(tr), x(tr))i-i + ((D(t)x(t), x(t))H +(Q(t)u(t), u(t))t) dt;

where x(t) is given by (3.1) with s to, G (H, H) is self-adjoint and nonnegative,
and D 6 (to, tr; H, H) and Q (to, tr; U, U) are self-adjoint and nonnegative,
with Q(t) >- m for some m > 0, for almost all t.

Let us denote Lz(t, tr; H) by , and Lz(t, t; U) by t, for to <= <-_ tr. Define
Tt (H, t), -t (t, t), and o, 6 (t, H) by

(3.3) (T,x)(s)= T(s, t)x, x H,

(3.4) (-b)(s) T(s, rt)O() drt, 4

(3.5) (-,)(#),

Then we can write (3.2) as

J(o, X(o), u)= (G(r(t; to)X(to)+ @oBu), (r(tr, to)X(to)+
(3.6)

+(D(T,,,x(to)+ ’toBu), (Ttox(to)+ -toBu)),o
Under the hypotheses on G, D, and Q, there exists a unique u which minimizes J

and this u is the unique solution of

(3.7) J’(to, X(to), u)v O, Vv allto,

where J’(to, X(to), u)v means the Fr6chet derivative of J at u, applied to v. From (3.6),
we have

J’(to, X(to), u)v 2(G(T(q, to)X(to)+ toBtl), toBO)H
(3.8)

+2(D(TtoX(to)+ -toBU), -toBv)e,o+ 2(Qu, v) o.

By identifying H and U, and therefore and 2/, with their respective duals, we
may write (3.8) as

(3.9) J’(to, X(to), u)v 2(0/ou +/*,,,x (to),

23o(to, tf; U, H) is the Banach space of essentially bounded, strongly measurable functions from (to, tr)
to (U, H). For the justification of the Bochner integral in (3.1), see Appendix A.
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where

(3.10)

and

(to (Q + B* * B**,oGtoB )oD’oB + (o71,o o?lto)

(3.11)

with *o and XeroX* given by

(3.12)

J*to (B*-*oDTto + B**oGT(tf, to)) ooW(H, 07/o),

(g/,o&)(t) (n, t)ck(n)

and

(3.13) (oft*oX)(t) T*(tf, t)x.

Note that the right sides of (3.12) and (3.1 3) do not involve to.
According to (3.9), a necessary and sufficient condition that u be the optimal

control of (3.7) is that

(3.14) u(t)=-((lj*to)(t)X(to)---(OlJ*toX(to))(t), a.e. in[to, t].

Note that our hypotheses on the operators involved in (3.10) and (3.11) justify (3.14),
where (l*toYd(to, tf;H, It). The composite operator 0ol/,*o is clearly in
(H, q/t) because (t- (-//to, q/to) and /t*o Noo(to, tr; H, 07/); since Q-1
(to, tr; H, o//) (see Property A.4 of Appendix A), the stronger statement, 0ol/*o
Yd,(to, tr;H, 71), can be proved using (3.10).

By observing that, if x(. is the optimal trajectory, then, for any s [to, tr], the
optimal control u(. )of (3.7)and (3.14)must coincide on [s, tf] with the unique optimal
control corresponding to the initial time s and initial state x(s), we see that all of our
equations thus far must hold with to replaced by any s e [to, tr]. We can then deduce the
feedback structure of the optimal control. We write formally

(3.15) u(s) --(0"1 ~*B, )(s)x(s).

However, unless we require B(. ), D(. ), and O(" to be piecewise continuous, the
meaning of (3.15) is questionable because we cannot be certain about the set of values
of s for which (071/*)(s) is defined. The only purpose (3.15) will serve here is to show
that the linear feedback structure of the optimal control arises quite naturally in the
linear-quadratic control problem. We will proceed on the basis of (3.14)only.

From the boundedness assumptions on D(. ), O(" ), B(. ), and T(.,. ), we know
that there is a constant M5 such that

(3.16) 11(0; "*B )(t)ll _-< Ms, to<-S<-t<-tf (a.e.).

Now, if u 6 q/ minimizes J(s, x, u) and x(t) is the corresponding optimal trajectory, we
have

(3.17) x(t) S(t, s)x, s <= <= tf,

where S(t, s) (H, H) is defined by

(3.18) S(t, s)x r(t, s)x T(t, n)B(n)(O-1 "*B )(n)xdn, to<=S<=t<=tf.

The standard observation that any segment of an optimal trajectory must be an optimal
trajectory implies that, for s <=r<=t, the x(t)defined by (3.17)must coincide with the



THE RICCATI INTEGRAL EQUATIONS 543

unique optimal trajectory for the initial time r and initial state x(r)= S(r, s)x. There-
fore,

(3.19) S(t,r)S(r,s)=S(t,s), to<=s<-r<=t<-_q.

From (3.18), we see that $(t, t)= I; and, using (2.3), (2.4), (3.16), and (3.18), it is easy to
show that, for each s, S(t, s) is strongly continuous in t. To conclude that S(t, s) is an
evolution operator, we have only to show that, for each t, it is strongly continuous in s.

Since the optimal trajectory is given by (3.17) and the optimal control is given by
(3.14) with to replaced by any s [to, t;], we have

(3 20) --1 --1(Q$: B* )(t)S(s2 Sl) (Q$1 B* )(t),$2 S1

We then have

S(t, s2)x- S(t, Sl)X T(t, s2)x- T(t, sl)x

(3.21)

to<--Sl<--S2<=t<=tt (a.e.).

T(t, r/)B(r/)(Ol/ *$2)(rl)[I-S(s2, sx)]x

+ r(t, n)B()(021/*s)(n)x

From (3.18), it is clear that, as $2 ’’> S1 or Sl --> $2, S($2, s1)x --> X. Then, in view of (2.3),
(2.4), and (3.16), (3.21) shows that S(t, s)x is continuous in s. Therefore, S(t, s) is an
evolution operator.

The uniform boundedness of liT(t, s)[I, (3.16), and (3.18)imply that [IS(t, s)xll is
uniformly bounded for each x, so that the principle of uniform boundedness implies that
IIS(t, s)ll is uniformly bounded for to<-S<-t<-_tt. Also, (3.18) can be used to show that
S*(., has the continuity and measurability properties of T*(., ).

We are now in a position to find out more about the structure of the optimal
control. We rewrite (3.8)as

Y’(to, X(to), u)v 2(Gx(tt), toBV)H + 2(Dxto, 9-toBv)e,o+ 2(Qu,
(3.22)

2(B*(*,oGx(tt)+ -*oDxto)+ Qu, V)%o,
where Xto(t)is given by (3.1) with s to. If u is the optimal control, (3.7) and (3.22) yield

(3.23) u -O-1B*(*toGx(tf)+ -t*oDx,o),
and, since the optimal trajectory is given by (3.17), (3.23) becomes

(3.24) u(t)=-Q-l(t)B*(t)P(t)x(t) a.e.,

where

(3.25) P(t)x T*(q, t)GS(tr, t)x + ft
q
T*(rt, t)D(rl)S(rl, t)x drl), to <=t<-tt, x H.

(Recall the definitions of *o and -*o in (3.12) and (3.13).)
Using the properties of T(.,. ), T*(., ), and S(.,. ), it is not difficult to show

that P(- ) is uniformly bounded, weakly continuous, and strongly measurable on [to, tt].
If T*(r/, t) is strongly continuous in t, P(t) is strongly continuous.3 Also, it is shown in
Appendix A that our hypotheses on Q imply Q-l3(to, tt; U, U), so that
BQ-1B*P (to, tt; H, H). Then (2.6), (3.1), (3.17), and (3.24)show that S(t, s)is the

3If T(" ,’ is only weakly continuous, P(. may not be even weakly continuous.
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perturbed evolution operator corresponding to the perturbation of T(t,s) by
-BQ-1B*p.

We will now derive a Riccati integral equation for P(t). Using (2.7), we can write
(3.25) as

P(t)x T*(tf, t)GT(tf, t)x- T*(tr, t)G It tr

(3.26) +Itt
S (tf, rl )B (rl )Q- (rl )B* (rl )POq )T(rl, )x

T*(rl, t)DOq)T(rl, t)x

T*(rl, t)D(rl) S(rl, )B(sC)O-I(sc)B*()P()T(, t)x dsCdrl.

After using Fubini’s theorem to interchange the order of integration in the third
integral in (3.26) and noting that T*(, t)= [T(, r/)T(rt, t)]* T*(rt, t)T*(, rt), we see
that the first and third integrals in (3.26) become

T*(rt, t)r*(tf, rl)GS(tf, rt)B(rl)o-l(l)B*(rl)P(rl)T(rl, t)x

I T*(r/, t) I T*(:, n)D(sc)S(sc, rl)B(rl)o-l(rl)B*(rl)P(rl)T(rl, t)xdsCdrl(3.27)

T*(rl, t)P(rl )B(rl )o-l(rl )B*(rl )P(rl )T(rl, t)x drl.

Therefore, P(t)satisfies the Riccati integral equation

P(t)x- T*(tf, t)Gr(tf, t)x

(3.28) + r*(ri, t)[D(rl)-P()B(rl)O-I()B*(rl)P(I)IT(rl, t)x

to <=t<=t, x H.

Next, let us ask whether the solution of (3.28) is unique in (t0, tr; H, H). The
answer is yes, as we will prove by showing that any solution of (3.28) is also the unique
solution of the Riccati integral equation of Curtain and Pritchard [2].4

For the moment, let us assume only that Pc (to, tr; H, H) satisfies (3.28).
Define S(.,. to be the perturbed evolution operator corresponding to the pertur-
bation of T(.,. by -BQ-1 B’P, according to (2.6). Then, it can be shown by
substitution and some manipulation using Fubini’s theorem that P satisfies (3.25). Of
course, the control for the trajectory defined by x(t)= S(t, s)x(s) is given by (3.24).
Although Datko did not derive a Riccati equation in [3] or [4], he did derive equations
similar to (3.24) and (3.25) for the case when G =0, and a generalization of his
argument to show that P(. is self-adjoint and that the optimal cost can be given in
terms of P(. will be helpful here. Note that, from here on, the development is based on

4 If H is separable, one can prove uniqueness for the solution of (3.28) using Gronwall’s lemma and
the identity

P1BQ-1B*PI PaBQ-1B*P2 (P Pa)BQ-1B*P2 + PIBO-IB*(P P2).

Separability of H is needed to guarantee measurability of IIP(" )-P2(" )l[. As we will see, any solution of
(3.28) is self-adjoint.
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the fact that P(. ), S(.,. ), and u(. satisfy (2.6) with C =-BO-1B*p, (3.24), and
(3.2).

Let x and y be in H. Then from (3.25) we have

(3.29) (P(t)x, y), (GS(ff, t)x, T(ff, t)y)H + q (D(rl )S(rl, t)x, T(rl, t)y)udr/.

Replacing T(.,. )with S(.,. )from (2.6)with C =-BO-aB*p, we have

(P(t)x, Y)H (OS(tr, t)x, S(tr, t)y)H

(3.30)

q
+ (GS(tf, t)x, T(tf, rl)B(rl)o-l(rl)B*(rl)P(rl)S(rl, t)y)Hdrl

+ (D(n)S(n, t)x, S(rl, t)y)drl

+ D(rl)S(rl, t)x, T(r/, j)B(j)O-I(j)B*(,)P(,f)S(,, t)y dj Hdrl.
When the order of integration is reversed, the last integral in (3.30) becomes

(3.31)
It (fj T*(, r)D()S(, r)S(r/, t)x d, B(rl)O-a(rl)B*(r)P(rl)S(’rl, t)y)ndrl

([P(n)-T*(tr, n)GS(tr, n)]S(n,t)x,B(n)o-l(n)B*(rl)P(n)S(rl, t)y)ndrl

Then, when we combine the three integrals in (3.30)we obtain

(3.32)

(P(t)x, Y)H (GS(tf, t)x, S(tf, t)y)H

((D(rl )S(rl, t)x, S(rl, t)y)u

-[- (O(T/)0-1(T/)B*(rl )P(rl )S(rl, t)x,

o-l(rl)B*(l)P(rl)S(rl, t)y)w) d,/= (P(t)y,

With y x, (3.32) shows that, if P(. )satisfies (3.25), where S(., )is given by (2.6)
with C =-BQ-1B*p, i.e., u is the linear feedback control of (3.24), then

(3.33) J(t,x,u)=(P(t)X,X)H, to<=t<--tr, xH.

Clearly, P(t) is nonnegative.
Also, from (3.32), we have

(P(t)x, x)u (S*(tr, t)GS(tr, t)x,

(3.34) S*(rl, t)[D(q) + POq)B(q)o-l(rl)B*(q)P(,1)]S(q, t)x drl, x)d
to<=t<=tt, xH.



546 J.s. GIBSON

Since P(t) is self-adjoint, (3.34) implies

P(t)x S*(te, t)GS(t, t)x

(3.35) + S*(rl, t)[D(rl)+P(rl)B(rt)o-l(rl)B*(rl)P(rl)]S(rl, t)x dr1,

to <= <= t,

where

S(t, s)x T(t, s)x- T(t, n)B(n)O-’(rt)B*(rl)P(n)S(n, t)x dr1,
(3.36)

to -< s <- <_- t, x H.

(3.35) is the Riccati integral equation derived by Curtain and Pritchard in [2], using a
successive approximation technique. Also, in [7], Delfour and Mitter derived an
equation similar to (3.35) for hereditary systems.

As was indicated earlier, one can start with (3.28) and (3.36) and derive (3.25) by
substitution. Then, as we have shown, (3.25) and (3.36) imply (3.35). Also, if P(. and
S(.,. ) satisfy (3.35) and (3.36), and if P(. is assumed self-adjoint, (3.25) and,
therefore, (3.28) can be derived by substitution and manipulation. For this derivation, it
is useful to recall that Theorem 2.1 says that (3.36) is equivalent to

S(t, s)x r(t, s)x S(t, n)B(n)O-(n)B*(n)P(n)r(n, s)x dn,
(3.37)

to =< s -< =< tr, x H.

It is important for 4 to note that neither the derivation of (3.35) from (3.28) and (3.36)
nor the derivation of (3.28) from (3.35) and (3.36) depends on G or P(. being
nonnegative. (P(.) is nonnegative if G is.) Also, recall that we do not assume the
solution of (3.28) to be self-adjoint in order to derive (3.32) and (3.35).

Henceforth, let us refer to (3.28) as the "first Riccati integral equation" and to
(3.35) as the "second Riccati integral equation"not because (3.28) is derived first in
this paper, but because (3.28) involves the evolution operator T(., ), which represents
the original dynamics of the control system, while (3.35) involves the perturbed
evolution operator S(., ), which represents the dynamics of the control system after it
has been modified to implement the optimal control in closed-loop form. The following
theorem gives the relationships we have found between solutions to the first Riccati
integral equation and solutions to the second Riccati integral equation.

THEOREM 3.1. Let T( ,. ), B( ), D( ), and 0(" ) be as previously defined and let
G (H, H) be self-adfoint. IfP(. ) satisfies (3.28), then e(. ) is self-adjoint, and P(.
and S( ,. ) satisfy (3.35) and (3.36). IfP( ) and S(.,. satisfy (3.35) and. (3.36), and
if P(. ) is self-adjoint, then P(. satisfies (3.28).

Of course, for the optimal control problem, G is nonnegative; however, without
this restriction, Theorem 3.1 will be more useful for our subsequent analysis of control
on the infinite interval.

Curtain and Pritchard proved in [2] that, as a system of equations, (3.35) and (3.36)
have a unique solution P(. and S(.,. when G=>0 and P(. is restricted to be
self-adjoint, and we include their proof here because elements of it will be useful when
we consider the case t c, which was not considered in [2]. Let P(. and S(.,.
satisfy (3.35) and (3.36), with P(. a self-adjoint element of (t0, tt-; H, H). Then the
value of the cost J(s, x(s),. for the trajectory given by x(t)= S(t, s)x(s) and control
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given by u(t)=-Q-l(t)B*(t)P(t)x(t) is (P(s)x(s), x(s))n (from (3.33)).
From (3.35) it follows that

P(s)x S*(t, s)P(t)S(t, s)x

(3.38) + S*(n, s)[D(n)+P(n)B(n)O-(n)B*(n)P(n)lS(n, s)x dn,

to<=S<-_t<=tf, xeH.

LEMMA 3.1 (Curtain and Pritchard). Assume the hypotheses lust stated or P(. )
and S(. ,. ), and, for some s between to and tf, let

Is(3.39) z(t)=S(t,s)x + S(t, r/lB(r/)a(r/)dr/, s<-_t<-ff,

for some x H and a qls. Then

(P(s)z(s), z(s))n (P(t)z(t), z(t))n

(3.40) + ([D(r/)+P(r/)B(r/)o-l(r/)B*(r/)P(r/)]z(r/), z(r/))ndr/

2 J (P(n)B (n)a (n), z (n))n dn.

Proof. (3.40) can be verified by substitution with some rather tedious manipulation,
which is facilitated by the identity

A S(t, n)B(r/)v(r/) dr S(t, r/)B(r/)v(r/) dr
H

(3.41)

Istl fs
rl

2 AS(t, n)B(n)v(n), S(t, n) S(n, sC)B(se)v(sc) d Hdn,
for A (H, H).

For v 0//s, let

t’

(3.39’) z(t)= T(t, s)x(s)+ J T(t, r/)B(r/)v(r/) dr s <- <- tf.

With some manipulation, it can be shown that z(t) satisfies (3.39) with

(3.42) a(r/) v(r/)+o-l(r/)B*(r/)P(r/)z(r/).

Then (3.40) shows

(P(s )x (s ), x (s))n

(P(t)z (t), z (t))n
(3.43)

+ (<O(r/)z (r/), z (r/)>H + O (r/ )v (r/ ), v(r/)>t) dr/

J <O(n)a(n), a(n)>) dn.

Therefore, the unique minimum value for J(s, x(s),. is <P(s)x(s), X(S)>H if P("
and S(.,. ) satisfy (3.35) and (3.36). Also, P(s) is unique, since it is self-adjoint, and
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S(.,. ) is then the unique solution of (3.36). The following theorem summarizes the
most important results of this section.

THEOREM 3.2. The unique control u qls which minimizes the cost functional
J(s, x(s),. ) of (3.2) is the linear feedback control of (3.24), where P(. is the unique
element of (s, tr; H, H) which satisfies the first Riccati integral equation (3.28). The
corresponding optimal trafectory is given by x(t)=S(t,s)x(s), where S(.,. is the
perturbed evolution operator corresponding to the perturbation of T(. ,. by
-B(. )0-1(. )B*(. )P(. ). The minimum value of the cost functional is
(P(s)x(s), x(s))H. Also, when possible solutions of the second Riccati integral equation
(3.35) are restricted to be self-adjoint, P(. ) and S(. ,. are the unique solution of the
system of equations (3.35) and (3.36).

It has not been necessary to define the adjoint state because, when the relationship
between the control and the state is represented by the integral equation (3.1), the
optimal control problem amounts to minimizing the quadratic functional of (3.6) with
no constraint on the control u. If the adjoint state is desired, (3.25) indicates its
definition. Recalling that the optimal state is given by x(t)= S(t, s)x(s), we see from
(3.25) that the appropriate adjoint state p(t) is given by

(3.44) p(t)= T*(tr, t)Gx(t)+ T*(rt, t)D(rt)x(rl)drt, to <=t<=t.

Thus (3.25) yields the familiar relationship

(3.45) p(t)= P(t)x(t), to <- <= t.
Under our hypotheses, the adjoint state is required only to be weakly continuous and
strongly measurable, but in applications, it usually will be strongly continuous.

The only references to an adjoint system that are important in this paper are the
requirements that the homogeneous adjoint system, represented by T*(.,. ), be
strongly measurable and later, in 5, that approximations to the homogeneous adjoint
system converge strongly. We will not need the adjoint state for the analysis of control
on the infinite interval to be taken up in the next section.

4. Optimal control on the infinite interval. In this section, we consider the optimal
control problem of 3 for t and G 0. We replace the inequality <_- t by the strict
inequality t<c in the appropriate places, and require IIT(t,s)[I to be uniformly
bounded for and s in any bounded interval. It should be emphasized that, as yet, we do
not require liT(t, s)ll to be exponentially bounded. Also, we only require the bounds for
liB(" )11, liD(" )[[, and [IO(" )11 (including the lower bound for IIO(" )ll)to be uniform
almost everywhere on each bounded interval.

For a control u and the corresponding state x(t) given by (3.1) with to s and
x(t0) x, we use the notation

Is(4.1) Joo(s,x, u)= ((D(r)x(r),x(r))l+(O(r)u(n), u(n))c) dn;

and we study problems in which there is at least one u for which the cost functional of
(4.1) is finite.

DEFINITION 4.1. A function u is an admissible control ]:or the initial time s and the
initial state x, or simply an admissible control for s and x, if u (.) is strongly measurable
on (s, oo) and J(s, x, u) is finite.

It will be helpful to understand the nature of the set of admissible controls. Suppose
that u and u are admissible controls for s and x, and let xl(t) and x(t) be the solutions
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of (3.1) for u equal to ua and U2, respectively. Since L2(s, 03; U) and L2(s, 03; H) are
linear spaces, Q1/E(u-uz)LE(S, 03; U) and Da/2(t)(Xl(t)-x2(t))=Da/E(t) t T(t, ).
B(l)(ux(l)-u2()) dl 6L2(s, 03; H). Therefore, if u is an admissible control for s
and x, the set of all admissible controls for s and x is a//a u + a//o, where

(4.2) // {v" v(. is strongly measurable on (s, ) and J(s, 0, v)< 03}.

The optimization problem then is to find a v a// which minimizes Jo(s, x, u /

v). The fact that u is an arbitrary admissible control for s and x presents no problem
for the argument here because Jo(s, x,. is uniquely defined for each admissible
control.

Since is a linear space, it is convex. Also, for fixed u, our hypotheses on Q
imply that J(s, x, Ux / v) is a strictly convex function of v. Convexity of/ and strict
convexity of J(s, x, Ux + v) are all that is needed to guarantee that there is at most one
v //s which minimizes J(s, x, Usx + v). Therefore, if an optimal control exists, it is
unique. Next, we consider conditions under which an optimal control exists.

Before proceeding with the problem at hand, we should note that we actually have
a much more general existence result than is needed here. It is not difficult to prove that
//s is a Hilbert space when endowed with the norm [[. [[2sin =J(s, 0," ). This is
equivalent to saying that the mapping that takes a control u(. to D1/2( )x(. ), with
x(s) 0, is a closed linear operator from q/sO {u’u(. is strongly measurable and

so s (Q(rl), u(rt))t:drt < 03} to Lz(s, 03; H) so is a Hilbert space because of our
hypothess on Q. Now, since q/so contains q/s algebraically and topologically, if C is a
closed, convex set in q/so, C q/s is closed and convex in a//s. Hence, if f(. is a
convex functional defined on C //s and f(. is continuous in the a//s norm, and if
either Cs is bounded in so or f(u,)-->03 as 11u, l10Us->03, then f(.)
achieves a minimum in C. (See Lions [10, pp. 6-8].) We will not appeal to this general
existence result in the remainder of this paper because our subsequent proof that an
optimal control exists whenever an admissible control exists for the problem here
provides useful information about approximating the optimal control problem on the
infinite interval with a sequence of optimal control problems on finite intervals.

We consider a sequence {t,}, where t, -> 03 as n -> 03, and investigate the sequence
of problems for which tr t, and G 0. For each of these problems, we denote the
solution of the Riccati integral equations (3.28) and (3.35) by P,(. ) and the cost
functional by J,,(s, x,. ). An important observation, which follows from the fact that
min uOUs J. (s, x, u) (P. (s)x, x)n, is that

(4.3) P,(t)<-Pm(t), to<--t<--t, tm.
Suppose that, for some s _-> to and some x H,

lim(P.(s)x,x)= lim ((D(,1)x.(rl),x.(rt))+(O(q)u.(n),

(4.4)

where u,(. is the optimal control for the problem of 3 with r t and G- 0 and
x, (.) is the corresponding optimal trajectory. If we extend x, (.) and u, (.) to [s, 03) by
setting x,(t) u(t) 0 for >- t,, (4.4) shows that the sequences {D1/Zx} and
are bounded sequences in LE(S, 03; H) and LE(S, 03; U), respectively. Therefore, there
exist a subsequence {tk}, a , in L(s, 03; H), and a b LE(S, 03; U) such that

(4.5) D1/Xk - b weakly in L(s, 03; H)
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and

(4.6) 01/Zuk 49
Define u(. and x(. by

(4.7) u(t) 0-1/z (t)qb(t),

and

weakly in L2($, oo; U).

s <- < oo (a.e.),

(4.8) x(t)= T(t, s)x + T(t, rl)B(*l)u(l) d*l, s <= <.
Let [ 6 [s, oo) and f L2(s. i; H) c L2(s, oo; H) (by extension by zero outside Is, )), and
note that (4.6) and our hypotheses on O imply that uk u weakly in Lz(S, "[; U). Then,
for almost all (s, ),

(4.9)
I(f(t),x(t)-x(t))n <- (B*(rt)T*(t, rt)f(t), u(rl)-u(rl))tdrt

-0 as k.
Also,

(4.10) [(f(t), x(t)-x(t))H] <-[If(t)ll(llxg(t)ll+[[x(t)ll).

Since Ilxk(t)[I and [[x(t)[I are uniformly bounded in k and for t (s, 7) and IIW(t)ll is
Lebesgue integrable, the dominated convergence theorem implies

(4.11) fs (f(q),x(q)-x())Hdq[-O as k oo.

Therefore,

Js (f(rl)’vX/2(rl)(Xk(rl)--X(rl)))Hdl --->0 as k(4.12)

for all f Lz(s, 7; H) and r [s, co). Thus D 1/2 (.)x(. ( ) Lz(s, oo; H).
Actually, we have shown that, since the original sequence {D a/z( )Xn(" )} is

bounded in Lz(s, oo; H), if any subsequence {O1/2( )uj(. )} of {O1/2( )u,(. )} con-
verges weakly in Lz(S, o0; U) to O1/2( )u(" ), then the corresponding subsequence
{D 1/2 (")xi(" )} converges weakly in Lz(S, o0; H) to D 1/2 (.)x(. ), where x(. ) is given
by (4.8), and {x(. )} converges weakly in Lz(S, r; H)to x(" ), for t [s, oo). Also, (4.8)
shows that, if {uj(. )} converges strongly in Lz(S, l’; U), {xi(" )} converges strongly in
Lz(S, 7; H).

We see then that u is an admissible control for the initial time s and initial state x. Is
u optimal7

Consider the pair (D 1/2 (.)x(. ), Q1/2 (.)u(. )) as an element of the Hilbert space
I L2(s, oo; H) L2(s, oo; U), whose inner product is given by

(4.13) ((Xl, Ul), (x2, u2))/q-- (Xl, X2)L2(s.oo;H)-[-(Ul, U2)L2(s, oo; U).

Then the sequence {(D/2( )x(. ), (21/2( .)u(. ))} converges weakly in /-]r to
(D 1/2 (")x(" ), (1/2 (.)u(" )). It is easy to show that, if a sequence in a Hilbert space has
a weak limit, the norm of that limit is not greater than the limit supremum of the
sequence of norms. From (4.4), we know that lim_.l[(D1/2x, O1/2u)1[ c. There-
fore

(4.14) Jo(s, x, u)- l[(D1/2 )x( ),
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If, for some admissible control u, we have strict inequality in (4.14), then there
must be some k for which Jk (S, X, U) <= Joo(s, x, u) < Jk (s, x, Uk). But this is impossible,
since Uk is optimal for q tk. Therefore,

(4.15) Joo(s,x,u)=c,

where u is given by (4.7), and we know that no admissible control can give a smaller
value than c for the cost functional Joo(s, x, ). Since we already know that at most one
admissible control can minimize the cost functional, the u of (4.7) is the unique optimal
control for the initial time s and the initial state x.

Suppose now that there is at least one v which is an admissible control for s and x.
Let {tn} be any sequence such that tn - oo. Then, for all n,

(4.16) J(s, x, u)= (P(s)x, X)H J(s, x, v)J(s, x, v),

where u, is the optimal control for q t, and G 0. So (P,(s)x, x)n is a bounded
sequence of real numbers and must contain a convergent subsequence. Therefore, by
our previous argument, there exists a unique optimal control u and (4.16) holds with

Now, if the sequence {(P, (s)x, x)n} does not converge to J(s, x, u), then there is a
subsequence {(P(s)x,x)n} which converges to some c<J(s,x, u), and the cor-
responding sequence of controls {u} converges in the sense of (4.6) to some a, and
J(s, x, )= contradicting the optimality of u. Also, in order not to contradict the
uniqueness of u, {u, } must converge in the sense of (4.6)to u. Thus, for any sequence {t,}
such that t, , we have

(4.17) O/z(. )u,(. ) O/(. )u(. weakly in L2(s, , u)

and

(4.18) D/z( )x,(. )DX/Z( )x(. weakly inL2(s, ,H);

where u (.) is the optimal control for the initial time s and the initial state x, and x (.) is
the corresponding optimal trajectory.

Also, note that

II(D1/( )x,,(. ), ol/.(. )u,(. ))11,= (P,(s)x,

(4.19) J(s, x, u) II(DX/2( )x(. ), O1/2(
implies strong convergence in /- and, therefore, strong convergence in (4.17) and
(4.18).

The most important results obtained so far in this section are summarized in the
following theorem.

THEOREM 4.1. I[there is a sequence {tn} such that tn oo and (4.4) is satisfied, then
there is an admissible control for the initial time s and the initial state x. If there is an
admissible controlfor the initial time s and the initial state x, then there is a unique optimal
control u( ) and the corresponding optimal trajectory x( is given by (4.8). In this case,
for any sequence {t} such that tn - oo, and for s <= < oo, we have (recall our hypotheses
on O)

(4.20) u,(. u (’) strongly in L2(s, t; U),

(4.21) x,( )-, x( strongly in L2(s, t; H),

(4.22) J’,(s, x, u,)= (l’,,(s)x, x)-, :r(s, x, u).
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If Q() is uniformly bounded away from zero for almost all (s, o), (4.20) holds for
oo, and ifD() is uniformly bounded away from zero for almost all (s, oo), (4.21)

holds for oo.
THEOREM 4.2. Suppose that, for some s >- to, there is an admissible control]or s and x,

for each x H. Then there is a unique nonnegative, self-adjoint operatorP(s .(H, H)
such that

(4.23) min J(s, x, v) (P(s)x, X)H, X H,
Olad

and, for any sequence {tn} such that tn

(4.24) P(s)x - P(s)x strongly in H, x 6H.

Proof. The proof is essentially the same as one given by Datko for a similar result in
[3]. Let x and y be in H. By the generalized Schwarz inequality, we have (P, (s)x, y)2H_--<
(Pn(s)x, X)H(Pn(s)y, Y)H. Thus, by (4.22), sup ,I(P, (s )x, Y)HI < oO for each pair x and y
in H. Then the principle of uniform boundedness implies that sup,llPn (s)ll < oo. Let
be an increasing subsequence. Then the uniform boundedness of IIPk (s)ll and (4.3) imply
the existence of a unique self-adjoint operator P(s) (H, H) such that (4.24) holds
with n k. To see that (4.24) holds for the original sequence, use IIP,(s)x-P(s)xll <-

[IP.(s)x-P(s)xll+llP(s)x-P(s)xtl. By the generalized Schwarz inequality again, we
have II(P,(s)-Pk(S))Xll4 <=((P.(s)-Pg(s))3x, X>H((P(s)--Pk(S))X, X>H, and, since
{IIP (s)ll} is uniformly bounded in n, (4.22)implies (4.24). (4.22)and (4.24)imply (4.23).
Clearly, P(s) is nonnegative.

THEOREM 4.3. Suppose that, ]:or some >- to, there is an admissible control]:or and x,
]:or each x H. Then, ]:or to <= s <- and x H, there is an admissible controlfor s and x, and

(4.25) (P(s)x, X)H <--(P(t)T(t, s)x, T(t, S)X)H + (D()T(rl, s)x, T(rl, s)X)Hdl.

Also, P(. satisfies the Riccati integral equation

Poo(s)x T*(t, s)P(t)T(t, s)x

(4.26) + T*(n, s)[O(n)-P(rl)B(n)Q-’(n)B*(n)P(n)lT(n, s)x

to<=S<--t, xH.

Proof. (4.25) is obvious. To prove (4.26), we begin by noting that, since liT(t, s)]l and
IID(t)l] are uniformly bounded for and s in any finite interval, and since P(s) is
self-adjoint, (4.25) shows that IIP(s)ll is uniformly bounded for to_-< s =< t. Let t, - and
note that (4.26) holds with c replaced by n, for each n<. Now, for any s,
P (s <- P(s ), so lIP, (s)[[ is uniformly bounded for n < do and to _-< s _-< t. Also, for x H
and almost all r/ (s, t),

P,, Oq )B (rl )O- (rl )B * (rl )P, (rl )T(n, s )x P(n)B (,1)Q- (q )B*(q )Poo(rl TOq, s )x

P,(n)B(n)O-(n)B*(n)[P,(n)-P(n)]T(n, s)x

(4.27) +[P,(n)-Po(n)lB(rl)Q-(n)B*(rl)P(n)T(rl, s)x-O asn -oo(by(4.24)).

Therefore, the dominated convergence theorem and (4.24) imply (4.26).
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(4.28)

COROLLARY 4.1. From Theorem 3.1 we know that the solution o] (4.26) satisfies
P(s)x S* (t, s )P(t)S(t, s )x

Is+ S*(r/, s)[D(r/)+P(r/)B(r/)O-l(r/)B*(r/)P(r/)]S(r/, s)x dr

to<-S<=t, x6H;
where

(4.29)
S(r, s)x T(r, s)x T(r, r/)B(r/)O-(r/)B*(r/)P(r/)S(r/, s)x dr

to <=s<=r-< t, xH.

That is to say, So(.,. is the perturbed evolution operator corresponding to the
perturbation of T(. by -B(. )0-1( )B*(. )e(. ).

THEOREM 4.4. Suppose that, ]:or each s >= to and each x H, there is an admissible
control for s and x. Then, ]’or s >- to and x H, the optimal control ]:or the initial time s and
the initial state x is the linear leedback control defined by

(4.30) u (t) -0-l(t)B*(t)P(t)x (t);

where the optimal trafectory x(. is given by

(4.31) x(t)= So(t, s)x, s <= <

and the evolution operator S(. is defined by (4.29).
Proof. (4.26), (4.28), and (4.29) hold for to =< s -<_ < . We have to show that the

control and trajectory defined by (4.30) and (4.31) are optimal for s and x.
From (4.28), (4.30), and (4.31), we have

(P(s)x, x), (P(t)x(t), x(t))t4 + fs ((D(r/)x(r/), x(r/))t4 + (O(r/)u(r/), u(r/))t) dr/.

As oo, the integral increases and is bounded by (P(s)x, x)H < oo. Thus the integral
converges to a finite value J(s, x, u ). Then (4.23) implies that (P(s )x, x )i Joo(s, x, u
and lim,_.(P(t)x(t), x(t)), O.

DEFINITION 4.2. P(" is called a solution o] the first Riccati integral equation oa the
infinite interval if P(. ) B(to, t; H, H) for each (to, oo), and P(. )satisfies (4.26) for
all s and such that to <_- s <- < oo; P(. is called a solution o] the second Riccati integral
equation on the infinite interval if P( ) B(to, t; H, H) for each (to, oo), and P(.
and S(., satisfy (4.28) and (4.29) for all s and such that to -< s _-< < oo. (The notation
P(. is reserved for the Poo(" of Theorem 4.2.)

By replacing G by P(t) in the arguments of 3, we see that any self-adjoint solution
of the first Riccati integral equation on infinite interval is also a solution of the second
Riccati integral equation on the infinite interval, and vice versa. Thus, we make the
following definition.

DEFINITION 4.3. P(" is called a solution o[ the Riccati integral equations on the
infinite interval if P(. is a self-adjgint solution of both the first and second Riccati
integral equations on the infinite interval.

Under the hypotheses of Theorem 4.4, P(. is a solution of the Riccati integral
equations on the infinite interval. Next, we should inquire about uniqueness of solutions
of the Riccati integral equations on the infinite interval.

Without imposing restrictions on our optimal control problem, it would be difficult,
if not impossible, to obtain uniqueness results for solutions of the Riccati equations on
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the infinite interval. To see which restrictions correspond to problems in which unique-
ness is important, consider how the Riccati integral equations might be solved for
P(. ). For some >= to, P(t) might be computed according to (4.24), and then (4.26)
could be solved backward in time for Poo(s). Approximate ntimerical computations
could be based upon the results of the next section. 5 Such an approach is the only
obvious possibility unless we impose further conditions on our problem, and the
question of uniqueness should not be important for this approach, since each Pn (") in
(4.24) is the unique solution of the Riccati equations for an optimal control problem on
a finite time interval. Problems in which other methods would be used for solution of the
Riccati equations on the infinite interval would most likely be problems in which the
system dynamics and the linear operators in the cost functional are periodic, and
perhaps constant. Thus we shall consider subsequently the uniqueness question for
periodic systems, but first, some useful results that do not depend on periodicity.

THEOREM 4.5. If P(" is a solution of the Riccati integral equations on the infinite
interval and P(s) >- 0 for to <- s < o, then, ]:or each s >-to and each x H, there is an

admissible control for s and x, and

(4.32) P(s)>-Poo(s), to<-S<.

Proof. By hypothesis, P(. and S(.,. satisfy (3.35) and (3.36) (or (4.28) and
(4.29)) for to<-S <_- < c. For x H, set x(t) S(t, s)x and u(t) -O-a(t)B*(t)P(t)x(t).
From (3.32), we have

(P(s)x, x)n (P(t)x(t), x(t))n + ((D(n)x(n), x(n))n +(O(n)u(n), u(n))t) dn.
(4.33)
The integral in (4.33) is increasing and bounded by (P(s)x, x)n as c, so J(s, x, u) <
c and

(4.34) (P(s)x, X)H >=J(s, x, u)>= (e(s)x,

THEOREM 4.6. Suppose T( ,. ), B (.), D( ), and Q( are such that, for all s >= to
and x H, if u is an admissible control for s and x,

(4.35) lim IIx(t)ll 0,
t--OO

where x(. is given by (4.8); i.e., any admissible control drives the state to zero
asymptotically. Then there is at most one uniformly bounded, nonnegative solution of the
Riccati integral equations on the infinite interval.

Proof. Let P(. be such a solution and define x(t) and u(t) as in the proof of
Theorem 4.5. The uniform boundedness of liP(" )11 and (4.35) imply
lim,_,o(P(t)x(t), x(t))n 0. Then (4.33) shows

(4.36) (P(s)x, x)n J(s, x, u <.
Let v be an admissible control for s and x, with the corresponding state z (.) given

by (3.41). Then (3.43) holds for x(s)=x and s<-t<=o, and (4.35) (with x(t)=z(t)),
(4.36), and (3.43)show

(4.37) J(s, x, u (P(s)x, x)n <= J(s, x, v).

5As discussed in 5, finite dimensional approximations to the Pn(" )’s would have to converge before the
P,,(. )’s converge to Po(" ), and practical algorithms might not be available for this order of convergence.
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Thus u is the optimal control for s and x, and, since P(s) is self-adjoint, (4.23) and
(4.37) imply P(s)=P(s), toNS

The following lemma gives sufficient conditions for the hypothesis of Theorem 4.6
to hold.

LEMMA 4.1. Suppose there exist positive constants Ma, a, and m such that

liT(t, s)ll--< M2 e (’-s), to < s < < c,(4.38)

(4.39) IIB(t)llMa, a.e. in [to, c),

(4.40) D(t)>=m >0 a.e. in [to, ),

(4.41) O(t)>=m >0 a.e. in [to, o).

Then, if u is an admissible control for s and x and x(t) is the corresponding trajectory,
(4.35) holds.

Proof. (4.40)and (4.41)imply that, since u is an admissible control,
Ilu (n)112) dr/< oo. For n ->_ 1, choose t such that , (llx (n)112 / Ilu (n)ll2)dn < 1 /n 4 Define
6. to be the measure of {t’t >=t. and Ilx(t)ll/llu(t)ll2>- l/n2}. Clearly 6. < 1/n a.

Let >- t. + 1In 2. Then there must be an s between t. and such that It-s] < 6. and

Ilx (s)ll < 1 / n. From (3.1) we have

IIx(t)[l<-M2 e(’-s)(1/n)+ M2 e(t-n)llB(rl)[[" Ilu(rt)l[ dn

(4.42)
<-Ma e(1/n)+M eMa(t-s)1/ ( Ilu(r)lla dn

<-Ma e(1/n +Ma/n).
Therefore, lim_.oollx (t)[I 0.

THEOREM 4.7. If (4.38), (4.39), and (4.41) hold]orsome positive constants M2 and
a, and if there is a uniformly bounded, nonnegative solution of the Riccati integral
equations on the infinite interval, then there are positive constants M4 and [3 ]’or which

(4.43) IIS(t, s)ll_-< M4 e (’-s), to < s < <

where So(’," is given by (4.29).
Proof. According to Theorem (4.5), IIP(" )ll is uniformly bounded. Let u be the

optimal control for s and x. We have

I[S(t, s)xll<=[lT(t, s)xll+ fiT(t, r )U (r/ )u (r )[[ dr/
(4.44) 1/2

<=M2 e’-s’[lxll+M22 e=’-’(t-s)1/2 ( I Ilu(n)ll2dn)
Since

(4.45) Illu (n)l]2 dn (P(s)x, x

and []P( )]l is uniformly bounded, the existence of the M4 and/3 of (4.43) follows.
The next theorem follows from (4.23), (4.31), (4.43), and Theorem 2.2.
THEOREM 4.8. If (4.38)--(4.41) hold and ifP( exists and is uniformly bounded

on [to, c), there exist positive constants M4 and 3 such that

(4.46) IlS(t, s)[I <-- M4 e -t3(t-s) to < s < <
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Now let T(.,. ), B(. ),D(. ), and O(. be periodic with a common period
co>0;i.e., T(t,s)= T(t+to, s+w) and B(t)=B(t+to),D(t)=D(t+to), and O(t)=
O(t +to) for almost all t. By replacing s and tn by s +to and tn +to, respectively, in
Theorem 4.2, we see that P(s)=Poo(s+to), and then (4.29)shows that S(t,s)=
Soo(t + to, s + to). Thus, we can define T(. ,. ), B(. ), D(. ), Poo(" ), and $oo(" ," ) on the
entire real line by periodic extension. Since T(.,. is periodic, it is exponentially
bounded, and the previous results of this section yield the following theorem regarding
periodic solutions of the Riccati integral equations.

THEOREM 4.9. Let T( ,. ), B( ), D( ), and O(" have period to > O. Then there
is a uniformly bounded,6 nonnegative

7 periodic solution of the Riccati integral equations
on the infinite interval i]: and only if, ]:or each s (-oe, oe) and each x H, there is an
admissible control ]:or s and x. Suppose that such a solution exists, and let Po(" and
So(.,. be the operators o]: Theorems 4.1-4.4. Then, i[ P(. is a nonnegative periodic
solution o[ the Riccati integral equations on the infinite interval, (4.32) holds for
-oe < s < oe. If: the hypothesis o1: Theorem 4.6 holds, P( is the unique nonnegative,
self-adfoint periodic solution o]: the Riccati integral equations on the infinite interval.
D(. is essentially bounded away from zero, the hypothesis o[ Theorem 4.6 holds, and
there are positive constants M4 and ’or which (4.46) holds ]:or -oo < s <= <

For the periodic problem, we can replace (4.24) by

(4.47) lim P(s nto)x P(s)x, x H,

where P(. is the solution of the Riccati integral equations for the problem of 3 with

t s and G 0. Then (4.3) becomes

(4.48) P(s nto <- P(s moo ), 0 <= n <= m.

(4.47) is much more practical for computational purposes than (4.24) because we simply
have an initial value problem to be solved backward in time until the solution converges
to Poo(" ). The following stability result makes (4.47) even more useful.

THEOREM 4.10. Suppose that T(. ), B(. ), D(. ), and O(. have period to > O,
that there exists a nonnegative periodic solution of the Riccati integral equations on the

infinite interval, and that limt-llS(t, s)xll 0 for all s and x.
Then, if(. is the solution of the Riccati integral equations for the problem of 3

with tf s and G >= 0, we have

(4.49) lim P(s nto)x P(s)x, x H.8

Furthermore, if there exist positive constants M4 and such that (4.46) holds for
-o < s <- < c, and if G >- Po(s ), then

(4.50) P(s ) <- P(s no)) <- P(s ) + M24 e-Z"llGll, n >- o.

Proof. Recalling the relationship between the solution of the Riccati integral
equations and the minimum value of the cost functional ((3.33) and (4.23)), we see that,

6Any nonnegative periodic solution is uniformly bounded. Since we are assuming strong continuity for
T(.,. ), which results in weak continuity for P(. ), the principle of uniform boundedness guarantees a
uniform bound for liP(" )11, However, if T(.,. is only weakly continuous, the uniform boundedness of the
solution of (3.25) on any finite interval guarantees a uniform bound for liP(" )11,

7(4.28) shows that, if a periodic solution is nonnegative for some t, it is nonnegative for all t.
8Since/3(. and P(. are solutions of the first Riccati integral equation (3.28), for H finite dimensional

and 0_-< r-<to, (4.49), (4.51), and Gronwall’s lemma show that IP(s-r-no)-P,,,,(s-r)ll--,o uniformly in r.
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with P(s- noo) defined as for (4.47).

<P(s nw )x, x )H <= (P(S noo )x, X )H

(4.51) <- (P(s nw )x, x )n + GSo(s, s nw )x, S(s, s nw )x

n>=O, xGH.

Since IIS(s, s-nco)x][- 0 for each x, [IS(s, s-no))x[[ and ][P(s-noo)ll are uniformly
bounded in n. Then (4.45), the generalized Schwarz inequality, and an argument similar
to the latter part of the proof of Theorem 4.2 establish (4.49), since P(s no))= P(s).

To prove (4.50), denote the optimal control for the problem of Section 3 with
tf=s,P(tf)= G, initial time s-nw, and initial state x by t,(. ); and denote the
corresponding optimal state by n(" ). Then, since G >= P(s),

(P(s no)x, x

_-> ((D(rt)2n (r/), 2,(r/)), + (O(r/)t, (rt), t, (r/))u) dr
(4.52)

+ (e(s). (s), . (s)).

>= <P(s no )x, x
Since Poo(" ) has period w, (4.46), (4.51), and (4.52) imply (4.50).

To end this section on a familiar note, let us now derive the Hilbert space version of
the Riccati algebraic equation. Let B(. ), D(. ), and Q(. be constant operators, and
let T(t, s) T(t- s) be a strongly continuous semigroup with generator A. Since we can
consider this problem to be periodic with arbitrary period w, we see that P(. is
constant and that S(t, s)=S(t-s) is the strongly continuous semigroup whose
generator is.fi =A-BQ-1B*p. Also, T*(. and S*(. are strongly continuous
semigroups, with generators A* and ft,*, respectively. Note that A and . have the same
domain and that A* and fi* have the same domain.

In (4.28) we can take the limit as t-->oo. To see this, recall that, for fixed s,
(P(t)S(t, s)x, S(t, s)x)n ",a 0 as --> oo. Thus, for each x, IIP2 (t)S(t, s)xll-, o and the
principle of uniform boundedness then says that IIe/2( ,)s(.,s)ll-
IIs*(, ,s)e=( )[I is uniformly bounded. Therefore, Ils*(t,s)P(t)s(t,s)xll-o as

--> oo. A similar argument shows that the norm of the integrand converges to zero. Note
that the argument for taking the limit in (4.28) depends only on the existence of a
nonnegative solution of the Riccati integral equations on the infinite interval. (See
Theorem 4.5.) Then, for the time-invariant problem we are considering now,

(4.53) Poox S*(rt)[D+PBO-B*P]S(n)xdrt, x H.

Next, we show that P maps the domain of A] into the domain of *. For
0 <_- < oo, h _-> 0, and x in the domain of ,

[S* (h)- I] S* (rt)[D + PBQ-1B*P]Soo(rt)x dq

(4.54) fo X(rl, h)S (rl)[D + PBO-1B*PISo(rl h)[I S(h )]x
t+h

+ I S* (r)fD +PooBO-1B*PIS(rl h)x drl

h

fo S (r/)[D +PBO-1B*po]S(rl )x drl,
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where x(r/, h) is the characteristic function of {(r/, h): r/=> h}. Multiplying (4.54) by 1/h
and using dominated convergence to take the limit as h --> O, we obtain

A* S*(n)[D +PoBO-B*P]S()x dr

(4.55) S(n)[D +PooBQ-B*Poo]So(n)Ax

+S (t)[D +PBQ-1B*P]S(t)x -[D +PBQ-B*P]x.
As --> c, the integral on the left side of (4.55) converges to Pox, and, since the integrand
in (4.53) converges to zero, the right side of (4.55) converges to -Pfi,x-
[D +PBQ-1B*P]x. Therefore, since fi* is closed, Px is in the domain of fi*, and
substituting A-BQ-1B*P for fi, we obtain the Riccati algebraic equation

(4.56) A*P+PoA PBQ- B*Po +D O.

Although (4.55) is valid only for x in the domain of A, (4.56) is justified because
PoBO-1B*P-D is a bounded operator on H, so that A*P+PA has a bounded
extension to all of H.

By imposing certain restrictions on the generator A, Lukes and Russell showed in
11 thatP satisfies (4.56). They did not show thatP maps all of the domain of A into
the domain of A*, and they did not obtain the minimality and uniqueness results that
follow from Theorems 4.5 and 4.6 after the following definition.

DEFINrrION 4.4. Let A generate a strongly continuous semigroup on H, and let the
constant operators B, D, and O be as defined in our control problem. An operator
P (H, H) is called a solution ofthe Riccati algebraic equation if P maps the domain of
A into the domain of A* and satisfies (4.56). (Again, the notationP is reserved for the
P of the previous theorems.)

Let P be a nonnegative, self-adjoint solution of the Riccati algebraic equation’. For
-oo < s _-< < m and x domain A, we have

T*(t-s)PT(t-s)x + T*(n-s)[D-PBQ-1B*P]T(rl -s)x

(4.57)
T*(t-s)PT(t-s)x- T*Oq-s)[A*P+PA]T(r-s)xd

td[T*(t- s)PT(t- s)x
drt

T*(rt s)PT(rl s)x]dn Px.

Since domain A is dense in H, (4.57) shows that P is a uniformly bounded, nonnegative
solution of the Riccati integral equations on the infinite interval. Then, referring to
Theorem 4.9, we obtain the concluding theorem of this section.

THEOREM 4.11. Let the constant operators A, B, D, and O be as previously defined,
with A the generator of the strongly continuous semigroup T(. ). There exists a non-
negative, self-ad]oint solution of the Riccati algebraic equation (4.56) if and only if, for
each x H, there is an admissible control]or the initial time 0 and the initial state x. IfP is
such a solution, we have P >= P. When P exists, the optimal control u (.) and optimal
trajectory x( for the control problem of this section are given by u(t)= -Q-1B*Px(t)
and x(t)= S(t-s)x(s), where S(. is the strongly continuous semigroup generated by
fi A-BQ-1B*p. IfD is positive definite, P is the unique nonnegative, self-adjoint
solution of the Riccati algebraic equation, and So(" is uniformly exponentially stable.
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5. Approximation theory. To compute numerically the solutions to control prob-
lems of the class considered here, we need to know conditions under which the solutions
to a sequence of finite dimensional optimal control problems converge to the solution
to a given infinite dimensional problem. Such convergence has been proved for
problems involving particular types of differential equationsmsee, for example,
Delfour [6] and Lions [10]mand the purpose of this section is to present the con-
vergence results which are possible and important for the very general class of systems
covered by the analysis of the preceding sections.

In practice, computations for the finite dimensional approximate problems will
probably be based upon ordinary differential equations, and it will be necessary to
examine the particular differential equations representing the infinite dimensional
systems in order to verify the hypotheses of our approximation theorems. However, it
should be emphasized that the results presented here do not depend on an infinite
dimensional Riccati differential equation; we refer only to solutions of the Riccati
integral equations of 3 and 4.

When the present paper is compared with other literature on the linear quadratic
control problem, probably the most novel feature of the analysis of 3 will be found to
be the use of the composite operator Q B 6o(s, tr;H, U) to infer the linear
feedback structure of the optimal control and to define the perturbed evolution
operator S(.,. in terms of the operators T(.,. ), B(. ), D(. ), Q(. ), and G. This
definition of S(.,. is the key to the approximation results of this section.

Referring to the optimal control problem of 3, suppose that {Tg(.,. )} is a
sequence of evolution operators on H and that {Bi(" )}, {Di(" )}, {Qi(" )}, and {Gi} are
sequences of operators in o(t0, tr; U, H), (t0, tr;H, H), (t0, tr; U, U), and
5(H, H), respectively, with D(. ), Q(. ), and G nonnegative and self-adjoint. We
consider the sequence of optimal control problems corresponding to these sequences of
operators, and give sufficient conditions for the sequence of solutions to converge, in an
appropriate sense, to the solution of the original problem. Our hypotheses pertaining to
convergence of the sequences of operators should be verifiable for standard techniques,
such as the Galerkin method, for the numerical solution of partial and functional
differential equations. Suppose that, for each x H and u U,

(5.1) Ti(t,s)x T(t,s)x strongly, to<=S<=t<-_tr,

(5.2) T*i (t,s)xT*(t,s)x strongly, to<=S<=t<=tr,

(5.3) Bi(t)u-B(t)u strongly, a.e.,

(5.4) B*i (t)x B*(t)x strongly, a.e.,

(5.5) Di(t)x D(t)x strongly, a.e.,

(5.6) Qi(t)u Q(t)u strongly, a.e.,

(5.7) Gix Gx strongly,

as ic. We require IIT,(t,s)ll, llBilloo, llDillo, llO[lo, and IIGII to be uniformly
bounded in i, t, and s, and require a constant rn s0ch that, for each i, Oi(t)>= rn > 0 for
almost all t. Therefore, Os"-1B,*i(. )11 is uniformly essentially bounded for to<-S <= t.
(5.1)-(5.7), the uniform bounds, and the dominated convergence theorem will imply
the convergence we need.

From (3.3)-(3.5) and (3.10)--(3.13), we see that

(5.8) (OsiV)(t)(OsV)(t) strongly, v L2(s, tr; U)
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and

(5.9) ;* (t)x - J* (t)x strongly, x H,si

pointwise (a.e.) and in the L sense. (Recall that 0s(q/, q/s) and /s*("
(s, t; H, U).) The identity

Osi --071 ~--1 ),(5 10) Qsi (Os Osi)O-
the uniform bound for [[0sill, and (5.8) and (5.9) imply

(5.11) (Osi ~*Bsi)(t)x - ((-lJ*)(t)X strongly, x H,

pointwise and in the L2 sense.
For our sequence of optimal control problems, we denote the optimal controls by

ui(" ), the sequence of perturbed evolution operators by Si(’, ), and the sequence of
solutions of the Riccati integral equations by Pi(" ). (3.14), (5.9), and (5.11) yield
pointwise and L2 convergence for the optimal trajectories xi(t)= Si(t, s)xi(s). Now that
we have strong convergence for T*i (" ,. ), Gi, Di( ), and Si( ," ), (3.25) yields strong
convergence for Pi(" ).

Of course, uniform convergence on compact time intervals is very important, and,
under reasonable hypotheses, this is what we have. The additional hypotheses are that
T(.,.) and T*(.,.) be jointly strongly continuous, that the operators
B(.. ), B*(. ), D(. ), and O(. ) be piecewisestrongly continuous (i.e., possess a finite
number of discontinuities), that the convergence in (5.1) and (5.2) be uniform for
to -< s-< -< t, and that the convergence in (5.3)-(5.6) be uniform almost everywhere.
Joint strong continuity of T(.,. and (3.18) imply joint strong continuity of S(.,. ),
and the appropriate uniform convergence (see Theorem 5.1) can be established with the
equations already cited and repeated application of the following lemma, whose proof is
an easy exercise.

LEMMA 5.1. LetXand Ybe Banach spaces and let 1 be a compact subset ofR n. Let
A(. ): f-L(X, Y), and, for i>= 1, let Ai(" ): [’-.(X, Y). Suppose that IIAi()II is
uniformly bounded in and , and that, for each x X, Ai()x converges to A()x
uniformly in . Let g(. ): f X be continuous, and suppose there is a sequence of
functions gi(" which converge uniformly to g(. ). Then Ai(" )gi(" converges uniformly
toA(. )g(. ).

Our approximation results for the problem of Section 3 are summarized in the
following theorem.

THEOREM 5.1. Let (5.1)-(5.7) hold, along with the uniform bounds already stated.
For oursequence ofcontrolproblems, denote the initial states by xi(to) and let x(to)- x (to);
denote the optimal controls by ui( ), the optimal trajectories by xi( ), and the solutions of
the Riccati integral equations by Pi(" ). For the original problem of 3, denote the
corresponding quantities by X(to), u( ), x( ), and P( ). Then we have

(5.12)

(5.13)

and, for x H,

(5.14)

ui(t) U(t)

xi(t)x(t)

strongly, a.e. and in L2(to, tr; U),

strongly, pointwise and in L2(to, tr; H),

Pi(t)x --> P(t)x strongly, pointwise and in L2(to, t; H).

I]: T( is jointly strongly continuous andB( ), B*( ), D( ), and O( are piecewise
strongly continuous, uniform convergence in (5.1)-(5.6) implies uniform convergence in
(5.12)-(5.14).
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In 4, we saw that the solution of the Riccati integral equations on the infinite
interval could be obtained as the limit of the solutions of Riccati integral equations on a
sequence of finite time intervals. (See Theorem 4.2.) Theoretically then, we could
compute the solutions of the Riccati equations on the finite intervals according to
Theorem 5.1, and, with increasing lengths of the intervals, these solutions would
converge to P(. ). However, this order of convergence is not very practical for
computational purposes; we need to be able to reverse the order of the limits. That is to
say, we would like to know that, if Pooi( is the P(. for the ith approximate optimal
control problem, then Poi( converges, in some sense, to the P(. of the original
problem. Based on the results of 4, there are two sets of sufficient conditions for such
convergence. Although the verification of the hypotheses of either of the following
theorems may be nontrivial in particular applications, we should be able to expect at
least one of these sets of hypotheses in realistic examples.

First, consider the most general problem of 4 and assume that there exists a
solution of the Riccati integral equations on the infinite interval. From Theorem 4.5, we
know that, although P(. may not be the unique solution, it is the minimal non-
negative solution. Thus we might expect that one way to approximate Po(" is with a
sequence of Poo( )’s that converge to P(. from below. This approach is sometimes
possible when the sequence of approximate problems represents the orthogonal
"projection" of the original problem onto a sequence of subspaces of increasing
dimension (see Lukes and Russell [11]). We have the following theorem.

THEOREM 5.2. For the optimal control problem on the infinite interval, assume that
there exists a solution of the Riccati integral equations on the infinite interval and that we
have a sequence of approximate problems ]:or which our previous hypotheses concerning
convergence and uniform boundedness hold on compact time intervals. Denote byP(.)
the minimal solution of the Riccati integral equations on the infinite interval for the ith
approximate problem. If
(5.15) P,(t)<-Pi(t)<-Poo(t), to <- t, <-f,

then, for x H,

(5.16) P(t)x - P(t)x strongly, to <= t.

If T(.,. )is jointly strongly continuous andB(. ), B*(. ),D(. ), and 0(" )arepiecewise
strongly continuous, uniform convergence on compact intervals in (5.1)-(5.6) implies
uniform convergence on compact intervals in (5.16).

Proof. Inequality (5.15) implies that, for <- t, Pi(t) converges strongly to some
nonnegative, self-adjoint P(t). This, with (5.1)-(5.6)and the dominated convergence
theorem, implies that P(. is a nonnegative solution of the Riccati integral equations on
the infinite interval. The second inequality in (5.15) shows that P(. )<- P(. ), which,
with Theorem 4.5, implies P(. )=P(. ). The uniform convergence on compact
intervals follows from Theorem 5.1 with Gi Pi(t) and G P(t) for to<- t.

Unfortunately, it may be quite difficult to choose an approximation scheme for
which (5.15) can be shown. The final theorem pertains to periodic problems for which
the feedback control system (i.e., the optimally controlled system) is uniformly
exponentially stable, and does not require monotonicity of {P( )}.

THEOREM 5.3. For the w-periodic optimal control problem on the infinite interval,
assume that we have a sequence ofw-periodic approximate problems defined as above and
that our previous hypotheses concerning convergence and uniform boundedness hold on
compact time intervals. LetP(.) be the minimal nonnegative w-periodic solution of the
Riccati integral equations [or the th approximate problem, and let Si(’," ) be the
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(5.19)

(.e0)

and

corresponding perturbed evolution operator. Assume also that there is at most one
nonnegative w-periodic solution of the Riccati integral equations ]:or the original problem.
Then, if there exist positive constants Mand such that

(5.17) [IS(t,s)ll<-Me-’- -oe<s<t<oe, > 1

and, ]:or some s and

(5.18) IlPooi(s)ll<=l, >- 1,

then there exists a nonnegative w-periodic solution P( ofthe Riccati integral equations
]:or the original problem,

Pi(t)x -> P(t)x, x

Si(t, s)x -> S(t, s)x, x

(5.21) IlSoo(t, s )ll <-Me

If there exists a positive constant m such that

(5.22) Di(t)>= m, a.e., _-> 1,

then the uniqueness hypothesis on P(. holds, and (5.18) implies (5.17) and hence
(5.19), (5.20), and (5.21). Also, the additional hypotheses that ensure uniform con-
vergence on compact intervals in Theorem 5.2 ensure uniform convergence on compact
intervals in (5.19)and (5.20).

Proof. First we prove that (5.17) and (5.18) imply the existence of Poo(" and
(5.19)-(5.20). Compute Pi(s) according to (4.51) of Theorem 4.10, with G /I (I is
the identity). For e > 0, we can choose n according to (4.50) such that

(5.23) IlP,(s-no)-e,(s)ll<=e, >= l.

Holding n fixed, for x e H, choose r according to Theorem 5.1 such that

(5.24) IIP,(s-no))x-P(s-noo)xil<-ellxll, i>--F and ]>_-L

Then we have

IIP, (s)x Poi(s )xll

(5.25) <=llP,(s)x -Pi(s no)xll/llP,(s noo)x -P(s no)xl[/llP(s noo)x
-P(s)xll

--< 3ellxll, ->/- and j >=/-. (/- depends on x.)

Thus Pi(s) converges strongly to some nonnegative, self-adjoint P(s). Then Theorem
(5.1) with G P(s) and G P(s) implies that, for <=s, P(t) converges strongly to
some P(t), which is a nonnegative w-periodic solution of the Riccati integral equations
for the original problem. The uniqueness assumption implies that this P(t) must be
P(t) and hence (5.19). Theorem (5.1) also implies (5.20), which implies (5.21), and,
under the additional hypotheses, the uniform convergence on compact intervals.

Now suppose that (5.22) holds. Then the uniqueness of P(. follows from
Theorem 4.6 and Lemma 4.1. To see that (5.18) and (5.22) imply (5.17), refer to
Theorem 2.2. The uniform bounds on T(. ,. ), O(" ), and Bi(. with Theorem 4.7 and
its proof imply the existence of constants M2 and c for which (2.11) holds with T(.,
replaced by $i(., for => 1. Also for -> 1, (2.12) holds with T(.,. ) replaced by
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Si(’," and M3 3)l/m. Thus, by the discussion following Theorem 2.2, there are
positive constants M and/3 for which (5.17) holds.

Probably the most important result here for approximations to solutions of the
Riccati integral equations on the infinite interval is that, when (5.22) and the other
hypotheses hold, (5.18) implies (5.19). Note that, if Pi(s)x converges (to anything) for
each x in H, then the principle of uniform boundedness says that (5.18) holds. Also,
since (Pi(s)x, X)H is the minimum value of the cost functional Jooi(s, x," ), if a sequence
of controls u can be shown to exist such that J(s, x, u) is bounded in i, then (5.18)
holds; for example, if there exist positive constantsM and/3 such that (5.17) holds with
Sg(t, s) replaced by T/(t, s), let ui 0.

Appendix A. The definitions and properties listed here are needed to justify many
of the integrals in this paper. Except for Properties A.4 and A.5, the following are
standard results (see Hille and Phillips [8]) on strong measurability and Bochner
integration. As in the rest of the paper, H and U are Hilbert spaces and (to, tr) is an
interval of the real line.

DEFINITION A.1. A function x(. ): (to, t)H is strongly measurable if x(. is the
limit almost everywhere of a sequence of countably valued functions, x(. is weakly
measurable if (y, x (.))n is Lebesgue measurable for each y H.

Property A.1. If H is separable, strong measurability and weak measurability are
equivalent.

Property A.2. A function x (.) is strongly measurable if and only if it is the uniform
limit almost everywhere of a sequence of countably valued functions.

DEFINITION A.2. An operator-valued function B(. ): (to, tr)(U, H) is called
strongly measurable if B (.)x is strongly measurable for each x H. The set of all such
functions B(. for which liB(" )11 is essentially bounded on (to, tr) is denoted by
o(to, tr; U, H).

Property A.3. Property A.2 can be used to show that, under the norm lib (.)11--
ess sup liB(" )11, (to, tr; U, H) is a Banach space and o(to, tr; H, H) is a Banach
algebra.

Property A.4. If Q(. ): (to, t)(U, U) is self-adjoint and, for some m >
0, Q(. )->m almost everywhere, then Q( ..) (to, tr; U, U) implies Q-l(. )
(to, tr; U, U).

Proof. We may assume IIQ(" )11<1. Then the Neumann series for [1-
(l-Q(. ))]-1 converges uniformly almost everywhere, i.e., in the Banach algebra
l(to, tr; U, U).

Property A.5. If Q(. ): (to, tr)o(U, U) is nonnegative and self-adjoint, then
Q(" ) o(to, tr; U, U) if and only if Q1/2 (.) l(to, tr; U, U), where QI/2 (.) is the
nonnegative, self-adjoint square root of Q(. ).

Proof. (Only if.) We have (see Kato [9])

Q1/2(. (1/Tr)Io A-1/2(Q(. )+A)-IQ(. dh,

where the integral is absolutely convergent in (to, tr; U, U).
The Bochner integral is an extension of the Lebesgue integral to vector-valued

functions. For a systematic development of the Bochner integral, see [8].
Property A.6. A function x(. ): (to, tr)-H is Bochner integrable if and only if x(.

is strongly measurable and



564 J.s. GIBSON

Property A.7. For 1-<p < oo, we have the Banach space Lp(to, tr; H)of strongly
measurable H-valued functions x (.) for which

tf
IIx (t)ll at < oo,

L2(to, tr;H) is a Hilbert space with the inner product

(x(’), y(" ))L2 (x(t), y(t))Hdt

Also, Boo(to, tr; U, H) L(Lp(too tr; U), Lp(to, tr; H)).
Property A.8 (Dominated Convergence Theorem). If {xn(" )}c Ll(to, tr; H)con-

verges almost everywhere to a function x(. and if there exists a function /c6
L1(to, tr; R ) such that Ilxn (t)l] -< j(t) for all n and almost all t, then x (.) 6 L (to, tr; H) and

lim xn(t)dt= (t)dt.

Property A.9. Fubini’s theorem holds for Bochner integrals, and its application in
this paper is illustrated by the following example. Let T(., be an evolution operator
on H, let (. )L(to, tf;H), and let ’(rt,:) be the characteristic function of
{(r, :): rt --> :}. Then

’T(tf, n) ck(sC)dsCdn X(rl,)T(tf, rl)6()dd7

(Fubini) ffttfffttf X(rl, )T(tf, rl)d)() drld

Appendix B. The following is an example of an evolution operator, as defined in
Definition 2.1, which is not uniformly bounded as in (2.4).

LetH be 12, the space of all square-summable sequences of real numbers, and write
x=(xl, x2,...,x,...)/2. Let t,=l-1/n,n>-_l, and let An=tn+l-t,=
1/(n(n + 1)). Define an(t) by

-3n2(n + 1),

+3n2(n + 1),
an(t)=

3n2(n + 1),

0,

For -oo < s -<_ < oo, define T(t, s) by

T(t, s)x y,

where

Yn xn exp Is an (7) dn,

tn+1/2An<t<=tn+An,

otherwise.

n__>l.
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T(.,. )can be shown to satisfy (2.1)--(2.3)for-o<s<=t<o. In particular, we
have

lim T(t, s)x T(1, s)x
tl

and

lim T(1, s)x x
sl

for x 6/2, where the limits are in the 12 norm.
For k >1,let x k (xkl, xk, X

k kn,’’’) with xkk=l and xn=0, nC:k. Then
IIx ll,= 1 and

IIT(tg + Ag, tk + 1/2A)xk[[ e k as k .
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SHADOW PRICES AND DUALITY FOR A CLASS OF OPTIMAL
CONTROL PROBLEMS*

J. P. AUBIN" AND F. H. CLARKEt

Abstract. A class of optimal control problems is considered in which the cost functional is locally
Lipschitz (not necessarily convex or differentiable) and the dynamics linear and/or convex. By using
generalized gradients and duality methods of functional analysis, necessary conditions are obtained in which
the dual variables admit interpretation as shadow prices (or rates of change of the value function).
Applications are presented in three settings: infinite-horizon optimal control, optimal control of partial
differential equations, and a variational problem with unilateral state constraints. A theorem is proved which
characterizes the generalized gradients of integral functionals on L.

Introduction. We treat in this article a general class of optimal control problems in
which the cost functional need only be locally Lipschitz, and in which the. constraints
exhibit linearity and convexity. We obtain for these hybrid problems necessary condi-
tions with features usually associated only with the fully convex case. Chief among these
is the interpretation of the multipliers as rates of change of the optimal value in the
problem as the constraints undergo perturbation. In the context of mathematical
programming such interpretations have figured importantly in mathematical economics
(see for example [13] for a discussion), where the rates of change are in turn interpreted
as "shadow prices". A further feature is the ability to guarantee the strong (Kuhn-
Tucker or normal) form of the necessary conditions by means of a Slater-type constraint
qualification independent of the solution to the problem. The method used here to treat
these problems is novel, and employs the generalized gradient of the value function, a
minimax theorem, and an abstract Green formula.

We present three applications of the abstract theory which we believe to be of
independent interest; they are in settings characterized by technical difficulties. The first
of these ( 1) involves a control problem over an infinite interval, and sheds new light on
the sensitive relationship between the growth rates of the cost functional and the adjoint
variables, and on the role played by the size of the discount factor. In 2 we give an
example to illustrate the importance of this consideration, while 3 gives the proof of
the theorem in 1. We have placed this application before the abstract theory in order
to display the line of reasoning common to both in a more concrete, and hence more
easily assimilated setting.

Section 4 recalls a stability result used in the proof, while 5 and 6 develop
characterizations of generalized gradients of certain functionals which are useful in
interpreting the abstract conditions; these results complement other characterizations
given in [9]. The abstract problem and its analysis appearin 7 and 8. In 9 an
application is made to a nondifferentiable, nonconvex problem involving control of
partial differential equations. While this is the first such result that we know of, it should
be clear that many other similar problems could be framed within the abstract theory.
The final section illustrates the use of the theory in the presence of unilateral state
constraints.

We conclude by recalling for the reader’s convenience the definition of the
generalized gradient in the case of a locally Lipschitz function f: X R, where X is a
Banach space (details appear in [7], [9]). Given v, the generalized directional derivative

* Received by the editors August 16, 1978, and in revised form January 9, 1979. This research was
supported in part by National Research Council of Canada under Grant No. A 9082.

" Universit6 de Paris IX-Dauphine 75775, Paris, France.
t Mathematics Department, University of British Columbia, Vancouver, B.C., Canada V6T IW5.
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if(x; v) is defined by

f(x; v)= lim sup [f(y + Av)-f(y)]/A,

where the upper limit is taken as y in X converges to x and A in (0, o) converges to 0.
The generalized gradient of f at x, f(x), consists of all sr in X* such that

It follows that

(v, sr) <=if(x; v) for all v in X.

f(x; ) max {(v, r). r e Of(x)},

and that Of(x) reduces to the derivative if is continuously differentiable or to the
subdifferential of convex analysis if is convex.

1. An infinite-horizon optimal control problem. We are given a locally Lipschitz
function g: R" R" R; i.e. whenever (x, u), (y, v) are restricted to a suitably chosen
neighborhood of any given point in Rn R’; there is a constant K such that

Ig(x, u)-g(y, v)l_-<gl(x, u)-(y, v)l.

Also on hand are matrices F and G, n n and n m respectively, a point x0 in R n, a
positive number 8 and a compact convex subset U of R ’.

The problem we consider is that of minimizing

(1.1) e-g(x(t), u(t)) dt

over the (so-called) trajectory-control pairs (x, u) which satisfy

u(t)e U, a.e. t>_-O,

(1.2) 2(t) Fx(t) + Gu(t), a.e. t_-> O,

x(O) xo,

where u (.) need only be measurable and x absolutely continuous.
We posit the following growth condition on g: there are numbers c, r -> 0 such that,

for every (x, u), for every sr in the generalized gradient Og(x, u) of g at (x, u), we have

1.3) Isrl =< c( 1 + I(x, u )1).
DEFINITION. We denote by c(s) the infimum in the above problem when the

initial condition is x(0) s (rather than x(0) Xo), and by A (F) the maximum of the real
parts of the eigenvalues of F.

We now suppose given a trajectory-control pair (x, u) which solves the above
problem (with the original initial condition x(0)= Xo).

THEOREM 1. Suppose in the above that we have 8 > (r + 1)A (F). Then the function
a(. is locally Lipschitz, and if (x, u) is a solution to the problem, there exists an
absolutely continuous function p( and a measurable function (’1("), st2( ))such that:

(1.6)

-(t)=F*p(t)-e-tl(t) a.e.;

(’l(t), sr2(t)) Og(x(t), u(t)) a.e.;

max {(p(t), Gw)-e-’(w, sr2(t)) w U}

(p(t), Gu(t))- e-t(u(t), sr2(t)) a.e.;
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(1.7) e(q-1)*stlp(t)[q dt < o, e(q-1)*s’l/5 (t)l dt < oe,

where q > 1 is defined by 1/q + 1/(r+ 1)= 1, provided r>0. If r=O, we have instead"
,St *ste Ip(t)l and e IP(t)l are bounaea;

(1.8) lim e(q-1)*stlp(t)lq =0 ifr>O;
t--

if r O, then we have instead" e*s’p(t) tends to a finite limit as goes to

(1.9) -p(O) e Oa(Xo).

Remark 1.10. (a) As shown in the proof, our hypotheses imply that the integral
(1.1) is well-defined for all admissible pairs (x, u), so that no ambiguities result from our
use of the word "solve".

(b) Except for the infinite interval of integration (called the case of an "infinite
horizon" in economics) and the nonditterentiability of the cost functional, the above
problem is a standard one in optimal control, and of the sort that arises often in
mathematical economics. It is in this connection especially that the interpretation of
p(0) as a marginal cost ("shadow price") associated with perturbing the initial condi-
tion, as afforded by (1.9), is useful. The roles of the infinite horizon and the discount
factor are discussed in T. C. Koopmans [13]; see also [16].

(c) It is worth noting that in the above version of Pontryagin’s maximum principle,
the necessary conditions are stated in as strong a form as one could hope; i.e.
"normally", without the presence of a possibly vanishing multiplier, and with strong
"transversality conditions" at infinity. Similar statements have been derived (incor-
rectly in many instances) by reasoning by analogy with the finite horizon case. It was
H. Halkin [11], to our knowledge, who first pointed out the perhaps unexpected
pathology that can arise due to the infinite horizon. Based on the results of this paper,
one could say that the necessary conditions may be expected to hold in the strong form
provided the "discount rate" 6 is sufficiently large. A further moral is that in the
infinite-horizon case, growth (or dual) conditions such as (1.7) on the adjoint variable p
are more natural than pointwise transversality conditions such as (1.8) (which are
simply consequences of (1.7)). This fact was foreshadowed in Theorem A.8 of [4], which
can be obtained as a corollary of Theorem 1. Finally, it is well-known (and true) that the
conclusions of the theorem are sufficient for (x, u) to be optimal if g is jointly convex in
(x,u).

7:. An example. Consider the control system on R2 given by

:1 --X2,

22= -x+u, -l<=u <_-0,

XI(0) 0, X2(0)-’0,

with the view of minimizing e-*stx(t) dr. This is the case of the preceding section in
which

0’
G= g=[-,0].

It follows that xx satisfies

x(0) 2(0) 0, 1(t)>-xl(t),
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so that, by a simple argument, Xl(t) -> 0 for all -> 0. Consequently, the control u 0 and
response x 0 are optimal for the problem.

The adjoint equation (1.4) becomes

P2 e -t, -/:i2 p

and hence

(2.1) /z =/92 + e -’St.
The condition (1.6) yields the fact that 2(t) must equal 1 if pz(t) is negative. Thus we
must have pz(t)>-O for all t. The solution of (2.1) is of the form

p(t) ae + be- + e-’/(6- 1)

It is easy to see that if 0 < 6 < 1 and pz(t) converges to 0 as o (as must be the case
if (1.8) is to hold for any r _->0), then pz(t) is negative for large t. This contradication is
not inconsistent with the theorem, since in this case , (F)= 1. Of course, if 8 > 1, the
conclusions of the theorem hold.

Let us note finally that for 6 > 1, we may take r 0 in applying the theorem, and it
follows that pz(t) must be e-’/(62-1). The condition (1.9) now gives

(8/(82-1), 1/(8- 1))e aa(0, 0),

which makes evident the increasingly unstable dependence on the initial condition of
the problem as 8 nears 1.

3. Prooi oI Theorem 1. In this section, we denote the optimal pair (2, ).
Step 1. We denote by/z the measure on [0, oo) having density e -’ dr. We set

p 1 + r and we let X be the space WI#p L, where L, means L([0, oo), R) (with
respect to /z) and where W,’p denotes the Sobolev space of absolutely continuous
functions x such. that x and 2 belong to L. (Recall that the norm of x in W’ is given by
]lxllp + ]1211p.) We set Y L L R n, and we define the subset Z of Y via

Z {0} x K x {Xo},

where K is the set of functions u in L satisfying

We define f: X R by

and A" X- Y by

u(t) U a.e.

f(x, u)= e-’g(x(t), u(t)) dt,

A(x, u) [2 -Fx Gu, u, x(0)].

Theorem 2 of 6 implies that f is locally Lipschitz on L" x L", and so all the more on
W’ L. The optimal control problem of 1 may be phrased as. that of minimizing
f(x, u) overX subject to A (x, u) Z. We shall denote the given solution to this problem
(2, a). Proposition 4.1 of 4 will be available to us as soon as (4.1) is verified, and the
reader may check that this is equivalent to the following result: (we shorten h (F) to h ).

LEMMA 3.1. If 6 > ph and v belongs to L, then the solution x to

Fx + v, x (0) Xo
pbelongs to W# In fact, IIx[[ < [Ivl[ ]:or some constant c.
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Proof. It suffices to show that the function

x(t)=eFtxo + eF(t-s)v(s) ds

belongs to L. Since le’l is bounded by e xt, it is clear that eFtxo belongs to L, so we need
only study the last term. Now, choosing any q between A and 6/p, and limiting ourselves
to the case r > 0 (the case r 0 calls for straightforward modifications), we have

e -st e F(t-s)v(s) ds dt

<= e tx"-alt e s(q-x) e-"lv(s)[ ds dt

<= e tx"-sl’ e s(q-x)o/r ds e-"Olv(s)l" ds dt (H61der)

? etXV-a’[e ’q-x)"] e-qOJv(s)]v ds dt

g e-SOO[v(s)] ds e t(op-6) dt (Fubini)

e e.-v(s) ds <. Q.E.D.

Proposition 4.1 now assures us that the function defined in 1 is Lipschitz in a
neighborhood of x0 (in fact, it says rather more about a function involving more
arguments). Note that if (x, u) in X is such that (x, u) {0} x K, where (x, u)=
[2 Fx Gu, u ], then

f(x, u) _-> (x (0)),

with equality when (x, u)= (,
Thus (, tT) minimizes

(x, u)=f(x, u)-(x(0))

over X subject to (x, u) {0} K. By redefining/z away from (, a), we can arrange to

preserve this state of affairs while assuring that ]r be locally Lipschitz on X. We may now
apply Proposition 4.1 again to deduce that the function/3" L L-R is Lipschitz in a
neighborhood of (0, 0), where (B is closed unit ball in R

fl(v, w) inf (x, u)" (x, u) {0} x K + (v, w), x(0) x0 + B}.

Step 2. Let us now choose any (x, u) in X and w in K. Upon observing that for any
e > 0 sufficiently small

((, a)+ e(x -, u ti)) {0} K + e( -Fx -Gu, u w),

we deduce

(x + s (x x))(o) xo + B,

f((, a) + e(x , u a)) >- fl(e( -Fx Gu, u w)).

After subtracting ((, i))= B(0, 0) from either side, dividing by e and taking upper
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limits, we arrive at

(-/3)(0, 0; -Fx -Gu, u w)+f(X, ; x -X, u a) + (- a)(Xo; x(O)-xo) >-0.

Recall [7], [9] that if(x; v) equals max {(r, v): " Of(x)}. Consequently,

min max {(yl, ./-Fx Gu) + (y2, u w)+ (st1, x -Y)
X, U,

+ ((, u a) + (v, x(0)- Xo)} 0,

where the min is over all (x, u, rb) in X x K and the max over all y (yl, Y2), " (’1, 2),
and v lying in 0(-/3)(0, 0), 0f(2, ti) and O(-a)(Xo) respectively. Because these sets
are w*-compact, the "lop-sided" minimax theorem [1] applies, and we deduce the
existence of r, y, v such that, for all (x, u) in X and w in K,

(3.1) (yl, fC-Vx-Gu)+(y2, u-w)+(l,x-2)+(2, u-)+(v,x(O)-xo)>=O.

Step 3. Let us set w u ti in (3.1). We then deduce

(YI, . -F(x 2)) + (’1, x 2) -[- (v, x(0)- x0) 0

for all x in W’p. Because W1,’p is dense in L (this follows, for example, from the fact
that n (0, oo) is dense in Ln), it follows from Proposition 5.1, 5, that (1 belongs to L.,
the dual of L, rather than merely to the dual of WIn’ (which is best avoided). Of course,
2, Y2 belong to L,,., YI to Ln*,P and v to R". Thus we have, for all x in W,’Ip,

e-Styx(t). (2 -Fx) dt + e-tfl(t) x(t) dt + v x(O) O.

A classical, now familiar argument (Dubois-Reymond lemma) employing integration
by parts derives from this the conclusion that yl is absolutely continuous, and that

d--d-{e-atyx(t)} -F* e-atyl(t) + e-atrl(t),
dt

v(O) v.

If we set p(t)= e-yl(t), then the above immediately yields (1.4), (1.7), (1.9), while
(1.5) is a consequence of Theorem 2, 6. Condition (1.8) is an elementary consequence
of (1.7), the line of argument being that found in [4, Lemma A.7]. It remains to prove
(1.6).

Step 4. Set x 2, w ti in (3.1). Then

-(, G(u-a))+(, u-a)+(, u-a)=O

for all u in L. This implies

(3.2) e-ty2(t) G*p(t)- e-t2(t) a.e.

Now set x 2, u ti in (3.1). We deduce, for every w in K,

(3.3) (Y2, W --/) 0.

It follows that for almost each t, we have

yz(t) W -< yz(t) ti(t) for all w in U

(for if this were false we could, from the measurable selection theorem, find w(. in K
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contradicting (3.3)). Recalling (3.2), we arrive at

{G*p(t)- e-’r2(t)} (w t7 (t)) <-_ 0,

which is (1.6). Q.E,D.

4. A stability result called. Let X and Y be Banach spaces and A" X Y a
continuous linear operator. Consider, for s in a neighborhood of 0 in Y, the family of
optimization problems consisting of minimizing a given function F’X.-> R subject to
the constraints

x f, Ax Z+s,

where the min is over all (x, u, w) inX xK and the max over all y (yl, y2), r (rl, r2)
satisfying these constraints, and by a(s) the infimum in the above problem. Thus

a(s) inf {F(x): x C(s)}.

The following, a special case of [3, Proposition 2], is stated here for the reader’s
convenience.

PROPOSITION 4.1. Let Z and 12 be closed and convex.
Suppose that there is a bounded subset Ksuch that C(s) c K when s is near O, and

such that F is Lipschitz on K. Then, if the condition

(4.1) 0 int {Aft-Z}

is satisfied, the function a is Lipschitz near O.

5. A result on generalized gradients. Let X and Y be Banach spaces such that X
is continuously imbedded in Y and such that X, as a subset of Y, is dense. Let f: Y R
be a function which is locally Lipschitz. It follows that its restriction to X is locally
Lipschitz in the norm of X. We denote by Ofx the generalized gradient (see below) (in
X*) of this restriction, and by Ofv the generalized gradient (in Y*) of the function f
defined on Y.

PROPOSITION 5.1. Let x be a point ofX. Then

&(x) /(x),

in the sense that every in Ofx(x) admits a unique extension to an element of fv(x).
Proof. Recall [7], [9] the generalized directional derivative fly(x; v), defined by

f(x; v)= lim sup {f(y + hv)-f(y)}/h,

where the upper limit is taken as y converges to x in Y and A decreases to 0 in R. The
generalized gradient Ofv(x) consists by definition of those elements r in Y* satisfying

f,(x; v)>= (, v) for all v in Y.

It follows easily from density and from the fact that convergence in X implies
convergence in Y that

/x(x; v <-_ f(x; v)

whenever x and v lie in X. Now let r belong to Ofx(x). Then (by definition)

(, v),<-_ f?x(x, v) for all v in X,

and by the preceding, along with the fact that the function v --> f,(x; v) is bounded on
bounded subsets of Y, we deduce that the function
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mapping X, with its topology induced by Y, to R is bounded on bounded subsets. It
follows that this linear function is continuous on X (with the induced topology) and
hence, by a standard argument, admits a unique linear extension to the complete space
Y in which X is dense. The extension, which we also label ’, still satisfies

(C, v)<_-/.(x; v)

for all v in Y, and hence belongs to Ofv(x) by definition. Q.E.D.

6. Generalized gradients on L’. We are given a complete measure space (T, J,/x)
with tz (T) < + oo, a separable Banach space X, and a function g: T xX R. We assume
that the mapping g(t, x) is measurable for each x, that x g(t, x) is locally Lipschitz
for each t, and we posit the existence of scalars p => 1 and c => 0 such that for every (t, x),
for every element ’ of Oxg(t, x) (generalized gradient in x for fixed), the following
bound holds:

(6.1) ICl <= c{1 + Ix [-1}.
Finally, we suppose that g(t, 0) is (finitely) integrable, and we set, for x in LO(T, X),

(6.2) F(x) Ir g(t, x(t))g(dt).

As usual, p. denotes the (possibly infinite) quantity satisfying

1/p+l/p,=l.

THEOREM 2. Under the above hypotheses, the function F: Lp R given by (6.2) is

well-defined (finitely) and locally Lipschitz (in fact, Lipschitz on bounded subsets ofLP),
and we have

OF(x) c IOxg(t, x(t))tx(dt).

This means that corresponding to any element ( of OF(x), them is a [unction (. in
L*(T, X*) satisfying

((t) Oxg(t, x(t)) /x-a.e.

and such that, ]:or every y in L (T, X),

(r, y)= jr (r(t), y(t))lx(dt).

Proof. The growth condition (6.1) is easily seen to imply

[g(t, x)l <- Ig(t, O)l + c{Ixl / Ixl},

which, combined with the fact that g(t, x(t)) is measurable, yields the fact that F(x) is
defined and finite whenever x lies in L. We now prove that F is locally Lipschitz.
Invoking the mean value theorem for generalized gradients [14] we have

IF(x)-F(y)I Ir(z(t), x(t)- y(t))(dt)],
where z(t) belongs to Oxg(t, w(t)) and w(t) lies between x(t) and y(t). Using (6.1) and
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H61der’s inequality we have this last expression bounded above by

C IT{1 +(Ix(t)l+ly(t)l)"-}lx(t)-y(t)ltz(dt)

<- cllx yllo / ell(Ix / ly I)"-al[o, IIx yllo
-< (cx / c (llxll / Ilyll)"/"*llx yll)
<- KIIx yllo, for some constant K,

as long as x and y remain in a bounded subset of L.
Now let sr belong to OF(x) (and hence to the dual of L(T, X), L* (T, X*) [5, 2.6,

Prop. 10 and No. 21]). Then for any v inL,F(x; v)>-((, v). Using Fatou’s lemma (cf.
I-8, Lemma 3]) we may show

rg(t,

x(t); v(t))(dt) >-F(x; v),

from which ensues

(6.3) frg(t,x(t); v(t))tz(dt)>-_(, v)= fr (r(t),. v(t))l(dt).

For any e > 0, define a multifunction F as follows"

1-’(t) {0} if g, (t, x(t); v) > (’(t), v) e for all v in X,

={v" g(t, x(t); v)<=(f(t), v)-e} otherwise.

The map (t, v) g(t, x(t); v) is of course continuous in v, and is seen to be measurable
in as a consequence of the fact that g, (t, x(t); v) can be expressed as the upper limit of
a countable family of measurable functions (we use here the fact that X is separable).

It follows that the multifunction F is "measurable" and admits a measurable
selection v(t) [19, Thm. 4.1]. Now (6.3) implies that the set

{t: r(/) (0}}

must have/z-measure O, and since e is arbitrary we deduce that for/x-almost all t, for all
v inX,

gx(t, x(t); v) >-(((t), v).

Consequently ’(t) belongs to Oxg(t, x(t)) -a.e. Q.E.D.
Remark. The case p c is treated in [9]. As in that case, equality will hold in the

theorem if g(t,. is "regular" for ix-almost all t.

7. An abstract approach.
A. The line of reasoning used to prove Theorem 1 will work in much more general

situations, as we now show by considering the following abstract optimization problem.
We are given Banach spaces U, V, W, T, Z together with continuous linear operators
L: W V, y: W T, C: UZ, locally Lipschitz functions]’: UR andg: TR, and
a multifunction E mapping U to V (i.e. E(x) is a subset of V for x in U), W, the domain
of L, is assumed to be a subset of U.

We consider the problem of minimizing

(7.1) f(x)+g(yx)
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over the elements x of W which satisfy

(7.2) Lx E(x),

(7.3) yx $,

(7.4) Cx Y,

where S and Y are specified subsets of T and Z respectively. Here, L plays the role of a
differential operator and 3’ that of a trace operator, so that (7,1) is a type of Bolza
functional, (7.2) is a "differential inclusion", (7.3) a boundary condition, and (7.4) an
explicit "state constraint". An implicit constraint is also incorporated by (7.2), which
demands that x belong to the domain of E; i.e. the set of points x for which E(x) .

We posit the following conditions:
HI. The sets S, Y, and Gr (E) are closed and convex (Gr (E), the graph of E, is the

set of points (x, v) such that v belongs to E(x)).
H2. ("trace property") The injection from W into U is continuous, 3" has a

continuous right inverse, and the kernel Wo of 3" is dense in U.
Remark 7.5. The type of setting we have described above is most familiar in

partial differential equations. The point as far as we are concerned is, first, to avoid the
dual W* of W (typically nasty) and have intervene instead the dual U* of U, and,
second, to avoid the use of the transpose L* of L and to replace it by the transpose
Lo* (V*, Wo*) of the restriction Lo (Wo, V) of L to Wo. The motivation stems
from the familiar case in which L is a differential operator and W is a space of functions
or distributions; when W0 is also the closure of the space of infinitely differentiable
functions with compact support, then Wo* is a subspace of distributions, andL is also a
differential operator (in the sense of distributions) and can be computed, whereas the
transpose L* cannot in general be expressed in terms of differential operators.

When the trace property H2 holds, we can compare L* and Lo* by means of an
abstract Green formula in the following way (see Aubin [2]). First we introduce the
domain V’ of Lo* defined by

(7.6) Vo* {p V*’L*op U*},

where U* is identified with a subspace of Wo* (indeed, the transpose of the injection
from W0 into U is an injection from U* to Wo* ). Equipped with the graph norm, V is
a Banach space, and if (H2) holds then there exists a unique operator/3" (Vo*, T*)
such that

(7.7) (L*op, x)- (p, Lx) (it*p, 3"x) for all x in W, for all p in Vo*.
(This will replace the integration by parts in the proof of Theorem 1.)

We associate to all (u, v, t, z) in U x V x T x Z the set F(u, v, t, z) of points x in W
satisfying

(7.8) Lx6E(x-u)+v, yxS+t, Cx Y+z.

Notice that our optimization problem involves minimizing a functional over
F(0, 0, 0, 0). We make the following controllability assumption:

H3. There is a bounded subset Fo of U such that, for every (u, v, t, z) sufficiently
small, the set F(u, v, t, z) is nonempty and contained in Fo. The functions f and
g are Lipschitz on neighborhoods of Fo and 3’(Fo) respectively.

We define the value function a on U V x T Z via

a(u, v, t, z) inf {f(x)+g(3"x):x F(u, v, t, z)},
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and the Hamiltonian function H on U x V* via

H(x, p) sup {(p, v): v E(x)}.

Since the graph of E is convex, H is concave with respect to x and convex with respect to
p. We denote by Ofl-l(x, p) the subdifferential in the sense of convex analysis [17] of the
convex function p-->H(x, p), and by OxH(x, p) the superdifferential of the concave
function x --> H(x, p).

THEOREM 3. We posit H1-H3. Ifx in Wminimizes (7.1) subject to the constraints
(7.2)-(7.4), there exist p V’, 0 Of(x), & 3g(yx), and r Ny(C) satisfying

(7.9)

(7.10)

(7.11)

,Lop e OxH(x, p)- 4’ C*r OxH(x, p)- Of(x)- C*Ny(Cx),

Lx e OpH(x, p),

fl*p e + Ns(yx) Og(vx) + Ns(vX).

Furthermore, the value function a is Lipschitz in a neighborhood of (0, O, O, 0), and we
have:

(7.12) (L*op+C*r+, -p, -/3*p + , -r)eOa(O, O, O, 0).

Remark. We recognize (7.9)-(7.10) to be Hamiltonian equations and (7.11) a
transversality condition. The notation Ns(yX), for example, refers to the normal cone to
the convex set S at the point yx (i.e. the set of p in T* such that (p, s -yx) <= 0 for all s
in S).

B. The shadow price information (7.12) exists with respect to four perturbations in
the problem. In some situations it may be deemed more natural or more convenient to
consider instead a performance function a depending on fewer variables. For example,
in the problem of 1, we chose to mention only the interpretation of p(0). One can
easily imagine situations (e.g. sensitivity analysis) in which the generality of (7.12)
would come into play in other ways.

As far as reduced versions of (7.12) is concerned, one cannot simply drop
components to obtain them, since it is not generally true that the relation (a, b) Of(x, y)
implies a O,f(x, y) (this is discussed in [9, art. 14]). However, one can modify the proof
of Theorem 3 to attain the desired result. We shall not attempt to consider the most
general situation,, but rather one that seems natural in many settings. We consider the
case in which S is a singleton set {so} and g is identically zero( i,e, boundary conditions
reduce to yx So). We let c7 (s) be the infimum in. the problem in which the boundary
condition is yx s, and we maintain the hypotheses of the theorem.

COROLLARY 4. If X is optimal .for the above problem, there exist p, q and r as in
Theorem 3 such that (7.9), (7.10) hold. Further, is Lipschitz near So, and

(7.13) -*peOk(So).

C. We consider now a different version of the above problem, in which there is an
explicit dependence on a control parameter, and unilateral constraints on the state
variable. We introduce a Banach space Z, closed convex subsets K of Z and D. of W, and
linear operators F and G in (U, V) and ?(E, V) respectively. We now seek to
minimize

(7.14) f(x, o’) + g(yx)
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subject to

xD,,

Lx Fx + Go’,

o" K,

x S,

Cxs Y,

where [: U x --> R, and g, y, .L, S, C, Y are unchanged from Theorem 3. We denote by
F(u, s, v, t, z) the set of (x, o’) in W Y satisfying

xE+u,

Lx Fx + Go" + v,

o’EK +s,

yxsS+t,

Cx Y+z,

and we define on U x Y x V x T xX via

a(u, s, v, t, z) inf {f(x, o’) + g(3,x):(x, o’) F(u, s, v, t, z)}.

H4. There is a bounded subset Fo of W x X, such that, for every (u, s, v, t, z)
sufficiently small, F(u, s, v, t, z) is nonempty and contained in F0. Further-
more, f is Lipschitz on a neighborhood of F0.

COROLLARY 5. Under the stated assumptions, if (x, tr) solves the above problem,
there exist p E V, (, I//2) in Of(x, o’), qb E Og(yx), and z E Ny(CX) satisfying

(7.15) -Lp +F*p + C*’r + N(x),

(7.16) G*p 2+N:(o’),

(7.17) fl*p k + Ns(yX),

(7.18) (Lp+C*z+x, ’2, -P, -/3*p + b,-z)EOa(O, O, O, O, 0).

Remark 7.19. As before, it is possible to replace (7.18) by alternate relations, such
as (7.13) when the boundary conditions are simply yx So. The reader may wish to
verify that Theorem 1 is a consequence of this corollary with the identifications (see 3
for notation):

lp pW== Wn’, ,=Lm,

K={o’eE:o’(t)eU a.e.},

[(x, o’) = e-’g(x(t), O.(t)) dr,

Lx 2, 3,x x (0),

Z W Y, C =identity,

L*op -[p, B*p p(0),

v’ Co LX’# LX}.

U= V=L,
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Of course, in applying the theorem to specific problems, there will be a need for
appropriate characterizations of generalized gradients (such as Theorem 2 of 6) and
normal cones (such as the lemma in 10). A further element will be the verification of
the controllability hypothesis H3. In the problem of 1, this was a result of taking 6
large enough; in the applications of 9 and 10, it follows from postulating "strictly
feasible points", a concept akin to the Slater condition of mathematical programming.

8. Proof of the abstract necessary conditions. We shall merely sketch the proof,
since the steps areidentical to those in the proof of Theorem 1, albeit in a more general
setting. We define, in the notation of 4,

F(x)=f(x)+g(yx),

X=W,

Y=UVTZ,

Z Gr (E) S Y,

Ax (x, Lx, 3"x, Cx ).

Then H3 and Proposition 4.1 imply that the function a is Lipschitz in a neighborhood of
0. As in 3, we denote the optimal solution $, and we note that for any 0 in (0, 1), for any
x in W and (u, v, t, z) in Gr (E) S Y, we have

+O(x- g.)F(O[x-u, Lx-v, 3"x-t, Cx-z]).
Consequently,

ce(O[u, v, t, z]) <_-F(g +O(x- g)),

and taking generalized directional derivatives leads to

0-<F(; x-)+a(O, u-x, v-Lx, t-3"x, z -Cx).

Applying just as in 3 the lop-sided minimax theorem, we deduce the existence of
(q, -p, r, -r) On(O, O, O, 0), t# Of(g), b Og(3"g) such that, for all x in W and (u, v, t, z)
in Gr (E) S x Y,

(8.1) O<-_(q, u-x)-(p, v-Lx)+(r, t- 3"x)-(r, z-Cx)+(, x-g)+(&, 3"x 3"g).

If we set (u, v, t, z) (., Lg, 3", Cg) in (8.1), we obtain.that for every x in W,

(8.2) (q-6, g-x)-(p,L(g-x))+(r-, 3"(g.-x))-(r, C(g-x)) = 0.

As x ranges over + W0, this implies

q =Lp+C*r+.

Now by definition, (q, -p, r, -r) belongs to cc (0, 0, 0, 0) and hence to U* V* T*
Z*, while by the result of 5, p belongs to U* (rather than merely to W*); of course
C*r belongs to U*. These facts and the preceding equation imply that L*op belongs to
U*; i.e., that p belongs to Vo*. Consequently we can use the Green formula (7.7) in (8.2)
to deduce that for any x in W,

Since 3’ is surjective, this yields

and now (7.12) follows.

(r- & + *p, 3"x) O.

r qb *p,
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If in (8.1) we take x , it follows immediately that

(-q, p) NGr(E)(., t,), -r Ns(T), r Ny(C.).

It follows from convex analysis that (-q, p) lies in Nr(($, L) if[

q OxH(, p), L O,H(, p)

and all the conclusions of the theorem ensue. Q.E.D.
The proof of Corollary 4 uses the device introduced in 3: we observe that

minimizes
/(x)=(vx)

subject to
Lx E(x ), Cx Y, yx So + 6B,

where 6 > 0 is small, and we apply Theorem 3 to this new problem. The proof of
Corollary 5 consists of applying Theorem 3 after the following relabelings:

U=Ux, W=WxZ, V=V,

f(x, o’) f(x), L(x, tr) Lx, C(x, tr) Cx, y(x, cr)

Fx+Gcr if x f and o’ K,
E(x, (r)

4 otherwise.

9. An example in partial flitierential equations. Let f be a bounded open subset
of R whose boundary is a smooth differential manifold. We introduce functionals ]" and
g defined by

f(x, ,) I, ,(w, x(w), r(w)) dw

fr O(w, se(w)) din(w),g($j)

where din(w) is a measure on F.
We consider the solutions x H2(f) to the Dirichlet problem for the Laplacian:

i) Ax + x o- (o" ranges over L2(ft))
(9.1)

ii) x Iv 0.

We denote by (3/0n the normal derivative. Let A be a compact set and let c be a function
w, A A - c w, A R satisfying

i) w --, c(w, A) belongs to LZ(f) for each A A
(9.2)

ii) for almost all w f, A c (w, A is continuous.

We consider the following problem’
Minimize

f c(w, x(w), r(w)) dw + I O(W, n(W)) dm(w)
subject to the constraints (9.1) and

(9.3) r belongs to the unit ball of L(f)

(9.4) VZ A, f c(w, A )x(w) dw >= b(Z ),
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where h b (h) is a continuous function. We posit the following controllability assump-
tion.

There exist tr0 L2(II) such that [[o’0[IL2(a) <_- 1 and such that the solution x0 of the
Dirichlet problem -Ax0 + x0 ro and Xolr 0 satisfies:

(9.5) ’h A, c(w, h )Xo(W) dw > b(h).

Finally, we assume that the functions b and 0 satisfy
i) the functions w b(w, x, tr) and O(w, ) are measurable for each x, o"

and sc

(9.6) ii) the functions (x, r)o b(w, x, tr) and " O(w, ) are locally Lipschitz for
almost all w

iii) there exists a constant c > 0 such that

O& (w, x, r) c c (1 + Ix I+ Ir[)B

oO(w, ) c(1 +

iv) the functions w--> 4(w, 0, 0) and O(w, O) are (finitely) integrable.
THEOREM 5. We posit assumptions (9.2), (9.5) and (9.6). Let (2, ) be an optimal

solution. Then there exist p L2(f) whose Laplacian Ap belongs to L2(fl) and functions
ql, q2 L2(f) satisfying

(Pl(w), P2(w)) O4)(w, 2(w), (w)) for almost all w

and a nonnegative Radon measure 12 on A satisfying

such that

and

Ia [Ia (c(w, h )Y(w)) dw b(h )] dl2(h 0

JA C(" ,X) dt2(h)

ii) -plrOO(w, O2(w)

(p(w)-
42(w), (w)) lip

Remark. Among the possible shadow price interpretations we could add to the
above is the following: if a (s) is the infimum in the above problem when the boundary
condition is Xlr s (instead of xlr 0), then a is Lipschitz on a neighborhood of 0 in
H3/2(F) and

Op-aa(O).on

Proof. We use Corollary 5 in the following case

U V Y L2(fl), W H2(), f U,

T H3/2(F) H1/2(F), F 0, G identity, K unit ball in

y is the operator defined by yx(w)=
\
(x(w)[r, Ox(w))On
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The trace theorem [15] impliesthat , is surjective and that Ker 3’ H (fD, the closure
in (fl) in H2(fD. We define L by Lx -Ax + x. Hence L0* is defined by L*op -Ap +p
(in the sense of distributions) and its domain is the space H(f, A) of functions p e L2(fD
such that Ap

The Green formula can be written

(9.7) (-Ap +p, x)-(p, -Ax + x) --np(w)x(w) dm(w)- p(W) on (w) dm(w)

for smooth functions. By the abstract Green formula it still holds true when x e H2(),
p H(f, A) since the operator/3" defined by

*p(w) (nP(W), -p(w))
can be extended in a unique way to a continuous linear operator/3* from H(IL A) to
H-3/2(F H-1/2(F) in such a way that formula (9.7) holds. Finally, we choose $

{0}H1/2(F), and the (isoperimetric).constraints are defined by the Banach space
Z=C(A), the subset Y=b+C+(A) and the map C defined by Cx(A)=

)x(w) dw.
We now show that the controllability assumption H4 of Corollary 5 is satisfied.

Indeed, the operator x(-Ax+x, xlr) is an isomorphism from H2(f) onto
Lz(fDxH3/2(F). Let M1 be the norm of its inverse, Mz=SUpxAI[C(
M3=min,A[ac(w,A)Xo(w)dw-b(A)]>O. We choose y>0 such that 3,<
M3/(1 + 3MaM2). Now, if IlVllL2(a), Ilsll,.(a), IIZlIc(A), [[[IH3/2(r) are less than y, then the
solutions (x, o-) e H2(fl) of

i) -hx+x=tr+v,

ii) xlr= ,
iii) treK+s,

iv) Cx >- b + z,

satisfy II ll< 1 +y and Ilxll<M(1 + 33,). Further, such solutions exist; for take o-=

tr0 + s. Then the solution x to -Ax + x o-+ v satisfies IIx- x011 < 3yM1, and hence

Cx Cxo b + C(x Xo) + b

>- M3 M2llx xoll + b _-> M3 M23yM1 + b

>y+b>b+z.

This yields H4 in our present setting.
Now, assumptions (9.6) on the functions and 0 imply that the functionals f and g

are Lipschitz on bounded subsets of L2(Iq) and L2(F) respectively (see 6).
The assumptions of Corollary 5 are therefore satisfied. It remains to interpret the

conclusions. There exist p e H(f, A), 1 and///2 e L2(f) such that, by Theorem 2,

(l(w), O2(w)) e O&(w, 2(w), 6"(w)) for almost all w e 1),

: e L2(F) such that

(w) OO(W, n(W)) for almost all w e F
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and a nonnegative Radon measure 12 C(A)* (i.e. -- of Corollary 5) such that

Ia [In c(w, , )Y(w) dw b(, )] dlS.(, O.

They satisfy the following equations:

ii)

JA C(" ,h) dr2 (h),

-plr=,

iii) f (p(w)- t2(w), (’(w)) lip I/t2I]L2(I) Q.E.D.

10. Example--a variational problem with unilateral constraints. As a final
example, we consider the following problem in the calculus of variations: to minimize

Io g(X(t), (t)) dt

over the absolutely continuous arcs x: [0, 1] R satisfying

(10.1)

(10.2)

(10.3)

x(t)f,

2(t)6K a.e.,

x(0) Xo, x(1) =Xl,

where fl and K are given closed convex subsets of R n, x0 and x are given points in R n,
and g" R R R is a locally Lipschitz function. We make the following assumptions"
K is compact, and there is an arc x0(’) joining x0 to X and an e >0 such that
Co(t) + eB c K a.e. and such that Xo(t) belongs to the interior of l’ for all t. We denote by
a(y) the infimum in the above problem when the boundary conditions, instead of
(10.3), are given by x(0)= x0, x(1)= y.

TI-IEOREM 6. lf$ solves the above problem, then a is Lipschitz nearx and there exist
an absolutely continuous function p, an element A of L, and a nonnegative Radon
measure m on [0, 1] such that ( denotes integration over It, 1]):

(10.4) A (t) 6 Na(.f(t)) m-a.e.

(10.5) (p(t),p(t)- ft A(s)m(ds))6Og(Y(t),(t))+{O}xN:((t)) a.e.

p(1)Oa(xl).(10.6)

Remark. Certain closely related, but not strictly comparable results appear in the
literature. The convex problem is treated by R. T. Rockafellar [18], who obtains
necessary conditions couched in terms of vector measures and the Hamiltonian.
Related cases are treated by J. Warga [20], H. Halkin [12], and F. H. Clarke 19, 6]. In
these, no relation of the form (10.6) is obtained.
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Proof. We may suppose that x0 0. Note that the solutions x of (10.2), (10.3) are
bounded, so there is no loss of generality in assuming fl compact, and in supposing that g
satisfies the growth condition (1.3) of 1 with r 0. We denoteM the set of absolutely
continuous x:[0, 1]R such that x(0)= 0 and k belongs to L1. If the norm of x is
taken as ]] dt, then the dual of’ may be identified with L, with the duality pairing

(x, v)= Io icy dt.

We shall apply Corollary 4 of 7 with the following identifications:

x=(x, y),

U =LlxL1,
W=ML1,

Jo g(x, y) dt,(x, y)

z
Y={z 6Z z(t) f},

C(x, y)= y(s) ds,

y(x, y)= x(1),

T=R n,
S {X1},

L(x, y) y,

V =L1,

{0} if y
E(x, y)

b otherwise,

where K1 is the set of y in L satisfying y(t)K, a.e. It is routine to check that
(., 97) (., ) then solves the abstract problem of 7, and to verify the hypotheses of the
theorem. The controllability hypothesis follows mainly (much as in 9) from the
observation that if (u, v, t, z) is sufficiently small in L x L x R x Z, then the element
(x, y) of W defined by

y(t)=iCo(t)+u(t)+t-lo (u +v) dt,

satisfies

a(t) y +v

yKl+u,

x(1)=Xl+t,

C(x, y) f+z.
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We calculate

L0p [-/, -p] (in the sense of distributions)

Vo* {p L’/0 L},

C*v=(O,v),

/3*p -p(1),

0 if y K,
H(x, P)Y, -oo otherwise.

A straightforward interpretation of (7.9) (with the help of Theorem 2, 6) then yields
the existence of an arc p and elements z, cr of Nv(C(2, 7)) and N:() such that

(/, p) 3g(g, )+ (0, r+cr), p(1)Oa(xa).

Now, cr is a function in L satisfying

foOt(t). {k(t)-2(t)} dt<=O

whenever k in L is such that k(t)K a.e. It follows readily from the measurable
selection theorem [19, Theorem 4.1] that for almost every t, for every k in K,

cr(t) {k (t)} <= O,
i.e. or(t) Nz((t)). It remains now to characterize r. We have by definition that for any
arc x satisfying x(0)= 0, x(t) 1,

o
r(t) {2(t)-(t)} dt<.O,

where, as explained earlier, r is identified with an element of L. The lemma below then
yields an expression for r that concludes the proof. Q.E.D.

We denote M the set of absolutely continuous functions x: [0, 1]-R" with
derivative in L; p is a scalar -1.

LEMMA 10.1. Let be a compactconvex set in R" containing 0 in its interior, and let
r belong to LP([0, 1]; R"). lf2 in M solves the problem of maximizing

on’(s)

Yc(s) ds

over the elements x ofM satisfying x(O) O, x(t) e f for all t, then there is a function A in
L and a nonnegative Radon measure rn on [0, 1] such that

(10.7) h(t)eNn(2(t)) m-a.e.

(10.8) r(t) f A(s)m(ds) a.e.
t,1]

Proof. Let h denote the support function of f/; i.e.

h(p) max {p w w 1"/}.

If S denotes the unit sphere of R", then x belongs to 12 iff g(x)<= O, where

g(x) max {p x h(p) p S}.
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The function g is locally Lipschitz, and it follows from [6, Theorem 2.1] that when
g(x) O, Og(x) c Na(x). Further, because. 0 int fl we have h(p) _-> 8 > 0 when p S,
and this implies 0 Og(x) when g(x) 0. The statement of the lemma implies then that
minimizes

o
-Z c dt

subject to x(0) 0, g(x(t)) <-_ O. We may apply [9, Thm. 4] to deduce the existence of an
arc p, a function h in L and a Radon measure m supported on the set {t" g((t))- 0}
such that

(/,p)+(O, Io.t) A din)=(0,-7-), A(t)Og((t)) m-a.e.

Because x(1) is free, the transversality condition

-p(1) I Adm
0,1]

also pertains. Thus p is identically equal to this last quantity, and the result
follows. Q.E.D.
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CONTROL OF A PSEUDO-PARABOLIC INITIAL-VALUE PROBLEM
TO A TARGET FUNCTION*

L. W. WHITE

Abstract. Let G be a bounded domain in R with a smooth boundary and let Q G x (0, T]. We
consider the solution y(u) of the pseudo-parabolic initial-value problem

M(x)y,(u)+L(x)y(u)=u in L2(Q),

y(.,0;a)=0 in L2(G)

to be the state corresponding to the control u. Here M(x) and L(x) are.second order symmetric uniformly
strongly elliptic operators on G. The control problem is to find.a control Uo in a given ball in L2(Q) such that,
for a given Z, the trace y(., T; u) Z(. is in L2(G) and such that Uo minimizes a certain noncoercive energy
functional arising naturally from the differential equation. In this paper we give controllability results for the
pseudo-parabolic initial-value problem and regularity results for u0. Furthermore, we establish results that u0
lies on the surface of the constraint ball in L2(Q) and that the optimal controls of similar problems that steer to
balls centered at Z converge to u0 in L2(Q) as the target radii shrink to zero. The regularity results indicate
that convergence in L2(Q) is as strong as we may expect. Finally, we include a simple example to illustrate
some of our results.

1. Introduction. In this paper we consider the distributed control of a system
whose state is given by the solution of a pseudo-parabolic initial-value problem, The
optimal control problem is to find a control u0 that minimizes a certain noncoercive
energy functional over a set of controls that are contained in a fixed ball in a Hilbert
space and that steer their state functions to a given target function Z.

Problems of pseudo-parabolic type arise in many contexts in which one imposes
higher order correction in the physical model. For example, in [2] a two temperature
theory of thermodynamics is considered in which a quantity 0, the conductive tempera-
ture, satisfies an equation of pseudo-parabolic type. Also, in [8] it is shown that
pseudo-parabolic equations arise in the study of the flow of second-order fluids. We
refer to [1] for an extensive bibliography concerning pseudo-parabolic problems and
their applications. Thus far, control of problems of pseudo-parabolic type have received
little attention in the literature. In view of their importance in the modeling of physical
systems and their close relationship to parabolic problems [7], it seems worthwhile to
study control problems of this type.

The ability to steer precisely to a prescribed target function in a given time T is a
controllability property. The primary difficulty in the formulation of this problem is one
of showing the admissible set of controls Uad to be nonempty since, given this result,
the existence and uniqueness of the optimal control is standard 13]. While it is clear that
there are targets Z for which the admissible set is empty, the set of attainability can be
given explicitly for the pseudo-parabolic initial-value problem. This differs from the
situation that occurs for analogous parabolic problems where no such explicit descrip-
tion can be given. In 2 we formulate the problem and give the controllability result.

The regularity properties of the optimal control are deduced as a result of the
strong endpoint condition and the representation of the solution of the, pseudo-
parabolic problem. This is done in 3.

In 4 we study the relationship of u0 to the optimal controls in [9]. In [9] we
consider this problem for targets that are balls of radius p > 0 centered at Z. We show
here that the optimal controls u associated with these problems converge to u0 in the

* Received by the editors May 24, 1978, and in revised form February 5, 1979.
Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019.
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L2 sense as p goes to zero. This result depends on the property that u0 lies on the surface
of the control-constraint ball. The proof we give relies upon a more "relaxed"
formulation of our problem with a more general set of admissible controls. This is done
so that the set of attainability is a normal space [4] and that the Lagrange multiplier
associated with the terminal constraint is a member of a space of distributions. Finally,
in 5, we present a simple example to illustrate some of our results.

2. Formulation of the problem. Let G be a bounded domain in R and let
O G x (0, T] where T is fixed finite. For ease we assume that the boundary of G is of
class C. We shall be concerned with several function spaces. Let L(Q) and LZ(G)
denote the spaces of equivalerice classes of square integrable functions on O and G. The
norms on these spaces we denote by 11.110,o and II" IIo and inner products by (.,.)o.o and
(’,’)o, respectively. We use the standard notation H(G) to denote the kth order
Sobolev space on G with norm 1[. Ilk and Hok (G) to denote the completion with respect
to I]" Ilk of the space of infinitely ditierentiable functions with compact support in G. The
space H (G)fqH2(G) is a closed subspace of H2(G) and consequently is a Hilbert
space with respect to [[’ [[2. The spaces L2(0, T;H (G)f’qH2(G)) and L2(0, T;H (G))
are Hilbert spaces [3], [4] with norms Ilfll2.0=(llf(.,t)lldt)1/2 and
(’llf(’, t)[[2 dt) 1/2, respectively. We also note that L2(0, T; H-I(G))is the dual of
L:(O,T;H(G)).

We consider the solution y(u)=y(x,t;u) in L:(O, T;H(O)CIH(O)) o the
initial-value problem

M(x)y,(u) + L(x)y(u) u in L:(O),
(1)

y(.,O;u)=O inL:(O)
to be the state corresponding to u. Here M(x) and L(x) are second order symmetric
uniformly strongly elliptic operators

M(x)’- Y. _-- m.(x)+ re(x)
i,j JXi OX

and

i,j= OXi OXj

in G. We assume for simplicity that mii, lii, m, and belong to C(). Hence, M is an
isomorphism mapping Ho(G)f’IH2(G) onto L2(G) so that M-L is a bounded
mapping ofH (G) H(G) onto itself. For each the exponential function t--E(t)
-tM-1Le thenisaboundedlinearmapofHo(G)H2(G)ontoitself. Thesolutionof(1)
may be represented by

(2) y(’, t; u)= E(t-s)M-Xu( s) ds

in L2(G) where the integral is in the sense of Bochner. From this formula it is clear that
y(., t; u) and y,(., t; u) are in H0 (G)H2(G) for almost all in [0, t] and that y(u)
belongs to L2(Q). For further facts concerning the solution of (1), we refer the reader to
[7].

The following observation is basic to our discussion.
PROPOSITION 1. Let ZH(G)HZ(G). Then the control uz(.,t)=

(1/T)ME(t- T)Z(. has the property that y(., T; Uz) Z(. in L(G).
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Proof. The proof follows immediately by substituting uz(’, s) for u(., s) in (2).
Remark 2. The essential fact here is that M-1L is a bounded map on Ho (G)7)

H2(G), so that E(.) is a group of operators. Consequently, E(.) is meaningful for
negative values of t, so that the term E(t-T) has meaning. This is not the case for
parabolic problems where semi-groups are involved in the solution.

Define the set of attainability at time T

Y(T) {y(., T; u):u L2(Q)}.
From (2) and Proposition 1, the following facts are clear.

COROLLARY 3.

Y(T) H (G) fq H2(G).
COROLLARY 4. The pseudo-parabolic problem is controllable in the sense that Y(T)

is dense in L2(G).
Thus, the set

V(Z, p)= {u L2(Q) [[y( T; u)-Z(.

is nonempty for p =>0 if Z H(G)fqH2(G) and is .nonempty for p >0 if Z L2(G).
We now state the control problem. We assume that Z is inH (G) H2(G) and is

nonzero until stated otherwise.

(3) minimize K(u) (u, y(u))o.o subject to u L2(Q)
Ilullo,o_-< b,

Ily(’, T; u)-Z(.

Remark 5. The control functional K(.) may be represented in the form of an
energy functional by using (1) and integrating by parts

i,j=l
(4)

+ y,(x, t; u)li(x)y,(x, t;u)+l(x)y-(x, t; u) dxdt
i,

and is strictly convex, weakly lower semicontinuous, and noncoercive in u.
Remark 6. For convenience we require the parameter b to satisfy Ilullo.o <- b. The

parameter 0 is to belong to [0, II2110). These conditions are sufficient to guarantee that
the set

(5) Sad(P) {U g(z, 0) :llullo,o-< b}

is a nonempty closed bounded convex subset of L2(Q).
PROPOSITION 7. For each p in [0, IlZl]o), problem (3) has a unique solution that we

denote by uo.
3. Regularity o the optimal control or O = 0. For this case the optimal control Uo

must satisfy y(., T; u0)= Z(. in L2(G). Hence, we may deduce regularity properties
directly from the equation

T

(6) Z(.)= Io E(T-s)M-lu("s) ds.

From (6) we see that if Z H(G) (’1H2(G), then Uo L2(Q). Furthermore, since M-1L
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is a bounded one-to-one map of H(G)f’IHO(G)onto itself for integers p->_2 [7], we
see that if Z eH(G)Hk(G) for k_->2 then Uo belongs to the space
L2(0, T; Hk-2(G)).

THEOREM 8. If Z H(G) f’l Hk (G) where k >- 2, then, ]’or the problem in which
p O, the optimal control Uo belongs to L2(0, T; Hk-2(G)). This result is in contrast to the
regularity result obtained in [9] for the case p > O.

TrEOREM 9. Let Z Hk (G) for k >-0 and let p > O. Then the optimal control uo
belongs to the space H(O, T; Ho (G) f’lHk/2(G)).

Remark 10. The assumption that p > 0 is essential to the proof of Theorem 9 given
in [9]. This condition is shown to imply the existence of positive Lagrange multipliers
associated with the inequality constraints in problem (3). The existence of these
numbers allows us to express the optimal control as a linear combination of solutions to
pseudo-parabolic and adjoint pseudo-parabolic problems to deduce Theorem 9.
Furthermore, the existence of these numbers implies

[ly(’, T; u.)-Z(.)l[o=O and Iluollo,o b,

see [9].

4. Convergence of u to Uo. In this section we establish the following result.
THEOREM 11. Let {pi}= be a sequence ofpositive real numbers such that Pi -’> 0 as

--> c. Then the corresponding sequence of optimal controls {uo,}i is such that uo -> Uo
strongly in L (O) as -> co.

We note first that since [[uo, l[o.o<=b for each i= 1, 2,..., there is a weakly
convergent subsequence, which we again denote by {uo,}i= , such that up,-> u weakly in
Lz(Q) as i-->c. This u has the property Ilullo,o<-b. Furthermore, since we have
Ily (’, T; uo,) Z(. )11o =< Pi with Pi ’’> 0 then y (., T; u) Z (.). Hence, we see that u
U,d(0). From the weak lower semicontinuity of K(.), we have

K(u) <<- lim K(uo,).

But from (5) it is clear that Uad(0) c Uad(p) for p >0. Thus, we.note.that K(uo) >=K(uo)
for p >0. Therefore, we have K(u)<-K(uo), and since u s Uaa(0) and Uo is unique, we
must have u Uo. The above argument holds for any sequence of p’s converging to zero
so we have quite easily shown the following.

PROPOSITION 12. The optimal controls uo converge weakly to Uo in L2(Q) as p O.
Remark 13. We note that by using arguments above and setting

g(u) (u, y(U))o,o tlull=,
we may observe from the weak convergence in Proposition 12 that

[luo,- uoll= -Iluo, =- (no, y (uo,))o,o-(uo,, y (uo))o,o + Iluollo,o
converges to zero since uo Uo weakly in L2(Q) implies y(uo,) y(Uo) weakly in L2(Q).
However, We point out that Ilull is not coercive, that is, it is not true that Ilull--> cl/ullo,o for
some positive constant c. This fact is illustrated in the example in 5.

To prove L(O) convergence we must work with the L2(O) norm. At this point, if
we know that Iluollo,o-b (as we do for uo with O >0), then we can show strong
convergence by the well-known argument

Iluo,- uollo,o Iluo, llo,o- 2(Uo, uo,)o.o + Iluo[l,o 2(b2 (Uo, uo,)o,o) 0

as 0. Hence, we seek to show that Iluollo,o b.
In this case, however, we are not able to deduce the existence of positive Lagrange

multiplier numbers. As we have mentioned previously, if Z H (G) f’) H2(G), then we
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know there is a unique solution Uo to the problem

minimize K(u)subject to u L2(Q)

(7) Ilu Iio,o =< b
y(.,T;u)=Z(-) inL2(G).

Furthermore, if Uo satisfies Iluollo,o < b, then, since K(.) is a convex functional, Uo solves
the problem

minimize K(u) subject to u L2(Q)
(8)

y(.,T;u)=Z(.) inL2(G).
Our plan is to show there is no solution to problem (8) in L2(Q).

We consider a more general problem than (8) by enlarging or "relaxing" the
admissible set so that y(., T; u) belongs to a normal space. Let V L2(0, T; Ho (G))
and V’= L2(0, T; H-I(G)) be the dual ot V, [4]. We reformulate our problem with
control space V’, [6]. Hence, we have

My,(u) + Ly(u) u in V’
(1)’

y(., 0; u) 0 in L2(G).
The solution of (1)’ may again be represented in terms of a Bochner integral by

(2)’ y(., t; u) E(t- s)M-lu( s) ds

where E(t)-=exp (-tM-1L) is now an isomorphism of H(G) onto itself for each t.
Hence, y(., T; u) belongs toH (G), and themap u y(., T; u) is a continuous map of
V’ into Ho (G). Furthermore, we have a result analogous to Proposition 1.

PROPOSITION 14. The map u y (., T; u) ]’or a fixed positive T maps V’ onto

The energy functional K(.) has the same representation as that in (4) all the
derivatives being in L2(Q). The inner product representation, however, becomes

K(u)= tor(U(., t), y(., t; u)) dt

((u, y(u)))

where (.,.) denotes the H (G)-H-I(G) dual pairing which extends the L2(G) inner
product (.,.)0.

Recalling that Z H(G)fqH2(G)c Ho(G) so that the endpoint constraint is
compatible, we now consider the problem

(8)’

Define the sets

and

minimize K(u) subject to u V’

y(. T; u) Z(. inL2(G).

V(Z) {u L2(Q)" y( T; u) Z(. in L2(G)}

V’(Z) {u V’" y(., T; u) Z(.) in L2(G)).
Obviously, it is true that V(Z) V’(Z). Furthermore, for our problem Z in Ho (G)
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H2(G) implies u must be in L2(O). Hence, we conclude that V(Z)= V’(Z), and we
have

d infimumK(u) infimumK(u).
ue V(Z) u V’(Z)

Remark 15. If there exists Uo, V(Z) such that K(uop)= d, then since V(Z)=
V’(Z), we see that uop is a solution of problems (8) and (8)’.

We show now that problem (8)’ has no solution in V’. To this end, we assume the
contrary that there exists a solution Uo to (8)’. We first demonstrate the existence of a
Lagrange multiplier in H-I(G) associated with the equality constraint in (8)’. We refer
to 15] for a discussion of Lagrange multipliers and equality constraints. Define the
function H from V’ onto H (G) by

(9) H(u)=--y(.,T;u)-Z(.)

and note that by Proposition 14 the Fr6chet derivative of H at Uo

(10) H’(uo)(v) y(., T; v)

maps V’ onto H (G) so that uo, is a regular point of H(. ).
Remark 16. It is worth mentioning at this point that there are two reasons for using

the problem formulated in (8)’: i) the above regular point property of Uo, and ii) the
Lagrange multiplier is in H-I(G) the dual ofH (G). This second reason is important
because H-I(G) is a space of distributions, and we use : to formulate an adjoint
pseudo-parabolic problem. If we use the formulation in problem (8), then Uo, is still a
regular point when we consider that v --> y(., T; v) maps onto H (G) fq H2(G). Here,
however, all that can be said is that is in the dual ofH (G) f’l H2(G). Since this is not a
normal space, : is not a distribution [4], and it is difficult to give meaning to the adjoint
problems. Thus, by using (8)’ we have not really changed the problem but we have
relaxed conditions on the controls so that the constraint is in a space with a nice dual.

Defining the functional on V’

(11)

we have the identity

(12)

A(u) K(u) + (, H(u)),

O=A’(uop(V))=((Uor,, y(v)))+ ((v, y(Uop))) +(, y(’, T; v))

for all v in V’, cf. [9],
We now introduce the following adjoint initial-value problems

(13)

and

(14)

Equation (12) now becomes

-Mp,(uo,) + Lp(uor,) Uo, in V’

p(., T; Uo,) 0 in Lz(G)

-Mqt +Lq O inV’

q(’,T)=M-Xs(.) inH(G).

((v, Y (Uor,) + p(Uol,) + q)) 0

for all v in V’. Hence, we have

(15) y (Uop) + p(Uo,) + q 0

in V and thus in Lz(O). Differentiating (15) with respect to and using 1 )’, (13) and (14)
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we see that

(16) -M-1Ly(uop) + M-aLp(uop) +M-aLq 0

in V. Furthermore, we note that

(17) M-aLy(uop)+M-1Lp(uop)+M-1Lq =0
in V. Subtracting (16) from (17), we have

(18) M-aLy(uop)=O
in V. But, M-1L is an isomorphism o.n V so y (Uop) 0 in V and Uop 0 in V’. However,
the element 0 is not an admissible control since Z is nonzero. Hence, we conclude that
(8)’ has no solution. By Remark 15 then (8) has no solution L2(Q). We have thus proved
the following lemma.

LEMMA 17. The solution Uo ofproblem (7) satisfies [[Uo[]0.0 b.
Thus, by our discussion at the first of this section, we have proved Theorem 11.

Remark 18. Given the regularity results stated in Theorems 8 and 9, it would seem
that stronger convergence can not be expected for this problem. For example, con-
vergence of the sequence {up,}i_-a in say L2(0, T;HI(G)) would imply that Uo
L2(0, T; Ha(G)) which is not observed.

5. An example. We now present a simple example illustrating the importance of
the constraint Ilu[[0,o =< b to the existence of the optimal control in L2(Q). This behavior
is due to the fact that K(u) is not a coercive functional of u, that is, the norm induced by
K(u) is not equivalent to [[’llo,o.

Consider the following initial-value problem

1- 0--- y,(x, t)-Ox2 y(x, t)= u(x, t)

(19)

in (0, zr) x (0, T]

y(x, 0)= 0 in (0, zr),

y(0, t)= y(r, t)= 0 in (0, T]

with the minimization problem

minimize

subject to
(20)

r

y(x, T; u) sin x.

We introduce the Fourier series representations of y and u by setting

y(x, t)= r/k(t)sin kx and u(x, t)= /Zk()sin kx.
k=l k=l

We then obtain the sequence of initial-value problems

(21) (l+k2)rt’(t)+k2rtk(t) tzk(t) in (0, T], Tk(0)=0

where

1 ifk 1,
(22) ’Ok (T) 0 if k => 2.

Solving the problems (21) and imposing condition (22), we see that the admissible
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controls must satisfy the conditions

Tet/2l (t) dt= 2e T/2

(23)
T

oetk2/l/k2lk(t)=O

for k >-2.

Integrating (20) we obtain for the minimization problem

(24) minimize Y. (t)n(t) dt
k=l

subject to the integral constraints in (23). Now since K(u)NO and K(u)
every u in L(O), we see that the functional in (24) is equal to2 I(t)n(t) dt and
thatI(t)(t) dt 0 for every k N 1. Thus, lor our example it suces to consider the
one dimensional problem

T

minimize n dt

(25)
T

subject to [ e’/2(t) dt 2 e r/

or entirely in terms of

(26)

Now it is clear that

so that

T

minimize 1 + fo l (t) dt

subject to r/l(T) 1.

T

infimum (1 + f0 rl(t) dt)>-I1L2(0, T\
1(T)=1

infimum K(u) >
y(x,T; u) =sin "’Z,"

We define the sequence of controls

0
u,, (x, t)

n e(T-t) sin x,

(n- 1)T

(n- 1)T
<_t<=T.

n

The associated sequence of states is given by

y(x,t;u,,)=

0, 0_-<t<
(n- 1)T

] (T-t)/2 (ll 1) T
n-+(1-n) e sinx, _-<t_-<T.

Note that y(x, T;u,)=sinx for each n so the sequence {u,}=l is admissible.
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Furthermore, applying l’H6pital’s rule we see that

lim K(u,,) -.

The controls however converge to an impulse function

0, 0_-<t < T,
Uoo(X t)

+oo, T.

Although this is the zero function as far as L2(O) and L2(0, T; H-I(G)) are concerned,
the limit function u behaves like the Dirac delta function which certainly belongs to
neither of the spaces L2(O) or L2(0, T; H-I(G)).

Remark 19. It is worth pointing out that because of the specialized nature of this
example, the behavior of this problem resembles that of standard finite dimensional
problems [5]. Keeping those problems in mind, the temptation is to generalize further
the space of controls so that there is a solution in the admissible space. Here, however,
any attempt to include the Dirac delta function by enlarging the control space to
H-(O) affects the regularity of the state function y(u) so that the trace y(., T; u) no
longer has the meaning in L2(G) required by the endpoint constraint in the original
problem.
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REFERENCES

[1 R.W. CARROLL AND R. E. SHOWALTER, Singular and Degenerate Cauchy Problems, Academic Press,
New York, 1976.

[2] P. CHEN AND M. GURTIN, On a theory ofheat conduction involving two temperatures, Z. Angew. Math.
Phys., 19 (1968), pp. 614-627.

[3] J. L. LIONS, Optimal Control of Systems Governed by Partial Differential Equations, S. K. Mitter,
translator, Springer-Verlag, New York, 1971.

[4] J. L. LIONS AND E. MAGENES, Non-Homogenous Boundary Value Problems and Applications, L,
P. Kenneth, translator, Springer-Verlag, New York, 1972.

[5] D. G. LUENBERGER, Optimization by Vector Space Methods, Wiley, New York, 1969.
[6] R. E. SHOWALTER, The Sobolev Equation, II, Applicable Anal. 5 (1975), pp. 81-99.
[7] R. E. SHOWALTER AND Z. W. TING, Pseudo-parabolic partial differential equations, SIAM J. Math.

Anal., 1(1970), pp. 1-26.
[8] T. W. TING, Certain Non-steady Flows of Second-order Fluids, Arch. Rational Mech. Anal., 14 (1963),

pp. 1-26.
[9] L. W. WHITE, Control Problems Governed by a Pseudo-parabolic Partial Differential Equation, Trans.

Amer. Math. Soc., to appear.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 17, No. 5, September 1979

1979 Society for Industrial and Applied Mathematics

0363-0129/79/1705-0003 $01.00/0

EXACT PENALTIES FOR LOCAL MINIMA*

SZYMON DOLECKIt AND STEFAN ROLEWICZS

Abstract. We provide a sufficient condition for the exact equivalence of constrained minimization
problems and the minimization of associated generalized Lagrangians with respect to a perturbing class
Exact equivalence amounts to equality of the sets of local solutions restricted to some region. The sufficient
condition is expressed in terms of certain semicontinuity properties of objective functions and constraint
multifunctions; for Banach spaces it becomes local controllability. The requirement is made more specific for
mathematical programming.

In this context we discuss properties of inner derivatives and approximations of multifunctions and we
present a considerable extension of the Lusternik theorem.

1. Introduction. We are concerned with what we call "exact equivalence" of the
minimization problem

(1) f(x)--> inf, x Fy0

with the problem of unconstrained minimization of a generalized Lagrangian. An
element Xo of Fyo is called an R-solution of (1) if f(Xo) <= f(x) as x R 0 Fyo. We say that

Xo is a local solution, if there exists a neighborhood R of Xo such that x0 is an R-solution.
Exact equivalence at Xo means that all the local solutions around Xo to both the
considered problems are identical. In this sense, exact equivalence is a stronger
property than that of exact penalty.

The real-valued function f in (1) is defined on a topological space X and a
"constraints" multifunction F maps a topological space Y into subsets of X (F: Y-->
2x). Let cI) be a class of finite real-valued functions on Y. The (generalized) Lagrange
function L for (1) with respect to was defined by Kurcyusz [12]

(2) L(x, , Yo) f(x)- sup, cO(y)+ (Yo)
yF-

where F-ix -{y: x Fy} and it was pointed out [12] that most of known augmented
Lagrangians (called sometimes penalty functions) are of the form (2) (see also Dolecki-
Kurcyusz [5]).

In this paper we deal with the class 1 on a metric space (Y, p):

(3) (l={-kp(.,z)+r;k>O, r6[,z6 Y}.

We first give a general sufficient condition for exact equivalence in terms of some
semicontinuity properties of F and f ( 4).

Section 5 is devoted to image nearly inner approximations of multifunctions in
normed spaces, the notion having been introduced in [5]. In the case of equality
constraints our approximation essentially generalizes the notion of continuously (in the
operator norm topology) differentiable maps. As for the inequality constraints it is
closely related to the Levitin-Miljutin-Osmolovskii Approximation (see Ioffe [9]).

In 6 we discuss the form of approximations for some important special multi-
functions, e.g., associated with the mathematical programming problems"

(4) f(x)--> inf O(x)=O;gi(x)O, i=l,2,...,n.

In 7 we express the sufficiency condition for exact equivalence in terms of
controllability of an approximation of the multifunction and we specialize it to problems
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of type (4) obtaining an extension of the Slater condition.
This result is close in spirit to that of Ioffe [9] provides simpler verifying criteria

and is sharper. Pietrzykowski [14] Howe [7] take a different point of view discussing
jointly existence of solutions and "exactness". They use strong regularity assump-
tions and prove only exact penalty, not exact equivalence.

In [9] and in the present paper existence questions are not involved, as they are of
different nature than those of equivalence, and it is natural to study them separately.

To our knowledge the first results on exact equivalence (and the concept itself)
were given in [4], but it is Theorem 5 ( 3) on localization of upper Hausdorff
semicontinuity that enables us to draw rather strong conclusions from a semicontinuity
theory elaborated in [3].

Results of [3] together with Theorem 5 extend the Lusternik theorem consider-
ably.

2. Some preliminaries. Let R c X. The primal functional of (1) restricted to R is
defined by

(5) /FR(y)= in/ f(x).
xeRf’lFy

We shall say that two minimization problems are R-equivalent, if all their
R-solutions are identical.

A constraints multi/unction F is of the equality type if there is a mapping G from (a
subset of) X to Y such that Fy {x: Gx y}.

PROPOSITION 1. [5] Let F be of the equality type. Let qo dO. The problems (1) and
the following

(6)oo L(x, po, Y0) in/, x R,

are R-equivalent, if and only if qo is a strict subgradient offFR at Y0, i.e.,

(7) fFR(y)--qo(y)>fFR(Yo)--o(Yo), Y Y0.

For general multi/unctions the situation is far from being so nice. However, in this

respect, the class (bl in (3), on metric spaces (Y, p), possesses exceptionally good
properties.

PROPOSITION 2. ([3], compare Balder [1]) Suppose that the sets F-ix are closed for
X R. IffFR is l-subdifferentiable at yo, i.e.,

(8) fr(y)- q0(y) >_-/r (y0)- o(y0),

then there is a ko such that for q0(y) -kp(y, y0), where k >-ko, (1) and (6),o are
R-equivalent.

In order to discuss the conditions of Proposition 2 we recall that if (X, 7r) and Y, tg)
are metric spaces and q is a positive function on (0, +) then F is said to be upper
Hausdorff semicontinuous (u.H.s.c.) at y0 at a rate q if for each r > 0

(9) rB(yo, q(r)) B(ryo, r),

where forAYB(A,r)= LI {z:p(z,y)<r}andFA= LJ Fy
yeA yeA

PROPOSITION 3. [4] Assume that the sets Fy are closed, R is bounded and that the
multi/unction (R F)y R f’qFy is u.H.s.c, at yo at a linear rate. Suppose that f is
Lipschitz continuous on R. Then the sets F-Ix are closed and there is a K such that
-Kp(y, Yo) is a strict subgradient offFR at Yo.
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3. Localization of upper Hausdorff semicontinuity. In order to treat local versions
of equivalence (that is, equivalence of local solutions in the sense defined later) we need
a result of upper Hausdorll semicontinuity.

Observe that if F is u.H.s.c, at Yo and F is a closed subset of X, then the
multifunction F F need not be u.H.s.c, at yo. In [3] there is an example (Example 2..I,1)
of a multifunction F that is u.H.s.c, at yo for which all the multifunctions {x" 7r(x, Xo) =<
r} fq F are not u.H.s.c, at yo, for some Xo Fyo and for all r > 0.

Consider also the following example with a convex multifunction: X is a Hilbert
space with an orthonormal basis {e,}, and K ={,=i t,en X; [=i tn/n[<=l}(Note
that K is closed and convex.) Let Ft K + te for . Certainly F is u.H.s.c, at 2 but
(K F) is no longer u.H.s.c, at 2.

It was established in Dolecki-Rolewicz [6] that the preservation of upper Haus-
dorf semicontinuity under intersections with closed neighborhoods characterizes
upper semicontinuity (in the classical sense, see Kuratowski [Ii]), which is too
restrictive for our purposes.

The above facts suggest serious difficulties that we can meet when confronting the
"localization" of upper Hausdorff semicontinuity. Fortunately we are able to get
around them.

DEr:iNrrloN 4. We say that a multifunction F is mobile at yo at a rate q, if for each
Xo Fyo and each neighborhood of Xo there is a neighborhood Oo c C) of Xo such that
0 fq F is u.H.s.c, at yo at the rate q.

THEOREM 5. Let F be u.H.s.c, at yo at a rate q. Let c > 1. Then F is mobile at yo at a
rate , (r) q(r/c)

Proof. Set O B (Xo, 8), Let e r/ > r/z > be positive numbers such that

(0) 2 E n < .
n=l

Define Ol B(Xo, e). Suppose that we have defined On. For each x On we choose
an element y(x, n) Fyo with the property

(11) p(x, y(x, n))< rtn, p(x, y(x, n)) < c dist (x, Fyo).

Put Qn+ xo.B(y(x,n),,1,+x). Note that (11) holds for some y(x,n)Fyo,
because by construction for x Q, dist (x, Fyo) < r/,. Set Qo = Qn.

Properties of Qo.
(a) Qo is a neighborhood of Xo;

(t3) Oo B(xo, ).
Indeed if x Qo, then for each > 0 there exist k and y Qk with p (x, y) < sc. Take

< 6 2 Y.= tin and choose a corresponding k and y. We may now pick Yk-1 Qk-f
such that p(y, Yk-)< r/k + r/k-1 and proceeding like this we choose y Q1 and thus
have p(yl, Xo)< r/a e. We conclude that

O(X, Xo)<+2 rtn

(y) If x Qo, then in view of (11)

dist (x, Fyo 71Qo) --< c dist (x, Fyo).

Now, let y B(yo, q(r)) and let x Fy f’l (o. By our assumptions dist (x, Fyo) < r;
thus dist (x, Fyo f’) Qo) < cr.
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4. Exact equivalence.
DEFINITION 6. [4] We say that (1) and (6)o are exactly equivalent at Xo, if there is a

neighborhood O of Xo such that the set of all local solutions to (1) that lie in O and the
set of all local solutions to (6)o that lie in O are equal.

This concept describes a very strong interdependence between (1) and (6)o---
much stronger than the exact penalty property. Indeed, exact equivalence when
established, enables us to find the set of all the local solutions (in O) to (1) by solving
locally a single unconstrained minimization problem (of course, it may happen that the
values of f at different local solutions are different).

Before presenting a result on exact equivalence we recall that F is termed uniformly
5-u.H.s.c. at (Xo, yo) at a rate q, if there is a neighborhood O of Xo and r/such that

(12) 0 (q FB(y, q(r)) B(Fy, r), r>0 for y eB(yo, 7).

The above property is equivalent to uniform lower semicontinuity of F at (Xo, yo)
in the following sense (see [3, Thm. 2.15]): If (12) holds, then there is a neighborhood O’
of Xo and W B(yo, r/’) and ro>0 such that for each x O’ and y F-lx fq W

(13) F-IB(x,r)B(y,q(r)), for r-< to.

On the other hand, (13) entails (12) with some Q" and r/".
We shall also need the lower semicontinuity (1.s.c.) of F-1 at yo, Xo): for each r > 0

there is s >0 such that FB(yo, r)B(xo, s).
Finally the metric O of the space Y will be supposed to have the following property:

for each 0 < a < 1 for O(Yo, yl) > 0 there is t7 with

(14) O(Y, )<-aO(yo, yl) and 0(37, yo)-<(1-a)p(yo, y)

(Y is almost a normed space.)
THEOREM 7. Let (X, r), (Y, O) be metric spaces and let 0 satisfy (14). Assume

f:X-R to be a locally Lipschitz function around Xo. Suppose that a multifunction
F: Y - 2x satisfies the following requirements

(a) F is closed-valued;
(b) F is uniformly 6-u.H.s.c. at (Xo, yo) at a linear rate q(r)= at, r <-ro;
(c) F-1 is l.s.c, at yo, Xo).

Then there exists qo61 such that (1) and (6)o are exactly equivalent.
Proof. Pick a neighborhood Q of Xo and W B(yo, rt) such that

(i) f is Lipschitz continuous in Q with constant c > 0,
(ii) F satisfies (12) and (13) for x Q and y F-x W,
(iii) FW Q.
This is possible because of (b) and (c).
For any x Q any neighborhood P c Q of x and each y F-ix f’l W the multi-

function

(15) [’y Fy, [’z P fq Fz for z # y

is u.H.s.c, at y at the rate q(r)= ar.
In view of Theorem 5 there is a neighborhood R c p of x such that R fq F is u.H.s.c.

at y at any rate less than ar.
Fix a number b > a c. By [4, Thm. 2.7, Example 2.4] the primal functional fFR

(restricted to R) satisfies

(16) fFR(z)>-_fFR(y)-bp(z, y), forp(z, y)<ro

for some ro > 0.
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Now form the Lagrange function associated with (1) setting

(17) qo(Z) =-rap(z, Yo),

where m 2b.
Suppose that e Q is a solution to (1); thus in particular e Fyo. We may find such

a neighborhood R of that f() infxRnryof(X) and (16) holds with z y, y yo and
in view of Propositions 2 and 3 is a local solution,to (6)0.

Suppose now that Q is a local solution to (6)0. Consider two cases Fy0 and
g Fyo. The first situation in view of (16) combined.with Propositions 2 and 3 implies
that g is a local solution to (1). The second case must not occur. In fact, suppose that

Fyo. Choose a neighborhood Q of , Q Fyo and such that is minimum of L
on Q; thus by Theorem 5 and Proposition 3 there exist r and R with B (g, r)c R c Q

f(2) + m inf p(y, yo) -< inf (f(x) + rn inf p(y, yo))
yeF-l xeR yF-lx

(18)
inf (fFR(y)+ m p(y, Y0)).
yeY

By (iii) the set F-I intersects W( B(yo, r/)) and besides it is closed in view of [4,
Lemma 1.12]. Therefore for each e>0 there is eFrF-I W such that
infyr-lp(y, y0)>=p(:, yo)-e/m. For each y eF- f’l W we have by (13), F-1R
B(y, q(r)) where q is that of (b); thus F-1R B(F-I (q W, q(r)). On the other hand
y0 F-R that is dist (yo, F-) > q(r). We take q(r)/p(yo, )3) a < 1. By (14) we may
find )7 e F-R\F- such that

p(, ) <= ap(, yo) and p(37, yo) -< (1-a)p(yo, ).

We estimate using Proposition 3

fre ()7) + mp(, yo)-fre ())- rnp(:, Yo)

(19) <_-bp(, f)+ m(p(, yo)-p(), yo))

<= bop(, yo)- mop(, yo) =< bop(, yo) -<- bc dist (yo, F-X2) < 0.

Putting e =1/2bc dist (yo, F-), (19) yields a contradiction to (18) on recalling that

frR ()) _<--/(f).

5. Image nearly inner approximations (inia) of multifunctions. An inia of a
multifunction F will be defined as a family of closed convex multifunctions verifying
some continuity assumptions and approximating F in a certain sense. Both continuity
and approximation will be of "image type".

Image continuity of a family {C,} of bounded linear operators in Banach spaces
indexed by a topological space T is defined in [15] as the Hausdorff continuity of
-. CtB (0, 1). Extending this notion we may consider various types of semicontinuity of

a family of multifunctions {Mr}. For instance, {Mt}tT is termed lower image semicon-
tinuous (1.i.s.c.) at to if there exists ro > 0 such that for 0 < r <-ro for each e > 0 there
exists a neighborhood W of to such that

B(M-B(O, r), e)MoXB(0, r).

Let X and Y be normed spaces and let F" Y 2x. Consider a family {A(x,y} of
multifunctions defined for (x, y)e G(F)fqB(xo, 8)xB(yo, 8), A(x,y: Y--> 2x, (x, y)e
G(A,,y). Suppose that M(x,, defined by G(M(x,y)=G(A(,,y)-(x, y), is l.i.s.c, at
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(Xo, Yo), i.e., for r < ro

(20) B(A-1
Cx. rB (x, r), e) A,o.roB (Xo, r).

DEFINITION 8. [3] A family {ACx.} of closed convex multifunctions is called an
image nearly inner approximation (inia) of F at (Xo, yo) G(F), if A,.y-(x, y)is lower
image semicontinuous at (Xo, Yo) and if for each 0 > 0 there is ro > 0 and a > 0 such that

(21) -1B(F-1B(x, r), Or) A(x,y)B(x, r) f’l B(y, ar)

for r < ro and (x, y) G(F) FIB (Xo, ro) B(y0, r0).
The above notion is very broad: every multifunction F admits a trivial inia

G(A(x.y)) {(x, y)} for (x, y) G(F). (A multifunction F is called nearly convex if it
-1possesses an inia such that there is p > 0 so that for each x B(xo, p), Axo.yo)X .

However, for the sake of applications we shall be concerned with the inia for which
G(ACxo.yo)) is "big". The main use we make of inia is the establishment of semicontinuity
properties of F.

We say that a multifunction A is locally controllable at y0, if there is a neighborhood
W of yo such that

(22) WA-1X,
i.e., for all y W, Ay is not empty.

THEOREM 9. (Dolecki 13. Thm. 5.2]) LetX, Ybe Banach spaces and let F: Y 2x

be closed. If there exists an inia {Ax.y} o[ F at (Xo, yo) with the property that Axo,o) is
locally controllable at y0, then ]:or some 1, F is $-u.H.s.c. at (Xo, y), for I[y yo[[ < n at a
uniform linear rate.

Example 10. [3] Let G be a mapping from X to Y continuously differentiable
about Xo and define Fy={x:G(x)=y}. The family {A(,(}, A,y=
{v: G(x)+ G’(x)(v-x) y} is an inia of F at (Xo, G(xo)). Lower image semicontinuity
follows from the continuity of G’(. in the operator norm topology and the condition
(13) with a +o is a consequence of the mean value theorem (see Ioffe-Tikhomirov
[10]).

Multifunctions considered in Example 10 are of the equality type.
We shall now discuss these inia of equality-type multifunctions which are of the

following special form

(23) A(,6(x))y {v" G(x) + (x, v x) y}

where for each x, (x, is a closed linear operator.
As we shall see such an inia constitutes still a much broader notion than those of

continuous derivatives of Gateaux (or Fr6chet) and may concern also non differentiable
mappings. The following proposition is immediate

PROr’OSITION 11. Assume that Fy {x" G(x)= y} where G is a map from X to Y
and that a family of multi]unctions {A(x,x} is given by (23). A is an inia of F at
(Xo, G(xo)), if and only if (20) holds and iffor each O > 0 there is an ro > 0 such that ]:or
IIx- Xoll < ro and ]:or each h, Ilhll < ro there exists h’, IIh’ll <--Ilhll so that

(24) IIG(x + h’)-G(x)-W(x, h)ll <- 011hll.
Example 12. LetX Y R and define G(x) x for x -< 0 and G(x) 2x for x => 0.

Set W(x, h) h. Of course, G is not differentiable at 0 but -1A(x.6(x))V G(x) + W(v x)
is an inia of G.

The original condition is slightly different. In [3] an inia is called "inner derivative".
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Note that the image character of the approximation (21) allows us to choose for a
function, say G(x) x, (x, h) -h, and subsequently to define an inia by (23). In this
case the inia is "orthogonal" to its multifunction.

Formula (20) with respect to (23) becomes: for r =< r0 for each e > 0 there is a 6 > 0
such that if IIx- x011 < , then for each Ilhll < r there exists h’, IIh’ll -< Ilhll such that

(25) I[(x0, h) q,(x, h’)ll < e.

In particular this occurs, when the family of functions Wh (X) (X, h) is continuous
at x0 uniformly for IIh I1--< ro.

Let us now discuss inia of multifunctions F of type

(26) Fy {x: g(x) <= y}

where g is a real-valued function on a Banach space X, Y I). We shall be concerned
with inia of type

(27) Ax.zy {v: z + 0(x, v x) <= y}

for z >= g(x), where O is a finite function O(x, 0) 0, convex 1.s.c. in the second variable.
Note that it is enough to check the desired properties of {A(x.z)} for z g(x).

PRoPOSa’or 13. A multi]unction (27) satisfies (21) with respect to the multi-
function F (26)/fund only if[or each 0 > 0 there exists ro > 0 such thatfor IIx xoll < ro for
Ilhll < ro there is an h’, IIh’ll < Ilhll so that

(28) g(x + h’) g(x) (x, h) <-_ 011hl[.

Proof. Condition (21) is equivalent in our case to

(29) inf (g(x)+$(x,h)) >- inf g(x +h)-Or
Ilhll<r Ilhll<r

which is equivalent to (28).
As (28) is less stringent than (24), G from Example 12 provides an example

of (26) with nondifferentiable function g G possessing an inia of type (27).
Example 14. The Levitin-Miljutin-Osmolovskii approximation q of a function g

is defined in Ioffe [9] as a function that satisfies
(i) 0 (x, 0) g(x),
(ii) 0(x, is convex continuous,
(iii) lim infx_,o, _,o [Ihll-(o(x, h)-g(x + h))>-O.

Setting @(x, h)= (x, h)-g(x) we observe that @(x, 0)=0, O(x, is convex 1.s.c. and
(28) holds. Consequently in view of Proposition 13, the multifunction Ax.gx))y
{v: o(x, h)<= y}, where o is the L.M.O. approximation (of g at xo), satisfies (21).

Lower image semicontinuity need not tollow from (21). as we. may see from
the following example. Take g(x)=x, x[ and define O(x,h)=lhl for x-0 and
(0, h) h.

Prto’OSTON 15. I[g is continuous, then (20) with respect to (18) is equivalent to the
following condition: for r < ro for each e > 0 there is a > 0 such that if ]Ix x011 < , then
for each Ilhll < r there is an h’, IIh’ll <--Ilhll such that

(30) (Xo, h) >- 6(x, h’)- e.

In particular, this occurs if the functions (,Oh (X 1(X, h) are upper semicontinuous at

Xo uniformly Ilhll < r.
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Example 16. Let g gl /g2, where gl is convex 1.s.c. and g2 is continuously
differentiable. Then an inia of (26) may be chosen to be

A(x,g(x))y ={v: gl(v)+g2(x)+g’2(x)(v-x) <- y}.

We shall discuss the utility of a generalized derivative in constructing multi-
functions of type (27). Let g be a locally Lipschitz function. Following Clarke [2] we
define the directional derivative of g at x towards h as

g(x,h)=inf sup g(x+v+th)-g(x+v).
r>0 Iull<r

0<t<r

Note, that g(x, is a continuous positively homogeneous function. It should be
mentioned that g(x)+ g(x, h) need not be an L.M.O. approximation of g (Definition
13).

Example 17. Let g: R-R, g(x) x2. cos (l/x) for x # 0 and g(0) 0. Outside zero
the directional derivative is just the ordinary derivative: g(x,h)=g’(x)h=
(2x cos (1/x)-sin (1/x))h while g(0, h)=

Consider the expression

(31) g(x / h)-g(x)-g(x, h).

For each e >0 there exists x, Ixl<e such that g(x, h)= g’(x)h <= -(1-e)lh[. On the
other hand exists r0 such that if Ixl < ro, Ihl < ro then [g(x + h)- g(x)l < e[hl. Therefore
(31) is greater than -elhl-g’(x)h >-_ (1-2e)lhl for a sequence of x tending to zero and

any Ihl < ro. Thus (iii) of Example 14 is violated.
The following example shows that (27) built with the aid of the Clarke derivative

essentially extends the area appointed by continuously differentiable functions g.
Example 18. Let p be defined on the real axis as follows p(x) -(x n) if n is even

and Ix n[ <= 1/2, and p (x) (x n) if n is odd Ix n <_- 1/2. Set

Notice that g is a Lipschitz function with constant 2 and the set on which g is not
differentiable is dense. Take any 0 > 0, and choose no such that 1/2"-x < 0. Then

,=o-P(2"x)= 1+1/2+... +-
for Ixl<l/2"+1 while the remainder [-’n=no+l (1/2Z")p(2"x)l is less than 1/22"lxl.
Moreover for [x[< 1/2"+2, [hi< 1/2"0+2 we have [=,o+X (1/22n)
(p(2"(x +h))-p(2"x))[<(1/Z")[h[. Thus g(x +h)-g(x)-g(x, h)<Olhl and (27) is

satisfied, gO satisfies (30) as well and so A(,g())y ={v: g(x)+g(x,v-x)<=y} is a
derivative of (26) at (0, 0).

In spite of its dense nondifferentiability g of Example 18 is still rather regular (it is
differentiable at 0). A more sophisticated example of a densely nondifferentiable
function with )C(x, h)= [h[ verifying (27) follows readily from Zygmunt [16],

6. Inner derivatives of multifunctions. We shall now discuss these specific inia
which "keep tight" to their multifunctions. The specification amounts to putting h’ h
in (24), (25), (28), (30).
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DEFINITION 19. A family {A(x.y)} of closed convex multifunctions is called an inner
derivative of F at (Xo, yo), if for each 0 > 0 there is an r > 0 such that

(32) B (F-ix + h, Or) A(y)x + h

for [[hl[ < r and (x, y) G(F) f’) B (Xo, r) B (yo, r), and if there is an ro such that for every
e > 0 there exists a neighborhood W of (Xo, yo) such that

(33) B(A-1 -1
(x,)x + h, e) A(xo,o)Xo + h

for IIh < ro and (x, y) W.
Certainly, an inner derivative (of F at (Xo, yo)) is an inia (of F at (Xo, yo)). The inia of

Examples 10, 14 are also inner derivatives.
The following observation will be instrumental for multifunctions of the mathe-

matical programming type (4). Let El" Y1 --) 2x and F2" Y2 --) 2x. Consider F: Y1 Y2 -)

2x given by r(yl, y2)= Fly1 F2y2. Equip Y= Y x Y2 with the norm [](yl, y2)lly

PROPOSITION 20. Suppose that Xo Fly F2y. Let {A(x,yl)} be an inner derivative
of F at (Xo, y) and let {M(x,y2} be an inner derivative of FE at (Xo, Yo). Consider
K(x, yl, y2). Y1 x Y2 2x,

2(34) K(x, yX, y2)(zX, zE) A(x,yl)z fM(x,y2)z

(well-defined on some G(F)B(xo, 8)B(y, 8) B(yo2, 8)).
Then {K(x,y,,y2)} is an inner derivative of F at (Xo, y, y).
Proof. Of course each K(x,,,) is closed and convex. Observe that F-ix

I"-Ix X F-1 2). 2 -1 -1. x(={(y y y eFlX, y erEx}) and g-(x,r,yv A(,yv xA(,yv. Now, it
is enough to notice that in Y, B(A, r)x B(A2, r) B(A1 x AE, 2r)for arbitrary A1 c Y,
A2c Y2 and r>0.

7. Finale. Combined, Theorems 7 and 9 yield the following theorem on exact
equivalence.

THEOREM 21. LetX, Ybe Banach spaces. Let F: Y 2x be a closed multi]unction.
Assume f: X R to be a locally Lipschitz function around Xo. Suppose that F-1 is l.s.c, at
(yo, Xo) and that there exists an inia {Ax,y} such that A(,o,yo) is locally controllable at yo.

Then there exists (#0t (I)1, o(y)--klly-yoll, such that (1) and (6),o are exactly
equivalent.

We consider now a problem of mathematical programming (4).
We define Y to be YoXR where Yo is a Banach space and we set

II(yo, yx,"’’, y)ll-Ilyoll+EL [yl. Here G" X--> Yo.
If we assume that G and g, 1,. , n, are continuous then

(35) ry ={x" G(x)= y0, gi(x)<-yi, 1,. ., n}

the constraint multifunction is closed and F- is 1.s.c. If we take q(y) -/llyll, then the
associated Lagrange functional (2) becomes

(36) L(x, k, 0) =/(x)+ k(llG(x)ll+ i max (g(x), 0)).
i=1

Let an inner derivative of G be of type (23) where : XX Yo. Let inner
derivatives of gi be of type (27) where. g: X X-. Then we may define an inner
derivative of (35) by

A(,(x,,y {x + h G(x) + (x, h) yo,
(37)

g,(x)+ O,(x, h)<- y,, i= 1,..., n}.
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Let x0 fulfil the constraint of (4). We denote by I the set of all numbers for which
x0 s Fr{x: gi(x)<= 0} where Fr denotes the topological boundary (I is smaller than the
usual set of active constraints indices).

THEOREM 22. Let f be locally Lipschitz continuous about Xo and let q and
1,..., n, be as defined above. Assume that there is an e > 0 such that ]:or any

[[(Yo, , Y,,)[[ < e there exists h X so that (Xo, h) yo, i(Xo, h) <-_ yi, I.
Then there is ko > 0 such that (4) and (36)ko are exactly equivalent.
Proof. If/’ I, then gi is no longer stringent for the local minimization around Xo and

may be removed. The second condition amounts to the local controllability of
where A is given by (37). All the assumptions of Theorem 21 are satisfied and thus the
proof is complete.

Note that if (Xo, is a closed linear operator and Oi(Xo, are continuous, then
our controllability condition of Theorem 22 is equivalent to the Slater condition"

(x0, X) Y and there is an h s X such that (Xo, h) O, 4,i(Xo, h) < 0 for each i; this is
weaker and more general than that of Pietrzykowski [14].

Remark 23. Combined Theorems 5 and 9 extend considerably the Lusternik
theorem [11] which claims that if G’(xo)X Y, then Fy G-ly is -u.H.s.c. at y0

linearly. In the case of equality constraints our theorems do not require differentiability
of G; they give uniform results for a neighborhood of yo, and finally localize upper
Hausdorff semicontinuity.

Remark 24. From the uniform character of our considerations it follows that
exact equivalence is stable in y. Moreover for yl close to y0 we may use q "close" to q0.

This gives a sidelight on problems of the stability of Lagrange multipliers.
Note. After the revised version of this paper had been completed we became

acquainted with the paper of Han and Mangasarian [17!, many results of which follow
from ours, but some others present new interesting developments, e.g. second order
conditions for exactness, the estimates for the constant ko (in Theorem 22) and its
dual characterizations.

Acknowledgment. We wish to express our appreciation to Professor A. D. Ioffe for
his highly valuable remarks that helped to improve the paper.
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RATES OF CONVERGENCE FOR
STOCHASTIC APPROXIMATION TYPE ALGORITHMS*

HAROLD J. KUSHNER" AND HAI HUANG:t:

Abstract. We consider the general form of the stochastic approximation algorithm X,+I
X,, + a,h(X,, ,), where h is not necessarily additive in :,,. Such algorithms occur frequently in applications to

adaptive control and identification problems, where {:n is usually obtained from measurements of the input
and output, and is almost always complicated enough that the more classical assumptions on the noise fail to
hold. Let a,, A/(n + 1)’, 0<a _-< 1, and let Xn 0 w.p. 1. Define U, (n + 1)’/2(Xn -0). Then, loosely
speaking, it is shown that the sequence of’suitable continuous parameter interpolations of the sequence of

"tails" of U,,} converges weakly to a Gaussian diffusion. From this we can get the asymptotic variance of

as well as other information. The assumptions on {,,} and h(., are quite reasonable from the point of view
of applications.

1. Introduction. Rates of convergence for stochastic approximation problems
were given in [1], [2], [3], [4], the latter two references getting better results via weak
convergence methods, for both constrained and unconstrained systems.

A form of stochastic approximation algorithm which is of increasing importance is
the following. Let {an} denote a sequence of positive real numbers with n an oo, h a
suitable function and {:n} a sequence of random variables. Define the sequence of
Rr-valued random variables {Xn} by

X,+l=Xn+a,h(X,,n).

In 1]-[4], the function h was essentially additive in :n, as is usually the case in classical
Kiefer-Wolfowitz and Robbins-Munro type stochastic approximation algorithms. Of
course, if {:n} is a sequence of independent random variables, then h(Xn, n) can be
written in the form E[h (Xn, :n)lXn + 0n, where d/, h (Xn, n) E[h (X,, n)lXn is a
member of an orthogonal sequence, and we are back to the classical case. In the
applications that we have in mind the {:,} can be rather general processes.

The more general form (1.1) arises in applications to problems in the recursive
identification of the parameters of linear systems, or in the so-called self-tuning
regulators or in other applications of adaptive systems [5], [6]. Such applications are the
motivation for this work. OftenX is an estimate of the vector system parameter and
is a random vector which is related to the measured inputs and outputs of the system.
The rate of convergence problem for such situations has not been dealt with, and
somewhat different methods are required.

In this paper we develop rate of convergence results for (1.1) under quite
reasonable conditions. Owing to the way in which (1.1) arises in applications, the {:n} is
rarely a sequence of independent random variables, and E(h(X,, :,)l:0, , :n-1) is
rarely a function only of Xn-x. Thus classical rate of convergence methods (as in [1 ], [2])
cannot be used directly. We use some of the ideas in [3], [4], but adapted to our case, and
under weaker conditions on the noise sequences.

The problem is formulated and some assumptions given in 2. Weak convergence
of a sequence of normalized {Xn} is given in 3, and the general rate result appears in
4.
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2. Terminology and problem formulation. For a (0, i] and A a matrix, set
a, A/(n + I). Since we are concerned with rates of convergence, we assume con-
vergence (see [4] for a detailed discussion of the.convergence both w.p. 1 and weakly).
In particular, we suppose that there is a /9 R such that X,->/9 w.p.I. Set U,
(n + 1)/2(X,-O), At, (n + 1)-, h, h(O, ,)and , (n + 2/n + 1)/h,. Let h(., :)
be continuously differentiable for each :, with the gradient hx(’,’) being Borel-
measurable.

There is a function O(. such that with H, defined by (2.1), (2.2) holds. (See [3, eq.
(5.2)] for a related calculation for the case where h is additive in

o ix)H"=Ahx(O’&)+2(n+l)-’I+O n+l i

+A ( n + 2)/2 Ioxn /1 [hx(O + t(X, 0), ,)- hx(O, :,,)] dt

+A [ ( n + 2)
/2

]n+ 1 1 hx(O, .),

Un+l (I -+- At.H.)U. +A4-. g..

For future use define 3W, x/-, h,, 3 if’, x/f ,.
Lemmas 1 and 2 contain some preparatory results concerning the iteration (2.2),

and tightness of {U,} (i.e., sup, P(IU,l_N)+O as N +oo) is proved in Theorem 1.
Next, following the general approach of [3], a sequence of processes {Uiv(. )} is

defined as follows. Let t,=i"=-Ati, to=O and define m(t)=max{k" t <=t}. Set
UV(0) Uu and UC(t) Utv+, in [tu+,-ttv, ttv+,+l-hV). Thus Ur(.) is a
process whose paths are piecewise constant and in D’[0, oo), the space of R’-valued
functions which are right continuous on [0, oo) and have left-hand limits on (0, oo). Since
it will be important for us to go back and forth between the {U,} and {U*v (.)} sequences,
the functions m(.) and t, will be used quite frequently, occasionally (and regrettably)
causing some complicated notation.

Owing to the scale factor a, AAt,, the interpolation U (.) is quite natural for
this problem. In Theorem 2 it will be shown that {Ure(. )} is tight in D’[0, oo) and
converges weakly to the stationary linear Gaussian diffusion (4.1). As is common in
applications of weak convergence theory, if a sequence of measures {u,} is tight and
converges weakly to u (all on R or D’[0, oo)), and u, and u are induced by processes
X"(. and X(. ), resp. (with paths in R or D’[0, oo)), then we abuse terminology and
say that {X"} is tight and converges weakly to X. This weak convergence gives us the
basic rate of convergence result. Some advantages of our approach are discussed in [3].
It yields the convergence in distribution (to a normally distributed random variable, the
stationary distribution of (4.1)) of {U,}, but also more, since it gives information on the
correlation structure of the process { Utv+,, n >= 0} for large N.

Remark on weak convergence. Billingsley [7] is the most comprehensive reference.
The space D[0, T] is discussed in [7, 14 and 15]. A brief summary of relevant facts is
given in [4, Chap. 2]. D’[0, oo) is endowed with the usual [7, 14] Skorokhod topology,
with which it is a complete separable metric space. Convergence in D’[0, oo) occurs if,
for some sequence T+ oo, it occurs (for the truncated functions) in each D’[0, T].

From (2.1) we can guess that if t (resp. a < 1) the "effective" component of H, is (Ah,,(O, &)+//2)
(Ahx(O, C,), resp.).
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Assumptions. (A1)-(A5) will be used throughout the paper.
(A1) X,-> 0 w.p. 1.
(A2) h (., is a Borel function, continuously differentiable in its first argumentfor each

value of the second, and the gradient h(.,. is Borel. Also Eh (O, c)--0 and

[hx(O + t(X, 0), )- hx(O, so,)] dt 0 1w.p.

as n c. (Certainly this is true if the ’, are bounded and hx (’, is continuous.)
(A3a) There is a matrix H such that for some (hence each) T > 0 and each e > 0

lim P sup max Y. Ati(hx(O,.i)-H) >= e O.
n--,o i>=n O<=t<=T i=m(iT)

(A3b) There is a constant r such that ]:or each e > 0 and T > O,

lim P sup hti([hx(O, i)l-z) => e 0,
n-o j>--_n i=m(jT)

where Ixl (x’x) 1/2 and IM] supll=l IMxl ifM is a matrix.
Remark on (A3a) and (A3b). Conditions of type (A3a), (A3b) were used exten-

sively in the monograph [41, and as shown in that reference are rather weak and quite
natural for the problem. See, for example, the several cases discussed in [4, Chap. 2.2].
The conditions are commonly satisfied by the noise processes which appear in the usual
applications to the identification problem. We mention only the following three cases
for (A3a)" (a) Y a <c and {hx(O, )-Ehx(O, n)} a martingale; (b) hx(O, )-
Ehx(O, sc) j=0 bid/n-J, for a broad class of {bj}, {pj} where {pj} are independent and
identically distributed; (c) {Sen} stationary, (A5) holds for h replacing h and
Y. a (log2 i)2 < c holds.

In order to illustrate our terminology and get some additional insight into (A3), let
n--1

us define a process r/(t) as follows" r/(0)=0, and r/(t)=Y.i= 0 Ati(hx(O i.)-H) on
It,, tn+l). Then

m(t)-I

r/(t)= Ati(hx(O,i)-H).
i=0

Condition (A3a) implies that the variation of the "increasing compressed inter-
polation" r/(t) over an arbitrary interval (a, a + T) goes to zero w.p. 1 as a c.
(A4) Ifa=l, setH=AH+I/2, andifa<l, setH=AH. TheeigenvaluesofHhave

negative real parts.
(A5) Define R,k by R,k=Eh’(O,,)h(O,k). Then supmk=0[R,k[<. Also

supra Elhx (0, Cm)l 2 < 0.

3. Tightness ot {Un}. In order to simplify the presentation of the chain of
calculations, we present them partially in a sequence of lemmas. Among other things,
we wish to show that the Hn and hn in (2.2) can be replaced by H and h,, respectively.
Apart from differences due to the greater generality of the noise here, the main
differences between the treatment of (1.1) and the past work where h was assumed
additive in sc are due to the randomness of the Hn. To deal with them, we exploit the
"averaging" or "smoothing" conditions (A3) and the stability condition (A4). We useK
to denote a constant whose value may change from usage to usage.

Henceforth {ek} denotes a sequence of positive real numbers such that Y.k ek <
Let {Mk} be a sequence of integers tending to as k c, and define the measurable
sets (in the sample space) Ak, Bk and Ck by (note that jek >= ttk and m(jek)>= Mk are
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equivalent statements)

sup max Ati(Ahx(O, i)-AH) >--_e2k
]ek:tM 0 . i=m(jek)

sup max + Ati([hx(O, sci)l-r) _->e
jek >-tMk O--t<=ek i=m(]ek)

Ck sup
j_Mk

Set Dk Ui=k (Ai U Bi U C/): Choose Mk such that P{Ak}+ P{Bk}+ P{Ck} <= ek and
Ati <- e2k, i>--Mk. Such a choice is possible by (A3). Then P{Dk}--IZk-->0 as k--> .
Consequently for to Dk and >= Mk, (A3) implies that the individual terms in the sums
in (A3) satisfy

IAt(Ahx(O, )-AH)l <= 4e2k,
]Ati(]hx (0, sci)]- r)l _-<4e.

From the definitions of Mk and Dk we immediately get the following lemma.
LEMMA 1. Under (A1)-(A3), there is a constantK such that for each k and to e Dk

and >= Mk,
m(ik +ek)--I

E At, ln[ <--
i=m(]e:)

m(je+t)--
i=m(jek)

Ati(Hi-H)l<--Ke2g’ t<=ek.

We now proceed to put the iteration (2.2) into a more convenient form. Define C
by Cv+l I and for n <=N, C 1-finn (I + atH,.)=.(I + Atn) (I + At,H,).

LEMMA 2. Assume (A1) to (A3). Then on a set whose probability is arbitrarily close
tol

i,m(tN+t+s)(3.1) ,,.,(t,+) - exp Ht

as N ->, uniformly on bounded t-intervals. Also, there is a real K such that for each k
and each N >-_ Mk and to : Dk and <= ek

m(tN+t+S)(3.2) C,.,.,(t,,,+s) [I +/-t + o’],

where I,i <= Ke 2k.
Proof. Equation (3.1) follows directly from (3.2) and we only prove (3.2) for <= ek

and s 0. For M -> m we have

M M M M

CMm VI (I + Atini) I + E AtiHi + E , AtilAti2niani2 +
i=m i2=m ia>i

+ AtM AtH H,..

CMm I+ Z AtiHi
i=m

(3.3)
M M

E E AtiaAti21nil In,=l+,.. Atlnl... In l
i2=m i>i2- 2 /xtilnil +"’.
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M
AtiHiNow using Lemma 1 to upper bound the right side of (3.3) and to estimate Ei=m

yields (3.2). Q.E.D.
We require one more preparatory setup. For any M, rn and vector z0 define

M

Z1 H (I + AtiHi)zo MCmzo,
i=m

where tM/l--t, <- ek and m-->Mk. Let P denote the unique (under (A4)) symmetric
positive definite matrix such that H’P +PH -1; x’Px is a Lyapunov function for the
differential equation 2 =/-)x, which is asymptotically stable under (A4). Define Ix]P
(x’Px) I/z, and let u denote a positive constant such that ulxl<-_lxl, By Lemma 2, if
m >Mk and (tM+l--tm)<=ek and tODk, we have

Zl =[I +(tM+l--tm)H + O’]Zo

where [o,[-< Ke and (under (A4) and using/-’P + P/- =-I)

-t  l olZlPZx zoVzo (tM+l

+ Z’o[P(r + w’P + (r’P(r + (tM+x t,)(H’Pr + (r’PH)
-+- (tM+l- t.,)zI’PIY-I]zo

Define

W; =W,.+...+6W,,,

w?
Then a summation by parts of (3.5) yields

+
_

(3 6) UN+n+I nUN +C+n+aA Cu+l+lU+t u+t tu+.
1=1

The estimate (3.4) will now be used heavily. By dividing the interval [tu, tu+,+l] into
subintervals of length e (except for the last subinterval, which is e) and using (3.4),
we get that there is a sequence of real numbers 6 0 such that if w D and N M,
then

In[UN+n+I[P (1+ 6k) exp ---(tN+,+X-- t) [Uu[p

(3.7)
U ] I),N+

N+(1 +6k) exp - tN+n+ tN Ia

+ (1 + 6k)1]1= exp ---(tN+n+l- tN+l) At+I[HN+ANN+,

from which we get (for some real K)

(3.4)
[z[p_-< (1 U(tM+- t)+Ks ,)lZo[

_-< exp [--U(tM+I-- t,,)+g]lz01.
Thus [C[p =<exp [--u(tM+--t,,)+ Keel. We are now ready for the first theorem.

THnORM 1. Under (A1) to (A5), { U,} is tight on R r.
Proof. By iterating (2.2) we get

=C+, N+ 1A6+(3.5) UN+n+I UN + N+l+ I.
/=0
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Henceforth, purely for notational convenience, we suppose that the 6W/ are
scalar-valued. In general, we need only work with one component at a time anyway.
Proceeding, let us next evaluate ElW "

M

ElW12 E 2 4-i 4- hihi
id=m

M

i=m

(3.8)
M

i=m ji

M

2K t 2K(t+- t),

where the last inequality follows by the first half of (A5). With perhaps a different K, the
same inequality holds for E[ M 2W, By this estimate and the second half of (A5), there is
a constant Kk such that for N => Mk

(3.9) N+ tN+l)l/2

Inequality (3.7) holds with probability 1-P{Dk}=0k --> 1. Let us modify the
{ Ui, Hi, => Mk} on Dk in a way such that (3.7) holds for all n and (3.9) holds without the
indicator function and where Kk does not depend on k. Let { U/, H/ } denote the altered
sequence. Then (3.7) and (3.9) together imply that supi_->Mk El Uil<. Thus the
sequence {Ui, <Mk;Ui, >=Mk} is tight on R r. Since k is arbitrary and 0k --> 1 as
k --> o, this implies that the original { U} sequence is tight. Q.E.D.

4. Weak convergence of {uN,( )} and the rate of convergence. In this section, we
show that {UN(.)} converges weakly in Dr[o, o0) to the stationary solution to the
Gauss-Markov diffusion

(4.1) dU ISIU dt +AR 1/2 dB,

where B (.) is a standard Wiener process and R 1/2 is a square root of the matrix R in
(A6) below. In particular, this implies that (Xn- O)(n + 1)‘’/2 converges in distribution
to a normal random variable with mean 0 and covariance

(exp Ht)ARA’(exp H’t) dt.

We will require the following additional assumptions.
(A6) {hi} is a stationary sequence, and E[hi[6<cx3. Define R(i)=Ehih+i.

Then R =--o R (i) is bounded by (A8).
Let i 3(hl, <--j) and let Ei denote the expectation conditional on 3i.

(A7) Define pl(i) by

p(i) sup E1/2lEihi+ih+i+l-R(l)12.
i,l>--O

Then Eipl/2(i)< ao.
The supi above and supk below are redundant if we assume that the {hi} process

started at =-oo, and choose the sample space appropriately.
a/ZlE h 12. p/2 (i) <oo(A8) Define p2(i) by p2(i)-" SUpk E k k+i Then Ei
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We now give some examples of (A7) and (A8). First suppose that {hi} is a stationary
and bounded b-mixing process in the sense of [7, p. 166-1, with of course Ehi =-O. Let K
denote an arbitrary constant. By [8, Lemma 1], [Eh;+l =<Kbk and
R(l)l<=Kqb. Thus pl(i)<-Kqbi, p2(i)<=Kqbi. If ,lqb/2 <oo, then (A7) and (A8) hold.
However, if the hi are bounded and b-mixing, then a slightly different proof of Theorem
2 can be given, requiring only Y. b/z < oo.

An example of (A6) to (A8). Let O denote a matrix whose eigenvalues are inside
the unit circle, let {tp,,} denote a sequence of independent and identically distributed
Gaussian random variables and define :n, oo > n > -oo, by :n/x O:n +. Then {:} is a
stationary sequence. Let F_.h (0, i) Ehi 0 and suppose that h (.) h (0, satisfies a
uniform Lipschitz condition, with constant K. Let qdi measure Oi, < j, and Ef Ekf.

Let us evaluate E]F-.K(k+i)I. Let {i} denote a sequence with the same distribution
as {Oi}, but independent of it. We have

i-1

/=0

which has the same distribution as

1=0 l=i

Using the fact that the first term above has the same distribution as :,, has for any m,
together with the Lipschitz condition, yields

term- E QlInt-Qik -E/(firstterm)l’ <=KE Oll -t-gl[Qik[,
/=1 l=i

from which (A8) follows. A similar (and omitted) calculation yields (A7).
THZORZM 2. Under (A1)-(A8), {U2 (.)} converges weakly to the stationary solution

to (4.1).
Proof. Part 1. Define the "approximation to a Wiener process" WN (.) by

m(tN+t)--I
Wr(t)= W(’N+’)-I E 4-ii hi,

i=N

with a similar definition for ff’(. (but using ff’i in lieu of W). We will show that
{W (-)} is tight in Dr[0, oo) and converges to a Wiener process with covariance matrix
Rt. It easily follows from this that the same result must hold for {if,N(.)}, since
(n + 2In + 1)"/z= 1 + O(1/n) implies that {I W( )- ff’ (.)]} tends weakly to the zero
process.

First we prove tightness of {W (.)}. For notational convenience only, we assume
that the hi are scalar-valued in this part of the proof. Otherwise, we would work with
one component at a time anyway, so there is no loss of generality.

Let -> k =>/=> i. We have

(4.2) [Eh,hihht[ <= [Eh,hihht Eh,hEhhl[ + [Eh,hl

The first term on the right satisfies (use (A7))

]Eh,hi(Eihh Ehh)] <= E/2lhhilE/lEihh Ehh] <= gp(k -j).
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By (A8), the first term on the right of (4.2) is bounded above by

Thus

(4.3) IEh,hihkh[<=Kp/2(k -1)p2""1/2 (l-k)+ [R(j i)l IR(l-k)l.

Using these bounds, we get

E[ WN(t + s) WN(t)l4 E rn(tN+t+s)--l /-i hi 14i=m(tN+t)

=<K E (At,

(summation between rn(tn + t) and m(tn + + s)- 1; at each use of K it may have a
different value)

_<-K

(sum over and use Ark >= Ate)

=<K

(sum over j and use At, => Ati)

(4.4)

(At, +/-t At At)/2[p/2 (k _j)p/2 (l- k)

+le(j-i)] [R(l-k)[],

Y (At, Ati)/2 Atk[p/2(k-j)+[R(j-i)]]

<- K Y At Atk <-- Ks2

ik

where the last inequality holds if tr + + s and tn + take values in the set {t,}.
If (4.4) holds for all t, s, N, then [7, Thms. 15.5 and 12.3] implies that {WN(.)} is

tight in Dr[0, c) and that all processes which are weak limits have continuous paths
w.p. 1. But, since At, 0 and the paths are piecewise constant, it is enough that (4.4)
hold for tn + t + s and tr + in the {ti} set. Thus {W (.)} is tight and all limit processes
have continuous paths w.p. 1.

Part 2. Now, the hi are treated as vectors rather than scalars. Let N index a weakly
convergent subsequence of {Wn (.)} and denote the (continuous w.p. 1) weak limit by
W(. ). Note that (4.4) implies that {] WN(. )12} is uniformly integrable. Let s, =< =< t + s
and q be arbitrary. Let g(. denote a bounded continuous function of W (s,), <= q, and
let E denote expectation conditioned on {hi,/" -<- rn(tu + t)- 1}. Then

Eg(W (s,), <= q){W (t + s)- WN (t)] Eg(W (s,), <= q)E
i=m(tN+t+s)--I

i=m(tN+t)

goes to zero as N c by (A8). This together with the uniform integrability and weak
convergence imply that Eg(W(s,), i<=q)[W(t+s)-W(t)]=O for all q, bounded
continuous g and s, =< -< + s. Thus W(. is a continuous martingale. To compute its
quadratic variation, repeat the above argument with [W (t + s)- WN (t)][WN (t + s)-
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Wu(t)]’ replacing Wu(t + s)- Wu(t)]. Using (A6), the weak convergence and
uniform integrability yields

Eg(Wu(s,), <-_ q)[Wu (t + s)- W (t)][Wu (t + s)- Wu (t)]’ Eg(W(si), <- q)Rs.

Then the arbitrariness of g and si <- <- + s yield that the quadratic variation (at s) is Rs.
Thus W(. is a Wiener process with covariance Rs, as asserted. This result does not
depend on the chosen convergent subsequence.

m(tN+t+s)--IPart 3. Define the function C (t, + s) C,(t+,) Define a function Hu with
values H Hu+, in [tu+-tu, t,,+u+-tu), not to be confused with HU(.) below.

Then for {tu+i tu, -> 0}, and modulo a factor for each term which goes to zero
uniformly in w.p. 1 as N oo, the sum (3.6) can be written in the integral form (since
the integrand is constant over Ati intervals)

(4.5)
Uu (t) Cu(0, t)Uu (0) + Cu(0, t)AI"u (t)

c(s, tlA[g/’(t- gz’(s] as,

for > 0. Between the {ti}, the integral in (4.5) is just a linear interpolation instead of a
piecewise constant interpolation of the sum in (3.6), and we may work with it instead.

rn(tr +t)--IDefine Hu(.) by Nu(t) i=,,(,,) Hi Ati. By (A3), {Hu(.)} is tight in Dr[0, oo) and
all limits are the constant process with value/-t at t. Note that {Cu (0, t)} is tight on
Dq[0, oo) for an appropriate integer q, since it converges to exp Ht uniformly on
bounded intervals w.p. 1.

We now have essentially all the limits that are required. If HY converged to the
constant/-) w.p. 1 as N oo, then the weak convergence of ff,r (.).and convergence of
Cu (s, t) would imply that (4.5) holds with all functions replaced by their limits (and a
weakly convergent subsequence of {Uu(0)} taken). Since HY does not usually con-
verge in the above sense, a slightly indirect method must be used to allow us to make the
replacements suggested above. It is convenient to have all the random functions defined
on the same space and to work with w.p. 1 rather than with weak convergence. To do
this we apply the imbedding technique of Skorokhod [9, Thm. 3.1.1]. The family
{Uu(0), H(. ), lg/u (.), Cu(0,.)} {cI)u (.)} is tight in the appropriate space R x
D2q/r[0, oo)= and all limit functions are continuous w.p. 1. Extract a convergent
subsequence, index it by N, and denote the limit by (U(0), H(. ), W(. ), C(0, )) -=(. ).
By the Skorokhod imbedding method [9, Thm. 3.1.1], there exists a probability space
(,/b,/) with random processes {/Qu(0), /_)u(.), if,u(.), ,r(0,.)}_={N(.)} and
(/)(0),/-)(.), if’(.), (0, .))-=(.) defined on it, where u(.) (resp., (.)) has the
same distribution asu(.) (resp., (. )), all the processes in (b(.) have continuous paths
andu(.) (. w.p. 1 in the topology of . Since the limit processes are continuous,
this means uniform convergence on bounded intervals. From/_)u(.), we can recover
the random variables/-)u+i, => 0, from which it was constructed, since/_)u (.) is also
piecewise constant w.p. 1. Also {/-)u/t, => 0} has the same distribution as has {Hu+i, ->

0}.
We work with the imbedded processes, but drop the tilde affix. Now, return to (4.5)

and, via the imbedding, suppose that all weak convergences are w.p. 1 in the above-
cited topology. The first two terms of (4.5) converge to (exp Ht)U(O) and (exp Ht) W(t),
respectively. Note that Cu (s, t) Cu (0, t)[Cu (0, s)]-1 also converges w.p. 1 uniformly
on bounded sets to exp H(t s). We next write the integral in (4.5) in a more convenient
way.
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Let A > 0, and let M max {i" iA =< t}. We have

1 f’A/AcNs, t)HA[WI(t) Wr(S)]--C(iA, t)HA[W(t)- W(iA)]} ds
=0

+ {Cr (s, t)HA[Wr(t)- WN (s)]

C(M, t)nA[W(t) W(MA)]} ds]
M-1

<-- E sup [ICN(s, t)-C(iA, t)]+[Wr(s) W(ia)l+lW(t)- WU(/)l]
i=0 iA<-s<--_iA+A

iA+A

"[IWN(t) WN(s)l+lC(ia,/)1] f IHldslAI plus a similar expression
ia for the end term.

By the w.p. 1 uniform convergence (on bounded intervals) and continuity of the
limit functions and the estimate (A3b), the limit of the above expression goes to zero
uniformly on bounded sets, w.p. 1, as N oo and then A 0.

Thus, we need only examine the limits of

1 fia+a C(iA, t)HA[W(t)- W(iA)] ds
i=o aiA

(4.6)

+ C(MA, t)HA[W(t)- W(MA)] ds.

But, by (A3a), (4.6) converges to the same expression with/- replacing H, uniformly
on bounded intervals, w.p. 1 as N oo. By the above calculations we can write the limit
of the third term in (4.5) as

(4.7) C(s, t)HA[ W(t)- W(s)] ds

for the imbedded, hence the original processes. Thus U(t) (the imbedded process)
converges to

(4.8) U(t)=-C(O, t)U(O)+C(O, t)AW(t)+(4.7)

uniformly on finite intervals, w.p. 1. Consequently the original Ur( converges
weakly to the process (4.8). But (4.8) is the unique solution to (4.1) with initial condition
U(0). The form is independent of the selected convergent subsequences. Also, via an
integration by parts,

(4.9) U(t) C(O, t)U(O)+ C(s, t)A dW.

We need only show that U(0) is the stationary" initial condition. This canbe
easily shown in the following manner. The set of all possible U(0) is tight because { U,}
is. Also the weak limits of {U (.)} are also weak limits of the restrictions to T, oo) of the
weak limits of (the functions are left-shifted by T) {U(’-r( )} on D[0, oo), since
U’(-r(T) Ur. But the latter limits are of the form (4.9) also. The restriction to
T, o) involves simply replacing by T + in (4.9). From this, the tightness of possible
U(O), the arbitrariness of T and the fact that C(0, t) exp Ht - 0 as - eo, we get that
U(0) must be the stationary" initial condition. O.E.D.
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Note. In a work to appear, only XP 0 is used, conditions for this are given and
an a (small) and nonstationary data are treated.
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A NEW CLASS OF AUGMENTED LAGRANGIANS
IN NONLINEAR PROGRAMMING*

G. DI PILLOW" AND L. GRIPP05;

Abstract. In this paper a new class of augmented Lagrangians is introduced, for solving equality
constrained problems via unconstrained minimization techniques. It is proved that a solution of the
constrained problem and the corresponding values of the Lagrange multipliers can be found by performing a

single unconstrained minimization of the augmented Lagrangian. In particular, in the linear quadratic case,
the solution is obtained by minimizing a quadratic function. Numerical examples are reported.

1. Introduction. During recent years, a number of research works in the area of
nonlinear programming have been devoted to the study of methods for solving
constrained problems of the form:

minimize f(x) subject to g(x) O,

via unconstrained minimization techniques.
The most recent results are concerned with the "method of multipliers", which was

independently introduced in 1968 by Hestenes [1] and Powell [2]. We refer, e.g. to
[3]-[6] for an introduction to this method and for an exposition of related refinements
and extensions.

As it is known, the method of multipliers provides the solution of the constrained
problem via the solution of a sequence of unconstrained problems of the form"

min f(x)+[A, g(x)] + cllg(x)ll,
where c >0 is a penalty coefficient and is an approximation of the Lagrange
multiplier.

The relevant feature of the method is that, under suitable assumptions, the solution
.of the constrained problem is obtained by recursively updating A, without the need to
increase c to infinity. Thus the ill-conditioning associated with the usual penalty
methods can be avoided.

The main drawback of the multiplier method is that, in principle, it requires an
infinite sequence of unconstrained minimization problems to be solved.

To overcome this difficulty, a further development of the method was proposed by
Fletcher [7], [8], who introduced in the augmented Lagrangian a multiplier vector
continuously dependent on x. In this way a single minimization is required, as opposed
to a sequence of minimizations required in the multiplier method. A related algorithm
was proposed and analyzed by Mukai and Polak [9]. These methods, however, require a
matrix inversion at each function evaluation and this may limit somewhat their
applicability.

A different possibility was considered by Wierzbicki [10], who devised several
algorithms for locating directly the saddle-point of the augmented Lagrangian by
simultaneous updating of x and A and without resorting to matrix inversions.

* Received by the editors April 5, 1978 and in revised form January 17, 1979. This work was supported
in part by the Consiglio Nazionale delle Ricerche.

" Istituto di AutomaticawUniversith di Roma, Via Eudossiana, 18-00184 Roma, Italy.
5; Centro di Studio dei Sistemi di Controllo e Calcolo Automatici del CNR, Via Eudossiana, 18-00184

Roma, Italy.
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In this paper, we propose a different approach based on the consideration of a new
class of augmented Lagrangians obtained by adding to the augmented Lagrangian of
Hestenes a penalty term on the first order necessary condition Vxf+[Og/ox]rA O.

This leads to a function of the form"

S(x,A" c)=f(x)+[A, g(x)]+cllg(x)ll2+ M(x) Vxf(x)+
OX

where M(x) is an appropriate weighting matrix.
It is shown that, under suitable hypotheses, a local solution of the constrained

problem and the corresponding values of the Lagrange multipliers can be found by
performing a single local unconstrained minimization of S (x, A; c) with respect to both
x and A, for finite values of the penalty coecient and without requiring matrix
inversions. In particular, in the linear quadratic case there exists a value of c for which
S(x, A;c) is a positive definite quadratic function of (x, A), so that the solution of a
quadratic programming problem with equality constraints can be obtained in a finite
number of iterations of a conjugate direction algorithm.

The proposed method has been tested on several problems, with quite satisfactory
results. Although the primary emphasis of this paper is not on numerical aspects, we
report here a set of numerical examples showing that the method appears to be
promising.

2. Problem formulation. We consider the following minimization problem"
Problem P.

(1) minimize f(x), x R subject to g(x) 0

where f: Rn--> R and g: R"--> R", with m -< n. We assume, unless otherwise stated,
that the functions f and g are three times continuously differentiable on R ".

The Lagrangian L" R" x R --> R for problem P is defined by

L(x, f(x) +[, g(x)],

where [.,. denotes the Euclidean scalar product.
We introduce the following augmented Lagrangian function

(2) S(x, A c)=/’(x)+ [A, g(x)a+cllg(x))l+llM(x)(V](x)+.OgSx)rA)ll
\ OX /

where c >0, M(x) is a (p x n) matrix with twice continuously ditterentiable elements
and m =<p =<n.

2To simplify notation, we shall denote by VL(x, A) the gradient and by VL(x, A)
the Hessian of L(x, A) with respect to x, i.e.:

Og(x)w
VL(x, ;t) Vf(x) + ,

Ox

V2L(x, A) V2f(x) + Z AiV2gi(x).
i=1

3. Preliminary results. In the sequel we shall make use of the following properties,
which establish the relationships between stationary points of L(x, A) and stationary
points of $(x, A c), under the assumption that f, g are two times continuously differen-
tiable and that M(x) is a continuously differentiable matrix.
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PROPOSITION 1. Let (, A) be a stationary pointfor L(x, A ), then ($, A) is a stationary
point for S(x, A; c).

Proof. Employing a dyadic expansion for M(x), that is

19

M(x)= Y esms(x),
i=1

where ei is the ]th column of the (p x p) identity matrix and mi(x) is the ]th row of M(x),
we obtain the following expressions for the components of the gradient of S(x, A c) on
RxR

VS(x, " c) VL(x, ) + 2c
g(x)

g(x) + 2VL(x, A)M (x)M(x)VL(x, A
Ox

(3)
+2 E VxL(x, e M(x)VxL(x, A ),

(4) VxS(x, h c) g(x) + 20g(x) MT(x)M(x)VxL(x, h ).
Ox

Therefore, VL(,, ) 0 and g(Y) 0 imply VxS(,f, ; c) 0, VxS(f, ; c) 0. [-]

PROPOSITION 2. Let (, A) be a stationary point ]:or S(x, h;c) and assume that
g() 0 and that M() [Og(Y,)/Ox]T is an (m m) nonsingular matrix. Then (, ) is a
stationary point for L(x, h ).

Proof. Under the hypotheses stated, 7aS(y,,;c)=0 and g(Y)=0 imply
M(Y)VL(Y, ) 0 so that from VxS(Y, ,; c) 0 we get 7L(.f, ,) 0.

PROPOSITION 3. Let X L be a compact subset of RnR and assume that
M(x) [Og(x)/Ox]r is an (m m) nonsingular matrix for any x 6X. Then, there exists a
> 0 such thatfor all c >= ,if (, ) X L is a stationary point orS(x, c), (, ) is also

a stationary point of L(x, ).
Proof. Let ($,A)XL be a stationary point of S(x,A; c). Then, by (4),

VxS(, ; c) 0 implies

l[8g()Mr(g g(g).M(g)VxL(g, A) -- !_ Ox

Therefore, making use of (3) and recalling that 7xS($, A; c) 0, we have"

1 8g($)Mr($) + 2cM(,f)0 M($)VxS(,, ; c)= -- 8X

( [Om[($)] 7-

VxL($,)e[) (,)] -’ ] g ($).-M($) VxL($, X)Mr($)+s, I_ Ox I_ oX

Hence, by the continuity assumptions and the compactness of X x L, there exists a > 0
such that for all c _-> 7 and any (, A) X L the matrix multiplying g(Y) is nonsingular,
so that for c >_-g, g()= 0. Then, the proof can be completed as in Proposition 2.

4. Local optimality results. In order to establish a relationship between local
minimum points of (1) and local unconstrained minimum points of S in RnR we
need a known result on pairs of quadratic forms.

LEMMA 1. Suppose thatP and 0 are quadratic forms with the property that P(y) <= 0
and O(y) <- 0 only if y O. Ifone ofthem is nonnegative, then there is a number c > 0 such
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that
e(y)+cO(y)>O,

for all y O.
Proof. See [6, p. 113]. [3
Then we can prove the following"
THEOaEM 1. Let (2, ) be a stationary point for L(x, 3‘) and assume that
(i) M(2) [Og(2)/Ox]r has full rank
(ii) 2 is a local minimum point ]:or Problem P, satisfying the second order sufficiency

condition"

xL(x, ,)x]>0 Vx x O,
Og(2)

[x, V2
Ox

Then there exists a c*> 0 such that for an), c >= c*, (2, ) is an isolated local minimum
point for $(x, 3‘ c).

Proof. By Proposition 1, (2, ) is a stationary point for S(x, ;c). Consider the
Hessian matrix of S(x, c) evaluated at (, ]). Since VL(2, ]) 0 and g(2) 0 we
have’

VS(2, , c) VL(2, )+ 2c
Og(g)w Og(2) 2VL(2, ])MT(g)M(2)V2L(2, ),
Ox Ox

2 Og(2) MT Og(2)T
VaS(x, ; c)= 2 (2)M(2)

Ox Ox

Og(2)T
VxxS(x, ; c)=+ 2VL(2, )Mr(2)M(2) Og(2)v.

Ox Ox

Introduce now the quadratic forms in (x, 3‘)"

p(x, 3‘ [x, V,L(x,X)x]+2 M(2)VL(2, X)x +M(2) 0g(2)T3‘ +2 X, 3‘
OX Ox

0(x, 3‘)=2 0 x

It can be easily verified that

S(x, Yt; c) ;c)]vS(x, x
[x r 3‘ r] V]xS(2, ]; c) z P(x, 3‘) + cO(x, 3‘),

VS(x, X; c) J ,
so that (2, ) is an isolated local minimum of S(x, 3‘;c) if P(x, 3‘)+ cQ(x, 3‘) is positive
definite.

We observe now that the assumptions of Lemma 1 are satisfied. In fact Q(x, 3‘ => 0;
moreover Q(x, 3‘) 0 implies [Og(2)/Ox]x 0 so that, taking into account assumption
(ii), P(x, 3,) <- 0 implies x 0 and M($) [Og(2)/ox]T3‘ 0. Finally, by (i) the last equality
gives 3‘ 0.

Then, by Lemma 1, there exists a value c*>0 such that P(x,A)+c*Q(x, 3‘)>O
’(x, 3‘)# 0 and being Q(x, 3‘)_>-0 the same is true for any c _>-c*.

A converse result is given in the following theorem.
THEOREM 2. Let (2, ) be a local minimum point for S(x, 3‘; c) and assume that:

(i) g(2) O,
(ii) p m, M(2)[bg(2)/Ox]T is nonsingular,

(iii) the Hessian matrix ’2S(2, ; ) is positive definite.
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Then is an isolated local minimum point for Problem P.
Proof. By Proposition 2, (, ) is a stationary point for L(x, ); therefore, since

72S(., ; C) is positive definite, we have:

[x, V2L(, )x]+2 x,
Ox Ox

x

(5) + 2 M(Y)VL(, X)x +M() h > 0 V(x, h) e 0.
Ox

Now let x 0 be such that [Og(g)/Ox]x 0 and take
-1

A=- M(g)
Ox J

Then we obtain from (5) that (, ]) satisfies the second order sufficiency condition"

[x,VL(Y,)x]>O Vx xO,
Og($)

so that is an isolated local minimum point for Problem P.
We note that a local result can also be stated under assumptions weaker than those

employed in Theorem 2.
THEOREM 3. Letf, g be two times continuously differentiable and let (g, A) be a local

minimum point for S(x, h c). Assume that
(i) g() 0;
(ii) M(x) is a continuously differentiable (m n) matrix such thatM()[Og()/Ox]

is nonsingular.
Then is a local minimum point for problem P.

Proof. By Proposition 2, (g, ) is a stationary point for L(x, A). This implies:

s(,;c)=f().
Therefore, since ($, ) is a local minimum point for S(x, A; c), there exist neigh-

borhoods f, A of $, , such that

This yields
f()<=S(x,A;c) Vxl, A sA.

f(Y) =f(x) + M(x)Vf(x) +M(x)

(6) V x 1) Y) {x g(x) 0}

VAA.

On the other hand, by the continuity assumptions, there exists a neighborhood
of g, f’___ f, such that

Og(x)T]_(7) h M(x) OX J
M(x)Vf(x) A,

By combining (6), (7) it can be concluded

f(Y) <= f(x) V x (l’ (’] {x g(x) 0}. 71

Under the assumptions stated in Proposition 3 it is also possible to ensure that a local
minimum point for S(x, A; c) is an admissible point for Problem P.
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Therefore, we obtain the following theorem:
THEOREM 4. Let f, g be two times continuously differentiable and let X L be a

compact subset of R x R ". Assume that M(x) is a continuously differentiable (mx n)
matrix such that M(x)[Og(x)/Ox]r is nonsingularfor any x e X. Then, there exists a > 0
such that for all c >- , if (2, ) X x L is a local minimum point ofS(x, h c), is a .local
minimum point for problem P.

Proof. The proof follows from Proposition 3 and Theorem 3.

5. Choice of llel(x). In the preceding theorems an important role is played by the
matrix M(x). We indicate here some possible choices for M(x) which ensure, under
suitable assumptions on the originary problem, that the hypotheses made on
[Og(2)/Ox]r are satsified.

In particular, assume that [g(2)/Ox]r has full rank; then
(a) the choice:

og(x)
M(x) =/z, /z>0,

0x

satisfies the hypotheses of Theorems 1, 2, 3, 4;
(b) the same is true for any choice of M(x) such that M(x)[Og(x)/Ox]T is an m x m

invertible submatrix of [Og(x)/Ox]r;
(c) the choice:

M(x) tzI, lz > O,

satisfies the hypotheses of Theorem 1.
An important special case of (b) is when the vector x can be split into two

subvectors, x, x2, x e R ’, x2 R "-’, such that Og(x)/Ox is nonsingular for any x. This
happens when there exists a set of independent or "decision" variables x2 and a set of
dependent or "state" variables x. In such a case a convenient choice for M(x) could be:

M(x) =/z[I,, 0].

6. Global optimality results. The results given in 4 are local in character. A
global result is obtained when Problem P has a unique global solution 2 on a compact
set X and 2 is an interior point of X"

THEOREM 5. Let (2, ) be a stationary point ]or L(x, A) and assume that"
(i) assumptions (i) and (ii) of Theorem 1 are satisfied
(ii) 2 is the unique global minimum point ofProblem P on a compact setX R and

2 e int (X).
Then, for every compact setL R such that int (L), there exists a c*(L) :> 0 such that
]:or any c >= c*(L), (2, A) is the unique global minimum point of S(x, h c) on X L.

Proof. Let L R be a compact set such that e int (L). By Theorem 1, there exists
a c > 0 such that for c-> c, (2, ) affords a local isolated minimum to S(x, h;c).
Therefore, since 2 int (X) and. ] int (L) there exist, for c _-> c 1", spherical neighbor-
hoods 11(2, e), A(, e) of 2 and such that fl(2, e)_ X, A(, e)__ L and

S(x,x;c)>S(2,];c) V(x,h)e12(2, e)xA(,,e), (x, h) # (2, ]).

Assume now that the conclusion of the theorem is false. Then, for any integer
k _-> c x* there exists (Xk, hk)S X x L such that:

S(x, ;; k)_-< S(, ,; k)=f(x).
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Moreover, it can be easily verified that for k >-c *,

so that either []Xk [[ E c’ Or [[Xk .[[ < E c* and []Ak 1[ e c’. Now, since X x L is
compact, the sequence {(Xk, hk)} admits a convergent subsequence {(Xkj,.hkj)}
for Xkj --> X, hk --> L and

S(xk,, hk,; k’)f(.).
It follows"

lim sup S(xk,, hk,; ki)<=f(X),

from which we obtain

f(.f) +[, g()] + lim._.sup k, llg(x,)ll + ]]M()Vf(.f)+M() 2cgg ,) ,w ]t <= f 2
8X

This implies

g(.’) O, f() <= f(.).

Then, by assumption (ii), we have .f and, by (i) of Theorem 1, . Therefore we
get a contradiction either with [1 J[[-> e c* or with I1 1[--> ec,. It can be concluded that
there exists a value c*(L) such that for c >-_ c*(L), ($, h) is the unique global minimum
point of S(x, h c) on X x L. [2

A converse result can easily be stated if it is assumed that any global minimum
point of Problem P on X is a stationary point of the Lagrangian L(x, h)"

THEOREM 6. Let f, g be differentiable, letX L be a given subset ofR x R and let

(, ) be a global minimum point for S(x, h c) on X L. Assume that
(i) g() 0

(ii) for any global minimum point of Problem P on X there exists a multiplier
L such that VxL(, ) O.

Then . is a global minimum point of Problem P on X.
Proof. By (i) we obtain"

<- S(x, x. c)S(., " c)=f(.)+ M($)Vf(X)+M($) 8x V(x,A)XxL.

Therefore we obtain, in particular,

Og(x)r,,h Oof(2)<=f(x) V(x,A)eXL g(x)=O, Vf(x)+ cgx

This implies by (ii) that is a global minimum point for Problem P on X.
Making use of the results given in Proposition 3 and in Theorem 6, we can also state

the following:
THEOREM 7. Let f, g be two times continuously differentiable and let X x L be a

compact subset of R R". Assume that M(x) is a continuously differentiable (m x n)
matrix such thatM(x)[Og(x)/Og]r is nonsingularfor any x X; assume further that (ii) of
Theorem 6 holds. Then, there exists a c* > 0 such that]or all c >- c*, if (, ) int (X x L)
is a global minimum pointofS(x, h c) onX L, is a global minimum pointforProblem
PonX.
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An important special case in which a global property holds is that of quadratic
problems with linear equality constraints"

Problem QP.

minimize f(x) Ix, Ax]+[a, x]

subject to"

Bx b,

where:
(i) Ix, Ax > 0 Vx x O, Bx 0

(ii) B has full rank.
In this case we can take for M(x) any constant matrix M such that MB r has rank m.

We have the following:
THEOREM 8.Under the assumptions stated ]:or Problem QP, there exists a c*> 0

such that for c >- c* the function S(x, A c) is a positive definite quadratic function whose
global minimum is the unique solution of Problem QP.

Proof. By Proposition 1, the optimal solution of Problem QP is a stationary point of
S(x, A;c) for any c.

On the other hand, noting that the second order homogeneous part of S(x, A; c) is
given by P(x, A + cQ(x, A where

P(x, A [x, Ax]+IIM(2Ax / BrA )IIZ /[x, BrA ],

O(x, II/ xll2

and making use of Lemma I it can be proved, as in Theorem 1, that there exists a c* > 0
such that for c _-> c* the quadratic function $(x, A;c) is positive definite.

7. Numerical examples. In order to evaluate the theory, several numerical
examples were explored.

We report here the results obtained for the same set of test problems considered in
[113.

The unconstrained minimization of S(x, A;c) with respect to x and A was per-
formed by the Fletcher-Reeves conjugate gradient method assuming as starting point

xi=2, i=l,...,n,

and taking for the penalty coefficient the value c 10 whenever it worked; only in
Example 6 it was necessary to increase c, and the value c 100 was used.

For each example we indicate the matrix M(x) employed, and the number N of
iterations needed to reach a local minimum point (x*, A*) with the given significant
figures.

Example 1.
Minimize

f(x) (Xl X2)2 "[- (X2 + X3-- 2)2 + (x4-1)2 + (x5 1)2
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subject to

Xa -+- 3X2 0,

X3+X4--2X5--O,

X2- X5 0,

M(x)=I
x*= (-0.7674, 0.2558, 0.6279,-0.1162, 0.2558)
h* (2.0465, 2.2325, -5.9534)
N=8.

Example 2.
Minimize

subject to"

f(x) (Xl- 1)a + (x1-x2)2
-1" (x2 x3)4

X1(1 +X)+X4-4- 3x/ 0,

M(x)=I
x*= (1.1048, 1.1966, 1.5352)
h* -0.1072 x 10-a

N =32.

Example 3.
Minimize

subject to:

M(x)=I

f(x) (X1- 1)a + (x1- x2)2 -I- (x3- 1)a + (x4- 1)4 + (Xs- 1)6

2x 1x4 -t- sin (X4-- XS) 24 O,

x* =(1.1661, 1.1821, 1.3802, 1.5060, 0.6109)
h * (-0.8553 x 10-1, -0.3187 x 10-a)
N= 189.

Example 4.
Minimize

f(X) (Xl 1)a + (Xl x2)2 q- (x2- x3)2 --I- (x3 x4)4 -+- (x4- x5)4

subject to:

x+x2 +x3 -2-34=0,
X2 X3

2
-1- X4 -" 2 24 O,

xxx5-2 =0,

M(x)=Og(x)/Ox
x* (1.’1911, 1.3626, 1.4728, 1.6350, 1.6790)
* (-0.3882 10-1, -0.1674 10-1, -0.2898 10-3)
N =80.
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Example 5.
Minimize

subject to"

M(x)=[1 0 O]

f(x)=O.Ol(xl- 1)2 + (x2-xl)2

Xl+X2 +1=0,

x* (-1.0000, 1.0000, 0.2294 10-)
h * 0.3999 10-1

N =52.
Example 6.

Minimize

f(X) --Xl

subject to"

x -x-x] :o,

M(x) 103 I
x * (1.0000, 1.0000, O.0000, O.0000)
A * (- 1.0000, 1.0000)
N =90.

Example 7.
Minimize

f(x) log (1 +x)-x2
subject to"

(1+x)2+x-4 0

M(x)=Og(x)/Ox
x* (0.0000, 1.7320)
A* =0.2867
N=15.

8. Concluding remarks. From a theoretical standpoint, the method proposed in
this paper combines several advantages of existing techniques for the solution of
constrained problems via unconstrained minimization. On the other hand, possible
disadvantages are the increase in dimensionality of the minimization problem, the
presence of first order derivatives in the augmented Lagrangian and the fact that
S(x, h c) may be unbounded with respect to h. This latter difficulty, however, can be
overcome in many instances by employing suitable transformations. Another point
where attention is needed is the threshold value of the penalty coefficient. Actually it
happens that in the convex case the threshold value c* for S(x, h c) is larger than the
threshold value of the penalty coefficient in the method of multipliers, where c can be
given, in principle, any positive value.

The implementation of a computing procedure which makes the best use of the
results given here will be considered in the future. There seems to be particular interest
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in the extension to the proposed method of the results on the automatic selection of the
penalty parameter already established for algorithms based on other Lagrangians [9],
[12]. Moreover, further investigations will be devoted to the extension of the results
considered here to inequality constrained problems and to optimal control problems.

Acknowledgments. The authors would like to thank the Control Theory Center
of the University of Warwick, G.B., where much of this work was carried out.
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A BANG-BANG THEOREM WITH BOUNDS ON THE NUMBER OF
SWITCHINGS*

HCTOR J. SUSSMANNt

Abstract. For systems of the form 2 =f(x)+ ug(x), with f and g analytic, and-1 _-< u _-< 1, we prove a
bang-bang theorem with a priori bounds on the number of switchings, provided that the following condition is
satisfied: in a neighborhood of every point x, it is possible to express, for each ], the vector field [g, (ad f)i (g)] as
a linear combination of the (adf)i(g), i<-_]+ 1, in such a way that the coefficient of (adf)i+l(g) in this
expression is bounded in absolute value by a constant c < 1.

1. Introduction. In this paper we will prove that certain systems with a scalar
control satisfy a bang-bang property with bounds on the number of switchings.
Precisely, we consider systems of the form

(1) 2=f(x)+ug(x), lul_-<l.
The variable x is supposed to belong to an analytic manifold M, and f and g are

analytic vector fields on M. We say that such a system satisfies the bang-bang property
with bounds on the number of switchings if the following holds: (BBBNS) For every
compact subset K of M, and every time T > 0, there exists a positive integer N such
that, whenever 3" is a time-optimal trajectory of (1) which is entirely contained in K and
goes from a point p of K to a point q of K, then there is a time-optimal trajectory from p
to q which is bang-bang with at most N switchings.

Remark. (BBBNS) does not say that every time-optimal trajectory is bang-bang.
All it does say is that, if p can be transferred to q in a time-optimal way via some
trajectory 3", then this transfer can also be effected by a bang-bang trajectory, which
need not be the same as 3’. Moreover, (BBBNS) also asserts that, as long as 3" is
restricted to a compact set, then there is an a priori bound on the number of switchings
for the corresponding bang-bang trajectory.

Under certain conditions to be specified below, it will be shown that the system (1)
satisfies the BBBNS condition. The importance of this result is that it implies that when
our conditions are satisfied, the time-optimal problem for the system (1) has a solution
in feedback form which is a "regular synthesis" in a sense which is a slight modification
of that of Boltyanski [1] (cf. Sussmann [5] for details).

In [2], Krener studied systems of the form

k

(2) --- 2 uiXi(x), 0 ui, 2 ui 1.
i=1

He proved [2, Thm. 3] a bang-bang theorem under certain conditions. For the case
k 2, and for analytic systems, our hypotheses are essentially those of Krener’s.
However our conclusion is much stronger. Krener shows that every piecewise smooth
control can be replaced by a bang-bang one. However, the usual compactness argument
that proves the existence of time-optimal controls only enables us to get such controls to
be measurable. Hence Krener’s result would not apply to conclude that the time-
optimal problem with fixed endpoints p, q has a bang-bang solution.

The argument utilized here does not seem to generalize to problems of the form (2)
with k > 2, under hypotheses similar to Krener’s.

* Received by the editors August 8, 1978, and in revised form January 8, 1979.

" Mathematics Department, Rutgers University, New Brunswick, New Jersey 08903.
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Technically, the main point of the paper is Lemma 3, which generalizes a well
known result on the number of zeros of a solution of an ordinary differential equation.
Lemma 3 is stated in a separate section ( 4). Since the proof is quite lengthy, we have
included, at the beginning of 4, a sketch of its main ideas.

2. Statement of the theorem. A system of the form (1) will be called analytic if the
state space M is an analytic manifold and the vector fields f and g are analytic.

Our crucial hypothesis is condition (A), which we now state. Let IX, Y] denote the
Lie bracket of the vector fields X and Y. Let ad X be the operator which assigns to each
vector field Y the vector field IX, Y]. Let p M, and let m > 0 be an integer. We say that
(Ap,,) holds if there is a neighborhood U of p such that

(3) [g, (adf)’(g)] ai(adf)i(g)+(adf)n/l(g),
i=0

where the ai and fl are analytic functions on U, and Ifl (x)l < 1 for all x U. We say that
condition (A) holds if (A,,,) is satisfied for all p, m.

Our main result is as follows:
THEOREM. If the system (1) is analytic, and satisfies property (A), then (1) satisfies

the BBBNS condition.

3. Proof of the theorem. Given a function u- u(t) defined on an interval I, a
trajectory for u is a curve y:I M that is absolutely continuous and satisfies

4/(t) f(y(t))+ u(t)g(y(t))

for almost every L
An admissible pair for the system (1) is a pair (y, u), where u is a measurable

function defined on an interval L with values in [-1, 1], and y:I ->M is a trajectory for
b/.

We shall use TM, T*M to denote, respectively, the tangent and cotangent space
to M at x.

Suppose that (y, u) is an admissible pair for the system (1). An ad]oint solution for
(y, u) is a continuous map --> A (t), defined for all in the domain of definition of y, and,
such that A (t) Tv,)M for all t, and that A satisfies the adjoint equation. This equation
can be written in local coordinates as follows:

(4)
3Xi/’

if, relative to the coordinates x 1, Xn, the vector fields f, g and the cotangent vector a
are given by

a -"Aidxi.f ifixi g Y’g’oxi
The invariance of the adjoint equation under changes of coordinates can be

checked directly, or it can be established from the following equivalent charac-
terization, which is clearly invariant.

Suppose that s--> 6(s) is a C curve with 6(0)= y(to). Let t--> ys(t) denote the
solution of f+ ug for which y(to) 6(s). Let v(t) be the tangent vector to the curve
s--> ys(t) at s 0. Any map t-> v(t) Tv(,)M which is obtained in this way is called a
variational vectorfield along (y, u). If v is a tangent vector at y(to), then there is a unique
variational vector field V(t) such that V(to)= v. Let V(t)=F(t, to)V. Then F(t, to) is
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linear. If h (t) Tv(t)M for every t, then h is an adjoint solution if and only if

h(t)oF(t, to)=h(to)

for all t, to.
From the invariant characterization of adjoint solutions, a trivial but important

consequence follows. Suppose that we are given a family of linear subspaces Q(t) of
Tv(t)M, which is invariant, in the sense that

(5) F(t, to)O(to)- Q(t)

for all t, to. Then, ira is an adfoint so.lution, and i[h (t) is nontrivial on O(t) for some t, it

follows that h (t) is nontrivial on O(t) for every t. In particular, this conclusion holds if the
O(t) are obtained from an invariant family of submanifolds, as follows. Suppose that,
for each in the domain of (y, u), we have a smooth manifold $(t), such that y(t) $(t)
and that, whenever 6(t) is a solution of A =f+ ug, for which 6(t0) 6 $(to), it follows
that 6(t) S(t) for all t. Then it is clear that the spaces O(t)= Tv(t)S(t) constitute an
invariant family.

The Pontryagin maximum principle asserts that, if (y, u) is time-optimal, then
there exists a nontrivial adjoint solution - h (t) which satisfies

(6) min H(A (t), ),(t), v) H(A (t), y(t), u(t))

for almost all t, where

(7) H(h, x, v) (h, f(x)+ vg(x)).

Suppose that S is a submanifold of M such that f and g are tangent to S and 3’ is
contained in S. Then we can consider the system :X’ obtained from our original system X
by restricting the state space to S. The pair (, u) is clearly time-optimal for X’ as well, so
we can apply the maximum principle to X’, and conclude that there is a nontrivial,
adjoint solution -> I (t) Tv(t)S that satisfies (6). But then, if we choose in an arbitrary
way a to and a linear functional 37 on T*(to)M whose restriction to Tv(to)S is/z (to), and if
we let h (t) be the adjoint solution (for E) with h (to) ,, it is easy to see that/z(t) is the
restriction of h (t) to T.(t)S. Hence h (t) is nontrivial on T,(t)S for all t.

Now let L denote the Lie algebra of vector fields generated by f and g. Since L is a
Lie algebra of analytic vector fields, it follows from Nagano’s theorem (cf. Nagano [3])
that M is partitioned into submanifolds Sthe maximal integral manifolds ofLsuch
that, for each x S,

(8) TxS L(x) {X(x)"X L}.

It is clear that, if (% u) is an admissible pair, then , is entirely contained in one
maximal integral manifold S of L. The vector fields/" and g are tangent to $, so we can
apply the preceding remark to this case, and conclude"

LEMMA 1. If (’y, U) is time-optimal, then there exists an ad]oint solution --> h (t) for
(y, u) which satisfies condition (6), and is such that h (t) is nontrivial on L(y(t)) for all t.

We would like to strengthen Lemma 1 by substituting for L(y(t)) the subspace
Lo(y(t)) defined as follows: Lo is the ideal generated by g of the Lie algebra L. For all x
in M:

Lo(x) {X(x) X L0}.

Then Lo is a subset of L, so that Lo(x) is a subspace of L(x) for every x in M.
Let us call the pair (% u) strongly extremal if there exists an adjoint solution that
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satisfies (6) and is such that, in addition, h (t) is nontrivial on Lo(3,(t)) for all t. Then it is
not true in general that every time-optimal pair (3,, u) connecting two points p, q is
necessarily strongly extremal. But a weaker property still holds, namely, that every
time-optimal pair (3,, u) connecting two points p, q can be replaced by a concatenation
of strong extremals and constant-control trajectories. To make this precise, let us
consider 4-tuples (K, K’, T, Uo), where K and K’ are compact sets such that K

_
K’,

T > 0 is a number, and Uo is a control value (i.e. a number such that [Uo[ _<- 1). We shall
say that (K, K’, T, Uo) has the strong extremal replacement property (henceforth abbre-
viated as SERP) with N steps (N being a positive integer), if the following holds:

(SERPN). Whenever (3,,.u) is a time-optimal pair, defined on some interval
[0, T’], with T’_-< T, such that 3,(t) K for 0 _<-t _-< T’, then it follows that there exists
some other pair (,, t), defined on the same interval [0, T’], such that (i) 3(0) 3,(0), (ii)
3;(T’) 3,(T’), (iii) 3(t) K’ for all t, and (iv) (3, a) is the concatenation of at most N
pairs, each of whom is either strongly extremal or constant-control, the value of the
control being u0.

LEMMA 2. Let K, K’ be compact subsets of M, with K
_

int (K’). Let T, Uo be
arbitrary, with T > 0, [Uo] -< 1. Then there exists an N > 0 such that (K, K’, T, Uo) has the
SERP with N steps.

Proof. It is easy to see that, if (K, K’, Ti, u0) have the SERP with Ni steps, for
1, 2, then (K, K’, T1 + T2, u0) has the SERP with NI + N. steps. Hence it is sufficient

to prove that, if K, K’, Uo are given, with K, K’ compact such that K
_

int (K’), and
[Uo[ _-< 1, then there is a T > 0 such that (K, K’, T, u0) has the SERP with two steps.

Let us choose another compact set K" such that K’
_

int (K"). Because K, K’, K"
are compact subsets of int (K’), int (K"), M, respectively, there exist a T > 0 with the
property that, whenever a control t- u(t), a -< _-< b, is defined on some interval [a, b]
whose length b-a is not greater than T, and 3’ is a trajectory corresponding to the
control u, and defined on a maximal interval I

_
[a, b ], then:

(a) if 3,(t)K" for some then I =[a, b],
(b) if 3,(t)e K’ for some then 3, is entirely contained in K",
(c) if 3,(t) K for some then 3, is entirely contained in K’.
We now show that this choice of T is correct, i.e. that (K, K’, T, u0) has the SERP

with two steps. So, let (3,, u) be a time-optimal pair, defined on a time interval [0, T’],
with T’ _-< T, such that 3,(t) K for 0 _-< -<_ T’. Let p 3,(0), q 3,(T’). We will prove that
there is a pair (3, a), also defined on [0, T’], such that 33(0)= p, 3(T’)= q, that (3, t) is
either strongly extremal, or the concatenation of a strong extremal and a (,, t) with
t constant- Uo, and that 3; is entirely contained in K’.

Now let us use some results from Sussmann-Jurdjevic [4]. For each point x in M,
let S(x), So(x) denote the maximal integral manifolds through x of L, L0 respectively.
Then, for every x, the dimension of So(y) remains constant as y varies over all points in
S(x). This dimension is either equal to dim S(x), or to dim S(x) 1. If a trajectory of the
system (1) goes through a point x, then this trajectory is necessarily contained in S(x).
(These three facts are proved in [4].)

In particular, let k=dimS(p), k’-dimSo(p). Then k-k’ or k=k’+l.
Moreover, the curve 3, is entirely contained in S(p). Suppose that k-k’. Then
Lo(3,(t)) L(3,(t)) for all t. Lemma I implies that (3,, u) is itself strongly extremal. So we
can take 3; 3,, ti u. This disposes of the case k k’.

Now let us assume that k’ k- 1. We define a time-dependent vector field h on
int (K"), for times such that [t[ _-< T, as follows. For x in M, let G(t, x) denote the
integral curve of the vector field X f+ uog which passes through x when 0. Then,
for x in K", G(t, x) is well defined for -T <_- <_- T, because of condition (a) of the choice
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of T. So, for [tl T, the map G(t,. is well defined on int (K"). For x int (K"), Itl T,
put

h(t, x)= G(-t, ).g(G(t, x)).

(Here G(t, ), is the differential of the map G(t, ).)
As shown in [4], the maps G(t, take integral manifolds of Lo to integral

manifolds of L0. Hence G(t,.), will map, for every x, Lo(x) to Lo(G(t, x)). In
particular, h(t, x) belongs to Lo(x) for every x in int (K") and every such that It]-<_ T.
From this it follows by a standard argument, that, if w(t) is a bounded measurable
function, and if tx(t) is a solution of 2(t)=w(t)h(t, x(t)), for in some interval
a _-< =< b of length not greater than T, then x(t) belongs to $o(x(a)) for all t. (Proof: let
Lg denote the set of restrictions to int (K") of the vector fields in L0, and let $’(x) denote
the maximal integral manifold of Lg through x, so that the $g(x), as x varies over
int (K") constitute a partition of int (K"). Since the equation 2- w(t)h(t, x) makes
perfect sense when restricted to integral submanifolds of Lg, and has local existence and
uniqueness of solutions, it follows that, whenever a solution of this equation is defined
on some time interval, then, for every integral submanifold of Lg, the set of times for
which the solution belongs to the given submanifold is open. Hence the solution is
entirely contained in the integral submanifold S’(x), for some x. But $’(x) is also a
connected integral manifold of L0, although not necessarily a maximal one. In any case,
Sg(x) is a subset of So(X), so the given solution is contained in So(X) as well.)

Now let v: [0, T"] [- 1, 1] be an arbitrary admissible control, with T" =< T. Let 6o
be the trajectory of our system (1) that corresponds to the control v and the initial
condition 6o(0)= p. Let rio be the solution of

(9) i(t) (v(t)- uo)h(t, x(t)),

also with the initial condition To(O) p. Then n(t) So(p) for all in [0, T"], as shown
before. Let 6’o(t)= G(t, no(t)). Then an easy calculation shows that

,’(t) (I+ uog)(a’(t)) + G(t,

(f + uog)(a’(t))+ (v(t)- uo)g(a’(t))

f(6’o(t))+ v(t)g(6’o(t)).

Moreover, 6’o (0)= p 6o(0). So 3’o (t)= 8o(t) for all t. Therefore, we have proved that

(9)’ 6o(t) G(t, To(t)) for 0 _-< _-< T".

Eq,uation (9) defines a time-varying control system on int (K"), which we shall
name Y_,. Also, we can restrict equation (9) to the submanifold $g(p) (defined above).
Let us use " to refer to this restriction. Finally, let denote our original system (1).

Equation (9’) establishes a correspondence between trajectories of 5 that start at p,
and trajectories of " that start at p. In particular, corresponding to our trajectory 3’ (i.e.
6u) there is a trajectory nu, which is entirely contained in $’(p), and steers p to
q’= G(-T’, q) in time T’. By compactness, there exists, for the system F_,, a control 5
which steers p to q’ time-optimally in some time T. (Note: all this depends heavily on the
fact that T is small enough so that (a), (b) and (c) hold. The fact that To is a trajectory of

" for every v is a consequence of (b) and (c). Indeed, (c) implies that 6o(t) K’ for all t.
Then (b) implies that no(t)K", because, for each t, the curve s G(s, To(t)) is a
trajectory of (1) which goes through a point of K’ when s t, and therefore is contained
in K" for O<=s<=t so that, in particular, G(0, To(t)) is in K", i.e. no(t)K". The
compactness argument also depends on our choice of T. The crucial part is the choice,
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which is possible by compactness, of a weakly convergent sequence of controls vn which
steer p into q’, for the system Y_,, in times Tn that converge to the optimal time T. If 5 is
the weak limit of the v, then one must show that 5 actually steers p to q’ in time T. This
is trivial, by the continuous dependence of the solutions of (9) on the controls, provided
that it is known that the solution of (9) for the control 3 and the initial condition p is
defined for all in [0, T]. But this follows from our choice of T, since this choice implies
that r/D (t) is well defined for all t, as long as v is an admissible control with domain [0, a],
a<=T.)

Let q" 8(T) G(T, q’). Then, for the system ;, 5 steers p toq" in time T. Ifwe let
g’[0, T’][-1, 1] be the control whose value at is 5(t) for O<=t<=T, and Uo for
T<t<= T’, then t7 steers p to G(T’-T, G(T, q’)), i.e. to G(T’, q’), i.e. to q. The
corresponding trajectory 83 is the concatenation of 8 and of a trajectory that cor-
responds to the constant control Uo. So our conclusion will be proved if we show that the
pair (6, 5) is strongly extremal.

The pair (ro, 5) is time-optimal for the system ". Hence, by the maximum
principle, there exists a map - Ix (t), defined for 0 =< =< T, such that Ix (t) L0(r/(t))*
and Ix (t) 0 for all t, that Ix is an adjoint solution for ", and that, for almost every t:

(10) min H’(t, Ix(t), rl(t), w)= H’(t, Ix(t), rl(t), (t)),

where H’(t, u, x, w) (w Uo)(u, h(t, x)).
Now define p(t) Lo(6(t))* by "pulling back" Ix(t) via G(t, ), i.e. let

p(t) G(-t, )*Ix(t),

where G(-t, )* :Lo(r/(t))* L0(6(t))* is the dual map of G(-t, ),:Lo(6(t))
Lo(n(t)).
Then p(t) 0 for all t. Ifwe let H"(u, x, w) (w Uo)(u, g(x)), then it follows from (9")

that, for almost all t,

min H"(O(t), 8(t), w)= H"(p(t), 6(t), O(t)).

It is easy to see that, if A(t) is a variational vector field for the system " along
(r/, 5), and if we let B(t) G(t, ),A(t), then B is a variational vector field for Y_, along
(, 6). Since Ix is an adjoint solution for " along (r/, 5), it follows that (Ix(t), A(t)) is
constant. Therefore (p(t), B(t)) constant.

Now choose, in an arbitrary fashion, a linear functional r(0) T*oM whose
restriction to Lo(p) is p(0). Let o-(t) be the adjoint solution for Y_, along (6, 5) whose
value at 0 is o-(0). Then, if A, B are as above, the function (r(t), B(t)) is also
constant. Since (o’(0), B(0)) (p(0), B(0)), we conclude that (o-(t), B(t))= (p(t), B(t))
for’all t, and for all variational vector fields along (8, iT) that are obtainable from an A(t)
in the manner described above. If V is any tangent vector at 8(t), such that v
Lo(6e(t)), then there exists a variational vector field s B(s), of the desired form, such
that B(t)= V. Hence (p(t), V)=(o-(t), V). So the restriction of tr(t) to Lo(g(t))
coincides with p(t). This shows, in particular, that tr(t) is nontrivial on Lo(6(t)) for all t.

Also, we have

min (w Uo)<O’(t), g(6(t)))= (5(t)- Uo)<O’(t), g(8(t))>

for almost all t.
If we add (r(t), (f+ uog)(8(t))) to both sides of the preceding equality, we see that

the adjoint solution Ix satisfies (6). So (8, 5) is indeed strongly extremal. Q.E.D.
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Remark. Let us say that (K, T, u0) has the SERP with N steps if (K, K’, T, u0) has
the SERP with N steps for some compact K’ that contains K. Then what we have
proved in Lemma 2 is that, whenever K, T, u0 are given, there is some N such that
(K, T, Uo) has the SERP with N steps. However, the only reason why it was necessary to
allow for the possibility that N may be large was that the trajectories of the system (1)
may fail to be everywhere defined. If the trajectories are everywhere defined (i.e. if, for
every bounded measurable u: [a, b [- 1, 1 ], every to in [a, b ], and every x0 inM there
is a solution of (1) defined in [a, b], whose value at to is Xo), then it is easy to see that
every (K, T, Uo) has the SERP with two steps. Indeed, in this case there is no need to
worry about the compact sets K’, K", the vector field h(t, x) is defined for all and all x
in M, and the same proof we have given of Lemma 2 establishes the stronger conclusion.

For an example where the SERP with two steps fails, consider the system 2 1 + u,
; 1- u, lul--< 1, defined on the strip M {(x, y) 2:x 1 _-< y _-< x + 1}. Then every
control is time-optimal, but a strongly extremal control is necessarily bang-bang. The
point (0, 0) can be transferred to (1, 1) in time 1, and every control that effects this
transfer is time-optimal. There are bang-bang controls with three switchings that do the
job, but no control with two switchings. If the stripM seems too artificial as the choice of
the state space for a control system, one can use the fact that M is ditteomorphic to the
whole plane to transform the preceding example into one that is defined on Nz.

4. A technical lemma. We now state and prove the main technical lemma of this
paper. The reader who so wishes may limit himself to reading the statement of Lemma
3, and then may proceed directly to 5.

The purpose of Lemma 3 is to extend a well known result on the number of zeros of
a nontrivial solution of an ordinary differential equation. Consider the equation

(N)
(

(N--l)
q9 Wee1 if’" q-aN -’-0,

where a ar are bounded, measurable real-valued functions of t. Then it is well
known that there exists a T > 0 such that, if q is any nontrivial solution, then q has at
mostN 1 zeros on any interval of length =< T. Moreover, the number T can be taken to
be independent of the particular functions a 1, ar as long as the Of are bounded by a
fixed constant A.

This result can be reformulated as follows. Let (1 (., (2 "-(’ (9N "--(9
(N-l)

Let M(t) be the N by N matrix function:

0 1 0 0 0

0

0 1 0 0

0 0 0 1
ON ON--1 ON-2 O2 O1

Then the vector F(t) whose components are 01(t) 0N(t) satisfies/(t) M(t)F(t).
The result we have stated says that, for every N and every A > 0, there is a T > 0 such
that, if M is an N by N matrix of the particular type specified above and if the
components ai are bounded by A, then, if F is a nontrivial solution of/ MF, it follows
that, on every interval of length -< T, the first component of F has at most N- 1 zeros.

Lemma 3 extends this result to more general matrix functions M(t) {m0.(t)}. We
want to allow all the entries on or below the main diagonal to be nonzero. Moreover,
instead of requiring that mi.i+ be identically equal to one, we want to allow the m.g+ to
be functions of t, that are positive and bounded away from zero, and bounded above by
a constant. It turns out that the result stated above holds for this more general situation
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as well, except for the fact that the choice of T now depends not only on N and on the
upper bound A for the absolute values of the components of the matrix M, but also on
the lower bound B for the functions mi.i+x. Precisely, we shall prove:

LEMMA 3. LetA, B be real numbers such thatA >B > O. LetNbe a positive integer.
Then there exists a positive real number T T(N, A, B) with the following property:

Whenever [a, b] is an interval of length b-a <-T, and the aii (i= 1 N,
1 i), fli(i 1 N- 1) are measurable real-valued functions on [a, b] such

that ]aii(t)l<-A and B <=Si(t)<-A for all in [a, b] then, if qx qN are absolutely
continuous functions on [a, b that satisfy the system of equations

1 "-O11qglr’12,

and if1 does not vanish identically on [a, b ], then q91 has at mostN 1 zeros on [a, b ].
Outline of the proof. We try to mimick the standard proof of the classical result

quoted above. First, let us recall how that proof goes. Suppose that the a are
continuous, that q is a solution of O(u)+axp(N-l)+’’’+aN =0, and that q has at
least N zeros on some interval [a, b] of length T b- a. We shall show that, if T is
sufficiently small, this can only happen if q vanishes identically. Indeed, the functions
q,,..., g’(N-X) are of class C x. Hence, between any two zeros of one of these functions,
there must be a zero of its derivative. If q has N zeros on [a, b ], then q’ must have N 1
zeros, 0" must have N- 2 zeros, etc. In general, q will have at least N- zeros. So, for

0 N-1, q9
(i) has at least one zero on [a, b]. On the other hand, Gronwall’s

inequality gives a bound IlF(t)ll--< [IF(a)lle c(’-a), where C is some constant that depends
only onN andA. So, if T <- 1, we get the bound[[F(t)ll<-KIIF(a)ll, where K K(N, A).
If q is nontrivial then we can multiply it by a constant, and obtain a nontrivial q for
which [IF(a)ll 1. Then we have IIF(t)ll--< K for all t. Since/ MF, we can conclude that
all the (49

(i) are Lipschitz with a fixed constant J. Since each q
(g) has a zero in [a, b ], it

follows that [q((t)[ _-< JT for all in [a, b and all 0 N 1. In particular, [[F(a)ll is
bounded by a fixed constant times T. But, if T is small enough, this contradicts
IIF(a)ll- 1.

To prove Lemma 3 along similar lines, we assume that ql has N zeros on the
interval I=[a, b], and that the vector F(a) with components 1(a),..., qN(a) is
normalized so that IIF(a)ll 1. Exactly as before, we get a bound I[F(t)[t-< constant, and
then we conclude that all the qg are Lipschitzian with a fixed constant C, as long as
b a <- T -< 1. We then try to show that each q9 must have at least one zero somewhere
onL

Unfortunately, we do not know how to prove that each q9 must have a zero. For
instance, if we take two different zeros p, q of ql, and if we try to find a zero of Ce in
between, then the obvious candidate for the location of such a zero should be a point t.q
where I11 has a local maximum. However, we cannot conclude that q2(t,q)= 0 for at
least two reasons, namely, (a) that ql is only known to be absolutely continuous, and not
known to be C1, so that bl(ttq), need not even exist, and (b) that even if (Ol(tpq), did exist,
its value would be (0111 + lq92)(tp,q), SO it is this number, rather than q2(to,q), that has
to vanish.

In order to overcome this difficulty, we observe that it is not really necessary to
prove that q2(t,o) is equal to zero, but only that it is small. Let us use the symbol
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O(h(T)), if h is some function with positive values, to denote a quantity which is
bounded by some fixed constant times h (T). If we could prove that, for 1 N,
there are points si such that qi(si) is O(T), then we would conclude that the qi(t) are
O(T), since each i is Lipschitzian with a fixed constant, and I has length T. In
particular, it would follow that IIF(a)ll O(T). Hence, by taking T small enough, we
would get a contradiction with IIF(a)ll- 1.

To prove that q2(tp.q) is O(T), we use the equation

(1 O 11q1 "k- 1q92

We claim that q92(tp,q)<-AB’Cr, where B’= 1/B. Indeed, if (2(tp,q) were >AB’CT,
then we would get, by the continuity of q2, that q2(t) > AB’CT for in some interval J
containing t,,q in its interior. But then (a 11q1 +/lq2)(t) would be > -ACT +BAB’CT,
i.e. bl(t) would be >0 throughout J. (Recall that ql is bounded by CT, because ql is
Lipschitzian with constant C, and has a zero in L) But, if bl > 0 throughout J, then q is
strictly increasing on J, and this contradicts the fact that t,,q was a local maximum of
A similar contradiction arises if q92(tp,q) < -AB’CT. So 1 2(to,o)l <-AB’CT, i.e.
is O(T).

The argument of the preceding paragraph can be generalized into an observation
that we shall refer to as (Obs), and that will be stated more precisely in the proof.
Informally, (Obs) says that, if q q are known to be O(h(T)) for some function h,
and if is a local maximum of Iqk], then ]qgk+l(t)l is O(h(T)). The proof is exactly as
above: using bg ag1 "[-" "[- Ol.kk(Ok "[- [3k(49k+1, we conclude that, if qg+x were not
O(h(T)), then the term 3kqk+X would dominate the sum in a neighborhood of (since/3k
is positive and bounded away from zero), and then qSk would have constant sign near t,
contradicting the fact that is a local maximum of [qk 1.

Having shown that ]q2(tp,o)l is O(T) for the N-1 distinct points tp., that can be
obtained from the N pairs (p, q) of consecutive zeros of members of a set Z of N zeros
of ql, one can continue the proof in a similar fashion. Call ZI Z, and let Z2 be the set
of the N- 1 points t,. One now constructs a set Z3 by taking for every pair (p, q) of

2consecutive points of Z2, a point t,o in the interior of the interval [p, q] where ]021 has a
local maximum. Since we already know that ql and q2 are O(T), using (Obs) we can
conclude that q3( 2t.q) is O(T) for each tp,o in Z3. Hence q3 is O(T), since q3 is
Lipschitzian. The argument proceeds by induction. One constructs, for each k, a set Zk
of N + 1- k points that are local maxima of I-11, and one proves inductively, using
(Obs), that qk must be O(T) on Zk, and hence that pk(t) is O(T) for all in/. The
induction can continue all the way to k =N. Indeed, each Zk consists of exactly
N + 1 k points, so Zk is nonempty for k 1, N. Having proved that 0k is O(T) for
k 1,..., N it then follows that IlF(a)ll is O(T), and this contradicts [IF(a)ll- 1, if T is
small enough.

There is however, a complication. For the induction to be possible, one needs to
know that, for each pair p, q of consecutive points of Zk, the function Iqkl has a local
maximum at some interior point of the interval [p, q]. If, on some such interval [p, q],
the maximum of ]qkl were attained at p, or at q, then the argument would not go
through, because (i) the maximum so obtained might not be a local maximum of in L
and therefore (Obs) would not be applicable to bound qk+1 at such a point, and (ii) even
if the points we got are indeed local maxima, there might be too few of them. (Example:
let p, q, r be three consecutive points of Zk, and suppose that [qkl increases from p to q,
and then decreases from q to r. Then the point where [qk[ reaches its maximum on
[p, q] is the same as the t’ where [0k[ reaches its maximum on [q, r]. In fact, t’= q. But
then the two pairs p, q and q, r of consecutive points of Zk give rise to only one point in
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Zk+l. Then card (Zk+l)--<_ card (Zk)-2. Since we always have card (Zi+I) <_- card (Z.)-
1, it would then follow that ZN is empty. Naturally, if ZN were empty, the fact that 0N (t)
is O(T) for in ZN would not enable us to conclude that 0N (t) is O(T) for all t, and the
whole proof would break down.)

So we must prove that, at each step of our induction (henceforth referred to as the
main induction), one can be sure that, for each pair of consecutive points p, q of Zk, the
function Iqk[ does not attain its maximum over the interval [p, q] at one of the
endpoints. This we prove by contradiction. Assume that, at some step k - k + 1 of the
main induction, there are consecutive p,q in Zk such that [qk(t)[----<
max ([qk(P)[, [0k(q)[), for all tin [p, q]. We show that, if T is small enough, this implies
that F must vanish identically. For this it suffices to prove that q91 must vanish identically
on [p, q]. (Indeed, if 10 on [p, q], we get from ql O/111 -" fllq)2, fll 7 0, that q)20
on [p, q]. Then ve get in the same way the conclusion that q3 --0 on [p, q], that (4 --0
on [p, q], etc. So F vanishes identically on [p, q], and therefore F-=0 on I.) To prove
that q91 vanishes identically on [p, q], we show that q91 is O(Tm) on [p, q] for every m.
Naturally, this does not suffice to conclude that (01 0, but the actual proof, carried out
below, will not only give q91 O(Tm), but also the values of the constants H,, such that
[ql(t)[ <-H,,T for in [p, q]. From these values, it is seen that the H, grow geometric-
ally, so that, if T is small enough, H,T"0 as m oo, and therefore qx(t)-’0 for
p<-t<-q.

To prove that is O(T") for all m, we will actually prove that for every m, and
every i= 1,..., k, is o(Tk/l/"-). This will be proved by induction on m. This
induction, which is carried out within each step k k + 1 of the main induction, will be
referred to as the subsidiary induction. For the induction to work, it is not enough to
consider the interval Jg [p, q]. One must work with a different interval J for each i.
Starting with Jk =[P, q], one constructs the J/ backwards. Each J is the interval
between two--not necessarily consecutivepoints p, q of Zi. Having defined pi and qi

for a given i, there are unique pairs (p_, r) and (s, qi-) of consecutive points of Zi-1
such that p [Pi-1, ri] and q [si, qi-1]. This defines the points Pi-1, qi-1, and therefore
the interval J-l. The point of this is that, every time one has a bound for qg on J+, the
bound extends to the larger interval J. This follows from the fact, that on [p, ri+l], [i[ is
maximized at p+l so that, if Ioi(t)l<-K for tin J+l then [q(t)l<-[o(p+x)l<-K for tin
[pg, ri+l]. Similarly, I ,(t)l for in [s+, q], so I ,(t)l =<K throughout J.

The subsidiary induction will prove that q is O(Tk+l+’-i) on Ji for all 1 k,
and for all m, from the hypothesis that the maximum of [qk on Jk is reached at one of the
endpoints. The inductive step of this induction on m goes as follows. If all the q9 are
O(Tk+’+l-i)onJi then, in particular, qk is O(T"+a)onJk and qk-I is O(T’+E)onJk_l.
Moreover, all the qg for -< k 1 are also O(Tm/2). Since ]qk-l] has a local maximum at

Pk and at qk, it follows from (Obs) that qk(Pk) and qk(qk) are O(Tm+2). Since the
maximum of Iqk] on Jk is reached on the boundary, we conclude that qk(t) is O(Tre/E)
on Jk, thereby improving the original bound (0k O(Tm/l). The interval Jk contains a
point r of Zk-1. So r is a local maximum of [qk-2[. Since ql, q2 qgk_2 are O(T"+3), it
follows from (Obs) that tpk-(r) is O(Tm+3). On the other hand, ql, 0k- are
O(T"+2), and we have just shown that k is O(Tm/2) as well. Then, from qSk-1
Ok_1,1(41 -’" -+- Olk_l,k_l(4k_ "Jr" k_l(4k, we conclude that qk-1 is O(Tre+E) on Jk, SO (0k_

is Lipschitz with a constant that is O(Tm/2). Since there is one point in Jk where (0k- is
O(Tm+3), it follows that qgk- is O(Tre/a) on Jk. Since bounds for qgk- on Jk extend to
Jk-1, we conclude that qgk- is O(Tre/a) on Jk-l, which improves upon the bound
(Ok- O(Tre+E) which was part of the inductive hypothesis of the subsidiary induction.
Proceeding in the same way, one increases by one the exponent in the bound for (0k-2,
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then for (0k-3, and so on, until (01 is reached. When this happens, the inductive step of the
subsidiary induction is complete. Notice that, for this induction to work, one has to
prove the bounds by grouping the exponents together as indicated, i.e. by going from
(4k O(Tm+l), qk_l-- O(Tm+2 ql O(Tre+k) to the same bounds with the
exponents raised by one. The simpler idea of proving by induction on m that qg
O(T") for i= 1 k, is easily seen not to work. In fact, if we know that
(01, (42 (,k-1, qk, are O(T") on Jk-1, then the fact that [qk-l[ has a local maximum at

Pk and at qk only enables us to conclude, via (Obs), that qk(Pk) and k(qk) are O(Tm),
which we already knew anyhow, and does not improve upon the bound on 0.

One problem still remains, however. For the proof of the bounds qi

o(Tk+l+m-i), it is not sufficient to be able to carry out the inductive step m - m / 1. We
must be able to start the induction by knowing, e.g. the case m 0, i.e. that qi is
O(Tk+l-i) on Ji for 1 k. In order to do this, we will actually modify the
proposition to be proved in the main induction. Instead of just proving that (01 (0k

are O(T), we will prove that @1 is o(Tk), 2 is O(Tk-l) qk is O(T). The inductive
step k k / 1 therefore contains as part of the inductive hypothesis precisely the initial
step m 0 of the subsidiary induction. Hence there is no question now that the

k
subsidiary induction can be carried out, and that the points t.q of Zk+I can be
constructed as interior points of the intervals between consecutive points of Zk. But
now, in order to carry out the step k - k / 1 of the main induction, it is not enough to
prove that (0k+ is O(T)o One must go back to the estimates for ql, o2 qk, and
improve them, by replacing the bounds qi O(Tk+l-i) by the stronger bounds qi

o(Tk+2-i). This, however, is easy. The inductive hypothesis of the main induction
implies, in particular, that 01, q2, (4k-1 are O(T2). Using (Obs), we find that, at the
local maxima of 1(4k-11, (0k is O(T2). On the other hand, 01,..., (4k are known to be
O(T) by the inductive hypothesis, and (k+l is proved to be O(T). Since bk is a linear
combination of (1 (4k+l, it follows that tog is Lipschitz with a constant that is O(T).
Since qk is O(T2) on the nonempty set Zk, it follows that (0k is O(T2), which gives the
desired improvement on the bound for tog. The proof that (0k_ is O(T3), that (0k_2 is
O(T4), etc., is done in the same way.

We now give the details of the proof outlined above. The main point that needs
care is the explicit computation of the constants involved.

ProofofLemma 3. We begin by specifying the choice of T. Let A max (A, 1). Let

N(N + 1)Ar 1 +

rl N N+

o=
NA

=AN Ix= B

We let T be such that

(11)

and

rT < 1,

(12) 2N3/2(r/+NA)(r/+pu)NATeNAT <- 1.
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We prove our result by contradiction. Assume that the conclusion is not true. Then
there exist:

(a) an interval [a, b], of length b a T’ <= T(N, A, B);
(b) measurable real-value functions a0. (i 1,..., N, 1,..., i) and /3i (i

1,... ,N-1) such that [aii(t)[ <- A, and B <-i(t)<-_A for all [a, b], and all i, ];
(c) absolutely continuous functions p" [a, b] [, of which at least one does not

vanish identically on [a, b], and that satisfy the differential equations (10);
(d) a subset Z of [a, b] that contains exactly N points, and is such that ql(t) 0 for

tZ.
The vector-valued function F (ql,..., qu) is a solution of the linear homo-

geneous system of ordinary differential equations

(13) P(t)=M(t)F(t),
where we have written F as a column, and where the matrix M is given by

all 1 0 0

O21 a22 2 0 0

(14) M

ON-I,1 ON-1,2 ON-1,N-1 N-1
ON, ON,2 aNN

The condition that not all the vanish identically implies that I[F(a)[[ # 0 (where
[[" denotes the Euclidean norm). Conditions (a)-(d) do not change if all the are
multiplied by the same nonzero constant, so we can assume that IIF(a)[[= 1. The
operator norm of M satisfies

IIM(t)ll--< NA.

Hence, Gronwall’s inequality gives
NA(t--a)[IV(t)l[<-e

Therefore [[(t)llM(t)[[ [IF(t)[]-<_ C where

(15) C NA euar.

te[a,b].

Hence IlF(t)-F(-)ll<=Clt-z[ for every t, z in [a, b]. Therefore all the functions
satisfy a Lipschitz condition with constant C.

We now construct a finite sequence Z1 Zr of finite subsets of [a, b]. We let
Z1 Z. Having defined Z1,..., Zk, we define Zk/l as follows. For each pair (p, q) of

kconsecutive points of Zk, find a point tp.q 6 [p, q] such that

(16) 1 (to,q)[ max {[(t)[ p <- <- q}.
k(It is clear that such a point tp,q exists, since is continuous. Of course, tp,q need not be

unique, but we can make the definition completely unambiguous by stipulating, for
kinstance, that tp,q is the leftmost point of the set of in [p, q] where 1[ reaches its

maximum value.)
kWe then define Z+ to be the set of all the points to,q. If v is the number of

elements of Z, it is clear that v+ <-v- 1, since there are exactly v- 1 pairs of
consecutive points of Z. We let r be the first k for which v 1. Then Z+ is empty.
Because Vl N, we see that r =< N. We will show later that v+ /k 1, SO that r N
and v N + 1 k for k 1 N.
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We shall use/., to denote the interval whose endpoints are the smallest and the
largest elements of Zj.

We define constants Vl,..., DN, EI EN as follows"

(17) D1 =0, E1 =C,

(18) Ek+l Ek +pDk +AC,

(19) Dk+l tzEk+l for k _-> 1.

We prove, by induction on k, that the following four facts are true for each k such
that 1 _-< k _-< N.

(ik) For every/" 1,..., k 1, and every pair p, q of consecutive points of Zj, the
point tp.q is interior to the interval [p, q].

(iik) vi N + 1 -j for j 1, k.
(iiik) [(p)[ <-DkTk+2-; for j 1 k and p Z.
(iVk) [o;(t)] EkTk+l-j for/’ 1 k and [a, b].
Notice that the inductive step does not just involve proving an estimate for (0k+l(P

Pk+l(t), using the estimates for qi(P), oi(t) for j <_- k. More than that is required. From
[,;(p)] <-DkTk+2-i and ],;(t)] <-_EkTk+l-i for ] _-< k, p Zi, /. we must not only prove
a new estimate for qk/(P), Pk+l(t), but also go back to the preceding estimates and

Tk+3-i Tk+2-i for DkTk+E-j, EkTk+l-jsharpen them, by substituting Ok+l and Ek+
respectively.

We first prove (il), (iil), (iiil), (ivl). The first condition holds vacuously. The second
one is trivial, since we know that Z1 has N elements. The third one is also trivial, since
(41 vanishes on ZI. Finally, to prove (iv1), recall that g, is Lipschitz with constant C.
Since the interval [a, b] has length T’_-< T and contains a zero of ql, we can conclude
that

(20) IP(t)l <-- CT for [a, b].

Hence (ivx) holds.
Before we proceed to the induction step, we make the following observation"

(OBS) if [o;.] has a local maximum at an interior point of [a, b ], then

A
(213

Let us prove (OBS). Assume that (21) were false. Then the inequality

A
(22) Iqj+l(r)l >- i=1

must hold for all r in an interval (t h, + h), because the o are continuous. Hence

I/3; (r)o;./ (r)l--> B l;/l(r)[

i=1

i=1

If we let f=.oj+l, g= c.q, we have b=f+g. The inequality (22) implies, in
particular that o./ never vanishes on (t h, + h). Since q/ is continuous, it must have
a constant sign on (t h, + h). Since - is positive, the function f also has constant sign
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on (t-h, t+ h). Since If(r)l > Ig(z)l for all r, we conclude that b(-) is either strictly
positive for all z, or strictly negative for all z. Since p. is absolute continuous, we
conclude that 0i is strictly monotonic on (t- h, + h). This contradicts the fact that
has a local maximum at t. Hence (21) holds. Therefore, (OBS) is true.

We now carry out the induction step. We shall first do the 1 :ff 2 case, and then the
general k => k / 1 case. So, let us assume that N _-> 2, and let us prove (i2), (ii), (iii2) and
(iv2).

To prove (i2), we must show that, if p and q are two different zeros of ql, then
does not vanish identically on the interval between p and q. To see this, assume that ql

vanishes identically on some interval L Then the equation bl a1101+/31q2 implies
that (#2 vanishes identically on L But then it follows from (2 O21(01 + a22(2 + 2(03 that
q3 --0 on I. Proceeding in this way, we see that all the q. vanish identically on I. Hence
the qi vanish identically on [a, b], since they are solutions of a homogeneous linear
system. But this contradicts the assumption that not all the 0. vanish throughout [a, b ].

Having proved (i2), it is now clear that b’2 N-1. Since we already know that
vl N, conclusion (ii2) follows. Now we must prove (iii2). Since ]q(p)] 0 for p Z1, it

2is clear that ]01(p)l <=O2T3 for such p. Now let s Z2. Then s to.a for some p, q in Z1
such that p < q. Since we have already proved (i2), we know that s is an interior point of
[p, q]. Hence I01] has a local maximum at s. By (OBS),

A

On the other hand, we know that [ol(t)[<-_CT for all e[a, b]. In particular,
I(s)l<-_fT, and then [=(s)l<-(af/n)T. The preceding inequality is true for every
s e Z2. Since Z2 (because N ->_ 2), and since q2 is also Lipschitz with constant C, we
conclude that [,.(t)l-< C(1 +A/B)T for e[a, b]. But then, for e[a, b],

]bl(t)] ia11(t)q9 l(t) +/31 (t)0z(t)l

<=ACT+AC 1+ T

(A)=AC 2+- T.

So ol is Lipschitz with constant AC(2 +A/B)T. Since [a, b] contains a zero of ql,

and has length T’, it follows that [ol(t)]<-AC(2 +A/B)T2. But then, if s eZ2,

A A2C( _)T2 T2"1(2(s)] "[(t0l(s)]
B

2 + DE

Hence (iii2) holds. Finally, we observe that, in the course of proving (iii2), we showed
that

[ql(t)l <-AC 2 +

and that

(A)lo2(t)l c 1 +- T for all e [a, b].

Since AC(2+A/B)<=E2 and C(I+A/B)<-E2, conclusion (iv2) follows. Hence, the
desired result has been established for k 2.
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We now consider the general case. We assume that (ik), (iik), (iiik), (ivy) hold, and
that k <N (for, if k N, the induction ends). Because of (iik), the set Z contains at
least two points, so that Z+I is nonempty.

Proof that (i), (ii), (iii), (ivy) :=> (ik +1). Assume that (i+1) is false. Since (i) is
known to hold, (i+1) can only fail to hold if there are consecutive points p, q in Z such
that I0(t)l, [p, q] reaches its maximum value for p or q.

Let us agree to call any closed interval whose endpoints are in Z. a j-interval. If
1 < j _-< k, and if J [o-, r] is a j-interval then we knowmbecause (i) holdsmthat there
exist unique pairs (rl, r2), (rl, r2) of consecutive points of Z.-1 such that cr [o"1, 0"2]
and r It1, r2]. Let J’= [rl, z2]. Then J’ is a (j-1)-interval, which we shall call the
(- 1)-interval associated with J. It is clear that J___J’ and that, if J f-I Zi has m points,
then J’fq Zi-1 has m + 1 points. Moreover, since the maximum of I o -,I on is
attained at o-, and the maximum on It1, r2] is reached at r, it is clear that

(23) max {]qi-l(t)l:t e J’} max {[qi-l(t)[:t J}.

We now define a sequence J1 Jk, such that each J. is a j-interval, by backwards
recursion. We start with Jk [p, q]. Having defined the j-interval J., with j > 1, we let
J-i be the (j- 1)-interval associated with Ji. The J. clearly satisfy

J1 =J2 =’’"

and

Iqi(t)l_-<sup{[o(r)l:rJ.+l} for tJ,j<k.

We now prove, by induction on m, that the following two estimates are satisfied for
every nonnegative integer m.

Ioi(s)[ <_ H,T +"+-(t.)

for s J.f’lZi, l <-j <-k.

(tt,) Io;(t)l <--K,T’+"+-

for tJ., l <-j<-k.
The constants H,, K,, are defined by

Ho=D, Ko= E,
K,/I (k + I)H, +kK,,

kA
H.+I --K.+I.

Since Ho D, Ko E, the estimates (to) and (tto) are simply restatements of(iii)
(ivk), which are being assumed. If (t,,) and (tt,) hold, let us prove that (tin+l) and
(ttm/l) are true.

Hypothesis (tin)implies, in particular, that I 0 (p)l and I0(q)l are bounded by
HT"+2. Since we are assuming that [o1 attains its maximum value on the boundary of
the interval [p, q], it follows that

(tt,o) I,p(t)l<-HT+, teJ.

If/" < k, then all the functions [oi[ are bounded by K,T+"+1- on J. and hence, in
particular, on J. Since j < k, and T T(N, A, B) _-< 1, we have K,T+"+-i <= K,T"+2.
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Hence [(j(t)l <=K.,T"+2 for Jk. But then

i=1

[(k- 1)AK +AH]T+

on the interval J. On the other hand, J contains one point of J_z Z_z. For that
point, estimate (?) implies that I,-(,)lHT+3.

Hence, since J has length T, we have the bound

(tt,) I,-(t)l Nn,Zm+3

for J, where

Hm. (k 1)AKm +AH +H.

Since I-(t)l Nmax {l-(s)l. s J} for eJ_, we see that (tim, l) holds for all
e J_. Now suppose that we have proved the estimate

(tt,.) I-.(t)ln,.
for T J_., where the constants Hm, are defined by

H,0 H,

H,.+ (k 1 )AKIn + AHm,. +H.

We can then prove (ttm,.+), if <k-1. Indeed, if we let f k-- 1, the
estimate (tt,.) asserts that [@i+INH,.Tm+"+ on +. Also, by (t#m), we have

I1gz*+- on J, f #, then is bounded by KTm+"+ on J, and hence on

.+ (because N k 1--so that k + m + 1 m + + 2--, and T N 1).
Hence, on .+"

(fAK +AH,.)T+"+.

Moreover, + contains one point r which belongs to . Z#. Hence, by (t)

Therefore, for .+,
I,-.+ (t)[ [,(t)[ (MK +AH.. +H)T

nm,+lrm+(+l)+2.

This is exactly (tt.,.,./), except for the fact that we have only proved it for Jk-,.
But then equality (23) shows that (tt.,,,,/l) holds on Jk-,,-1. This completes the proof,
by induction, that the (tt.,.) hold for all/x 0,..., k 1. Now, it is easy to see that

H.,.= A H. + (k-i)A"+-

-(k + l)kH + k2’kK,
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Hence we have proved (putting/" k-/z) that

Ii(t)l<=g,+lTk+’+2-J
for 1,..., k, and t J.. But this is precisely (,+1). To complete the induction, we
now prove (,/1). It is clear that (,,/1) holds for/’ 1, since ql vanishes on Z1. For
1 </" <= k, we use (OBS). If r J. CI Zi, then r is a local maximum of I-1{, because we are
assuming that (ik) holds. But then

Since we have already proved (tt,,+l), we have

for 1,..., ]- 1. But, for such i, T+"+2- -< Tk+m+3-i, because T < 1. Then, for
’r Ji fq Zi, j l, k,

A
K Tk+(m+l)+2-i

kA Tk+(m+l)+2_<--Km+lB

Hmrk+(m+l)+2-i.
So (.,+1) holds. This completes the proof that (.), (.) hold for all m. Now, if

m > O, we have

K.,+I (k + 1)kH. + k2kK.

(k(k+ 1)Xk+l

)+ k2fi, k K,,.
B

Hence, for m > 0

K,,, (k(k + 1)dk+l

B

Therefore

K, <

where sr N(N + 1)AN(1 +X/B).
Now apply (,,) with ] 1. We find

ICpl(t)l < gl Tk (’T)"

for every J1, rn > 0. Since srT < 1, this implies that ql(t) 0 for J1. So q.l vanishes

identically on J1. But this is a contradiction, because we have already shown (while
proving (io)) that 01 cannot vanish identically on a nonempty open interval. This

contradiction proves that (ik+l) holds.
End of the induction step. Having proved (ik+l), it is clear that (iik+l) follows. Let

now p Zk+ 1. Then we know that the function I,k has a local maximum at p. Hence, by
(OB$)

A
Iq i(P)l.
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But I0i(p)] <-EkTk+l-i for 1,..., k, since p li for such i, and we are assuming that
(iVk) holds. Also, for 1 k we have Tk/l-i =< T, since T <- 1. Then

kAIo+(p)I ---ET.
Now Zz+I is nonempty, since k <N and we already know that Uk/ N-k,

because (iik/l) holds. Hence there is some point of [a, b] where Iqgk/l] is bounded by
(kA/B)EkT. But k/1 is Lipschitz on [a, b] with constant C, and b-a T’. Hence

kAEkIOk+l(t)l<= C+
B /T’ t[a,b].

On the other hand, (iVk) implies that [ql is bounded by EkT for f-< k. Hence

<-kAEkT+B C+
B !

(BC + 2kAEk)T.

Also, there is some point p Zk. For that point we have the inequality Iqgk(P)l
DkT2. Hence

I(t)I<-(D+BC+2kAE)T, t[a,b].

Assume that we have proved the inequalities

I(/)l <--Ek.iTg+2-i

for all [a, b] and all j + 1,..., k + 1, where the Ek,i are given by

kAEk
Ek,k+l C

B

Ek, iAEk q- AEk,i+ + Dk.

Then it follows easily that [oi(t)l<=E.iTk+2-i for [a, b]. Indeed, the bounds
Io,.(t)l <-EkTk/l-" hold for rn 1 because of (iVk). Also, for such m, Tk/-" <-

Tk+2-(i+l) Tl+-iTk/l-i Finally, we have IO+l(t)l<--Ek.i+l Ek,i+l Hence

<-- (iAEk + AEk,i+I)Tk+-i.

But, if we pick a point p Zi, we have

[q,(p)[ <- DTk+2-i.

Hence, if [a, b ],

I0 (t)[ =< (iAE / AEk,i+ + Dk T +2-i.

Ek,iTk +2--i.
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On the other hand, it is easy to see that

k
Ak+2-iEk + A Dk + jAJ-i+ Ek.Ek’i=Ak+l-ic+- /=o =i

Therefore

Ek, <_v C +---Ek +(1 +NN)Dk +N2fi, SEk.

rEk + pDk +SC
Ek+l"

So we have proved that

for 1 k + 1, i.e. we have proved estimate (ivy+l).
To conclude the induction, we must prove (iii + 1). Let 1 < ] -< k, and let p Zi. Then

p belongs to the interior of the interval between two consecutive points ql, qg. of Zi_,
and Iq._l[ has a local maximum at p. Hence

i=1

zk+2-iNow [oi(p)l<--Ek+l For i<-f-1 we have k+2-i>-k+3-f. Then
Tk+2-i Tk+3-’, because T _-< 1. Therefore

NA k+3-i

T+-iDk+l
This completes the proof of (iiik/l). Hence the induction step is complete, and we

have show that (ik), (iik), (iiik), (iVk) hold for all k _-< N. In particular, this shows that Zi
has exactly N + 1-] elements.

Now, for each/’, we can apply estimate (iVk) with k =/’, and conclude that

]o.(t)] =< EiT for t [a, b].

On the other hand, an easy computation shows that

E= ( +,)C

and that, for k -> 2"

Ek "rl d- pt, C W A "rl -t-- pld, c
i=0

<-- (7 + NA)(r/+ O/x)NC.
Therefore the Euclidean norm of the vector F(t) satisfies

IlF(/)ll <- 4(n +NA )(rl + plz )NCT

for all in [a, b]. But this contradicts the fact that IIF(a)ll 1. The.proof of Lemma 3 is
therefore complete.
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5. End of the proof. We need another Lemma, which is a direct consequence of
Lemma 3.

LEMMA 4. Assume that the system f(x) + ug(x) is analytic and satisfies condi-
tion (A). Then every strong extremal is bang-bang. Moreover, for every compact setK

_
M

and every T >0 there exists a positive integer N(K, T) such that, if (3,, u) is a strong
extremal defined on a time interval oflength T, and 3’ is contained in K, then u has at most
N(K, T) switchings.

Proof. Let p M. Let Rp denote the ring of germs of analytic functions at p, and let
Vp be the Rp,module of germs at p of analytic vector fields. For any analytic vector field
X in a neighborhood of p, let Xp denote the germ of X at p. Let Wp be the
Rp-submodule of Vp generated by the germs (ad f)i (g)p, 0, 1,.... Then Wp is finitely
generated, because Rp is noetherian and Vp is finitely generated. Hence there is a
positive integer m such that

(ad f),,+l(g)p ai(ad f)i(g)p
j=0

for some germs ao,..., a, Rp. Therefore there is a neighborhood Up of p where there
exist analytic real-valued functions b0 b,, such that

(24) (ad f)m+l(g)(x)= Y’. b.(x)(ad f)(g)(x)
/’=0

for all x
Because of condition (A), there exists a neighborhood U of p where the identities

(25) [g, (adf)(g)] E i(adf)’(g)+zti(adf)+(g)
i=0

are valid for/’ 0,..., m, the 8i, being analytic functions on U such that I(x)l < 1
for all x e U,.

By shrinking Up, if necessary, we can assume that the closure of Up is compact and
contained in U,. Then the functions 80 are bounded in absolute value on Up, by a
constant E, and the Iil are bounded by a constant E’< 1. By further shrinking Up, if
needed, we can assume that the b are bounded by a constant E".

Now let (3", u) be an arbitrary admissible pair, defined on an interval of length
T’<- T. Suppose that (3", u) is a strong extremal, and that y is contained in Up. We will
show that (3", u) is bang-bang, and that it has at most N switchings, where the numberN
does not depend on (3", u).

Let (3", u) be defined on the interval I =[a, a + T’]. Let t--> A(t) be an adjoint
solution which is nontrivial on Lo(3"(t)) and satisfies H(A(t),y(t),u(t)) <
H(A (t), 3,(t), v) for all v [-1, 1], and almost all I. Define functions ’I R by

.(t) (A (t), (ad f)-(g)(3"(t)))
for ] 1, 2

Then the - are absolutely continuous on/, and the time derivative of is given by

k.(t) i+l(t) + u (t)(A (t), [g, (ad f)-X(g)](/(t))).
For ] 1 m + 1, we can write

i-1
[g, (adf)-(g)] E 8i-x(adf)i(g)+t-(adf)(g)

i=0
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so that

/’-1

bi(t) qi+l(t)+ E u(t)6ii-l(y(t))qi(t)+ u(t)rli-l(T(t))Oi+l(t).
i=0

(26)

For j 1, m (but not for j m + 1), put

Then the equations

aii(t) U(t)t3i-l.i-l(T(t)),

i(t) 1 U(t)rli-l(y(t)).

i=1

hold for/’ 1 m.
For/’ rn + 1, equation (26) contains q,,/2 on the right side, but we can express

,/2 in terms of ,/ using equation (24). The final result is

where

m+l

(m+l-- E Olm+l,i(i"
i=1

a,+x.i(t) bi-x(y(t))+ u(t)(6i,(y(t))+ rl,(/(t))bi-x(3,(t))).

It is clear that

for j= 1,..., m, i= 1,...,j, and that

1- E’ <-fit(t) <- 1 + E’

forj= 1,..., m.
Also

IOm+l,i(t)[ <=E" +E + E’E".

So, if we let A be the largest of 1 + E’ and E" +E + E’E", and B 1 E’, we see
that the ]aii[ are bounded by A, and that

O<B<=i(t)<=A

for all t.
The constants A, B do not depend on the particular choice of our strong extremal,

but only on the constants E, E’, E", which depend only on the neighborhood Up. The
hypotheses of Lemma 3 are satisfied, with N m + 1. Let To be the time T(N, A, B)
whose existence is assured by Lemma 3. Then either (a) the function 1 has at most m
zeros on any subinterval of ! of length <_-To, or (b) all the oi, 1 m + 1 vanish
identically on L Assume (a) holds. Let u be the smallest integer such that uTo _-> T. Then
pa has at most um zeros on L In any interval J between consecutive zeros of o, we have
(h (t), g(y(t))) ql(t) 0. Therefore, the condition that H(A (t), y(t), v) is minimized
for u= u(t) implies that u is constant on J, and has the value +1 if ql(t)<0, -1 if
ol(t) >0. So (y, u) is bang-bang with at most um switchings.

We must now exclude case (b). Assume that ol,..., q,,+ vanish identically. Let Q
be the set of all vector fields X L whose restriction to Up can be written as a linear
combination of g, (ad f)(g),..., (ad f)m(g) with analytic coefficients. If X Q then, on
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Up, we have

(27) X Y’. h,(ad f)’ (g).
i=0

Then

If, X] E (f hi)" (ad f)i(g) + E hi(ad f)i+X(g).
=0 =0

By (24), (ad f)m+l(g) can be written as a linear combination of g, (ad f)(g),...,
(ad f)’(g). So we see that If, X] Q. A similar reasoning, using (25) instead of (24),
shows that [g, X] Q. Hence Q is an ideal of L. Since g Q, it follows that Lo

_
Q. Now,

if X Q has an expression of the form (27), then

(A (t), X(y(t)))= E h,(y(t))Oi+l(t) 0
i=0

since we are assuming that 1, rn+l vanish identically. Since Lo_ Q, A (t)= 0 on
Lo(y(t)). But A was chosen so that A (t) is nontrivial on Lo(y(t)), so we have reached a
contradiction. Hence the 01,..., 0,,/1 cannot all vanish identically, and possibility (b)
is eliminated.

Now let K be an arbitrary compact set, and let T > 0. We cover K with a finite
number Up1,..., Up, of neighborhoods of the form Up as constructed above. With
respect to some Riemannian metric on M, the vectors f(x), g(x) are bounded for x K.
Hence there is a constant C such that, if 3’ is a trajectory of x f+ ug, and 3’ is contained
in K, then d(y(tl), y(t2)) -< C(tl-t2) for all tl, t2 in the domain of 3’. (Here d is the
distance.) Let 6 > 0 be a Lebesgue number for the covering {Up1,..., Up,} of K. Let
e 6/C. Let N1 Nn be such that, whenever (% u) is a strong extremal contained in
Ups, and defined on an interval of length -< e, then (y, u) is bang-bang with at most )V
switchings. Let N max (Ni,..., Nn). Let/z be such that/ze => T.

Then, if (y, u) is a strong extremal contained in K, and defined on an interval I of
length <-T, we can partition ! into at most/z intervals/, of length -<e. The restriction
(yj, uj) of (y, u) to/. is also a strong extremal, and yi(Ij) has diameter <=Ce 3. Hence yi

is entirely contained in one of the Up,. Hence (3’i, ui) is bang-bang with at most/z
switchings. If we let N(K, T)= txN, the proof is complete.

We are now ready to end the proof of our main theorem. Choose u0 1. By Lemma
2, there is a compact K’_ K, and an integer N, such that (K, K’, T, u0) has the strong
extremal replacement property with N1 steps. By Lemma 4, there is an integer N2 such
that every strong extremal contained in K’, and defined over a time interval of length
<- T, is bang-bang with at most N2 1 switchings. If p can be steered time-optimally to q
in time T by a trajectory in K, then p can be steered time-optimally to q by a trajectory
in K’ that is the concatenation of at most N1 pieces, each of whom is either a strong
extremal or constant bang-bang. Each of the strong extremals is the concatenation of at
most N2 constant bang-bang trajectories. Hence p can be steered to q by a concatena-
tion of at most NIN2 constant bang-bang controls, i.e. by a bang-bang control with at
most NN2-1 switchings. Q.E.D.

Acknowledgment. The author is indebted to an anonymous referee for suggesting
an improvement to the proof of Lemma 2.
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A BOUND ON THE BOUNDARY INPUT MAP FOR PARABOLIC
EQUATIONS WITH APPLICATION TO TIME OPTIMAL CONTROL*

DON WASHBURN

Abstract. A semigroup formulation of boundary input problems for systems governed by parabolic
partial differential equations is presented. A useful bound on the operator kernel of the input map is
established under very general conditions. This bound is used to study the input map and the results used to
examine the time optimal boundary control problem.

1. Introduction. A semigroup approach to modeling boundary input problems for
linear partial differential equations was first presented by Fattorini in [7]. This approach
was extended by Balakrishnan in [1] and [2] and used to solve the linear quadratic
regulator problem for parabolic equations with boundary control in [3]. Key to this
approach is the existence of a useful bound on the growth rate of the operator kernel of
the boundary input map. Such a bound was first conjectured by Balakrishnan based on
an examination of special cases. It was studied in some detail by the author in [14] and
[15]. This paper, after establishing notation and setting in 2, presents the best possible
bound in an abstract sense in 3. Here it is shown that the bound depends on the Greens
map and the choice of spaces for the problem. In 4, we show that a large class of
practical problems is covered by the abstraction in 3. Section 4 then uses the input map
plus the bound to briefly study the time optimal boundary control problem.

2. Canonical example. Let f be a bounded open subset of n with boundary F.
We consider a system governed by the heat equation on f with input applied on F, i.e.,

(2.1) 0___f= Af in f; f u on F; f= 0 when 0.
0t

Let G denote the Greens Map for the problem defined by Gv g where-:

Ag =0 in f; g v on F.

We require f to be such that G: L2(F) L2(f) continuously; a mild restriction which in
particular allows corners [11, p. 250].

Let A be the closed restriction of the Laplacian fi, defined by

Ag Ag for g (A) H(f) fq @(A)

where

@(A) {u/u, Au L2(f)}
and H0(f) is the 1st order Sobolev space of functions vanishing on F. Then A
generates a strongly continuous semigroup in L2(f), denote it by S(t). Recall that S(t) is
analytic and compact.

Initially we restrict u to be in C(0, T, C(F)), where the sub zero denotes
compact support in (0, T). In this case Gu C’ (0, T, C(f)) and we reformulate (2.1)

* Received by the editors June 27, 1978, and in revised form January 29, 1979.

" Department of Mathematical Sciences, United States Air Force Academy, Colorado. Now at the Air
Force Weapons Laboratory, Kirtland Air Force Base, New Mexico 87115.

R. Triggiani has recently used a similar cosine operator approach to study hyperbolic boundary input
problems 13].
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as follows"

O(f-Gu) OGu
A(]e-Gu)- in l

ot ot

’- Gu 0 on F; .f- Gu 0 at O.

If we set w f-Gu then we have the familiar Banach space formulation:

dw dGu
dt
-Aw dt w(0)=0 w(A)

where the derivatives are in the L(f) norm. Notice that the boundary conditions are
now contained in the statement w (A). This problem has the well known solution
given by:

w(t) $(t-z) (Gu)(z) dr
o

or

f(t) S(t-z)-z(Gu)(z) dr +(Gu)(t).

This is essentially the solution of Fattorini [7]. Under the assumptions on u, the right
hand side may be integrated by parts to obtain:

(2.2) f(t) AS(t--)(Gu)(z) dr.

The solution (2.2) was obtained by assuming u C (0, T; C(F)), an awkward restric-
tion for most control problems. Fortunately, we can show that the map

uf
given by (2.2) is bounded when considered as a map

L(0, T; L(F))- L(0, T; L(f)).
Therefore, we may extend our notion of solution to the case where

u L(0, T; L(F)).
For arbitrary u L(0, T; L(F)) f given by (2.2) is now a "generalized" solution of (2.1)
and is no longer defined pointwise, i.e.,

f(t) e L([I) only a.e.t.

Note that a.e. t is in fact the best we can do since there exist example where ’(t) L()
for some values of t. See example in [17, p. 202].

This is untenable for time optimal and final value problems and thus we must
restrict u to lie in a smaller set. In this regard Balakrishnan [1] established that

(2.3) [AS(t)GI-- O(t-3/4) (O(") is the standard Landau symbol for 0)

for the case where f is a square by using eigenfunction expansions and known growth
rates on the eigenvalues of .

Such a bound on the "kernel" of the operator in (2.2) allows one to establish hat if
u L(0, T; L2(I-’)) for p > 4 then f(t) L2() Vt, and permits a detailed analysis of the
operator in (2.2).
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In the next section we will present general results concerning a bound such as (2.3)
and study the properties of maps such as (2.2).

3. Abstraction and a study ot the boundary input map.
3.1. Generality of IAS(t)GI= O(t-). Let V and E be Hilbert spaces (cor-

responds to LZ(F) and LZ(12) respectively). Let G: V--> E be bounded (corresponds to
the Greens map). Let A: (A)c E--> E be the infinitesimal generator of an analytic
semigroup, denoted $(t), defined on E.

Ouestion. What is the behavior of IAS(t)GI for small t?
Notice that if G is onto E then the best behavior to hope for is that IAS(t)GI

O(t-1), which follows from the analyticity of the semigroup. However, if G maps into an
appropriate subspace of E, then we can hope for better behavior on ]AS(t)G]. To study
this proboem we need to review intermediate spaces between two Hilbert spaces.

Recall that if X and E are two Hilbert spaces with X densely and continuously
embedded in E, then there exists a positive, self-adjoint operator, A, unbounded in E
with domain X and range E. The definition of the fractional powers of such operators,
A, is well known [6, p. 1196]. We may, therefore, define intermediate spaces between
X and E, denote [X, E]o, by [X, E]o (Al-), for 0 [0, 1]. The spaces IX, E]o are
independent of the choice of A and are thus well defined subspaces of E. WhenX is the
domain of the generator of a bounded strongly continuous semigroup in E, we have the
following alternate characterization of these spaces.

THEOREM A. Let A be the generator of an equi-bounded strongly continuous

semigroup S (t) defined in a Hilbert space E. Then for 0 (0, 1) we have

f6[(a), E]x-o ifand only if f S(t)f f 2 dt
tO

The proof of this familiar result may be found in [9, p. 48]. In order to prove our
basic theorem we will also need the following nontrivial result which is an immediate
consequence of a theorem of Butzer and Berens [4, p. 195].

THEOREM B. If S(t) is an equi-bounded strongly continuous semigroup in E and
0 (0, 1) then

--< c implies [S(t)f f[ <=Mrtto

The basic theorem concerning AS(t) is Theorem 1 below.
THEOREM 1. Let S(t) be a strongly continuous analytic semigroup in E with

generator A. Then
(a) IA$(t)fl- O(t-) for some 0 6 (0, 1) implies f 6[(A),E]l-Oo, 0o (0, 0);
(b) f [@(A), E]-o for some 0 (0, 1) implies IAS(t)1I O(t-a).
Proof. Initially assume that $(t) is equi-bounded and thus Theorems A and B

apply.
Proofof (a). Assume IAS(t)fl O(t-). Then given e >0 there exists C such that

IAS(t)f[ < Ct-1 for (0, e). Since

S(t)/’-]’= I0 AS(s)fds
we have [S(t)f-/I <= C s o-’ ds (C/O)t for e (0, e); thus

fo ]S(t)f-f]Zdt C fo dt
oo - t2Oo
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and since $(t) is equi-bounded I($(t)f-f)/tlz dt/t < o. Theorem A then implies
f [(A), E]l-Oo and (a) is proved.

Proof of (b). Let f6[@(A),E]-o then l($(t)[-D/tlZdt/t<o follows by
Theorem A. Thus, o I($(t)f-f)/tl dt/t < and Theorem B implies that I$(t)f-fl <
Ct. Note that $(t) Yq=o $(2it)(I- $(2it)) + $(2n+lt) which follows by induction using
the semigroup property of $(t). Thus,

IAS(t)fl <-_ IAS(2t)l ]I- S(2it)fl + IAS(2"+lt)I Ifl.
i=0

Using Theorem B and the fact that analyticity implies ]AS(t)[ <= C/t, we have

Ias(t fl <-
=o 7 (Mr(2it) + 2-+xt

Therefore,

t-lA$(t)fl <- C (2-o + toi=

which holds for all n. it follows that

ta-lA$(t)fl <-- gt or IA$(t)fl <= get-and (b) is proven.
Removal ofequi-bounded restriction. Note that if B is the infinitesimal generator of

an unbounded semigroup T(t) with IT(t)l -< C e’, then A B wI is the generator of
the equi-bounded semigroup $(t)= e-’tT(t) [16, p. 232]. Suppose that IBT(t)fl
O(t-x), then

IAS(t)fl I(B wI) e-’T(t)fl <= ]BT(t)fl e- + oa e-"lT(t)fl <=Mt- +K.

Therefore,

IAS(t)fl O(t-) or fe [(A), E]x-Oo [(B), E]x-Oo.

Thus, (a) holds for nonequi-bounded semigroups. Now let f[@(B),E]-o=
[(A), E]l-o. Then IAS(t)fl O(t-a). Therefore,

IBT(t)fl I(A + oi) e"S(t)fl <= IAS(t)fl e ’’ + Iw e’’S(t)fl O(t-)
and (b) holds for nonequi-bounded semigroups. Q.E.D.

THEOREM 2. Let A, S(t) be as in Theorem 1, and let G be a bounded map from V
into E.

(a) ff [AS(t)G[<=K(t-l) forsome 0<0<1, then G" V[(A),E]I-Oo, 0<0o<
0;

(b) fiG: V[(A),E]x_ofor 0<0<1, [AS(t)GI<-Mt-.
Proof of (a). IAS(t)Gxl <-Kt-lxl O(t-) for all Gx V. Thus, by Theorem 1

we have Gx [(A), E]l-O Vx V and (a) is proven.
Proof of (b). If G: V[(A), E]-o, then Gx [(A), E]-o x V and

[AS(t)Gx] O(t-) Vx V follows by Theorem 1. Thus, for 0 < < 1 there exists Mx
such that IAS(t)Gx] <=Mx(t-1) or Ita-AS(t)Gxl <=Mx and bythe uniform boundedness
principle there exists anM independent of x such that ]t-AS(t)G[ <=M. Equivalently,
[AS(t)G[<=Mt-1 and (b) is proven. Q.E.D.

Note. The result in (a) is the best possible in the sense that there exists examples
where ]AS(t)GI O(t-) but GV-[(A), E]-o. See Appendix A.
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3.2. A look at the input map. We will use the following notation throughout this
chapter: If H is a Hilbert space and 1 <=p < c then WP(H) LP((OT), H)= the space
of strongly measurable H valued functions on (0, T) such that

[ulw"(m [u(. )lw(m fo lu(t)lr dt

when 1 _-< P < o, and when P o

[U[w(m lu(" )[w=(m ess sup lu(t)l <
re(O, T)

Further, if ueLP(o, T; V) a- We(V). Define L by Lu=f where f(t)=
I;AS(t-z)(Gu)(z) dr. Define Lr by Lru-(Lu)(r)-IoAS(r-,)(au)(,) d, when
the above makes sense.

TI-tEORE 3. /f IAS(t)GI=O(t-I), [or some 0<0<1, then Lr: wP(v)-E
continuously for all P such that 1/0 <P <-_

Proof.
T

tLTvl <= Jo IAS(T-r)GvO’)I dr

T

<-_M fo (T-rl-lvO’)l dr

T T 1/P<-M(I ((T-7")-)qdT")l/q(I ,v(-),Pd7")
where lIP + 1/q 1. Evaluating the first integral we have

T

o
((T-’r)-)q dr C(T-’r)(-l)q+xl’= CT

which is finite if and only if (0-1)q + 1 > 0 or q < 1/(1- 0). Therefore, if the second
integral is finite for P > 1/O, then [LTVl < oo. For the case P oo, we have

TILTVI<=MIo (T-z)-1 d-Iv(.)lo(v<-_Clv(.)lw(v. Q.E.D.

Note. Since 0 is typically -1/4, we have 1/0---4 in the above theorem. We have
already pointed out that L: W2(V) W2(E) continuously. We further point out that
L: wP(v) W(E) continuously when 1/0 <P__<oo.

The following theorem establishes the compactness of the map LT: W(V)- E.
This fact, one of the distinguishing features of problems with boundary input, causes
considerable difficulties in the study of the time optimal control problem since it implies
that the set of attainable states has empty interior. Therefore, one only has a weakened
version of the separation theorems available.

THEOREM 4. Let A, S(t), G be as above, with [AS(t)GI O(t-l). IfG is compact,
then LT WP(V) E is compact UP> 1/O.

Proof. Since for us range of G is always separable, we give a proof using this fact. In
this case, G compact implies it is the uniform limit of a sequence of operators, Gn, with
finite dimensional range. We first show that L defined by

T-e

Lu | AS(T-r)Gu(r) dr
Jo



PARABOLIC EQUATIONS AND TIME OPTIMAL CONTROL 657

is compact by showing it is the uniform limit of a sequence of operators L defined by
T-e

Lu J0 AS(T-z)Gnu(’) d"

which obviously have finite dimensional range and are, therefore, compact. Then we
show that LT- is the uniform limitof L as e 0, therefore, LT- is also compact. In what
follows we assume u wP(v) for P > 1/0. First L"

T-e

I(L-LT)ul <--_ J0 IaS(T-r)] [G-G,I lu()l d

o

r- K

K
--Iul)la-an[

CluI)I-GnIO,
Thus, IL -LTI 0 as n and L is compact. Now Lr"

T

I(tT-t)ul [ ]AS(T-r)GI lu(r)l dr
aT

T

aT

( (K(T-r)-a)d ( lu(r)le"

C(T-r)-l)"+*l_lul,
Since P> 1/0 and l/P+ 1/q 1, (0-1)q + 1>0 which implies

I(tr -t,)ul C-l)+lu w() 0.

Thus, Lr-L} 0 as e 0 and Lr is compact. Q.E.D.
The following two lemmas characterize L}, the dual of Lr, which is required in the

study of the time optimal control problem in } 4.
We assume throughout that IAS(t)GI NM/t- and recall from Theorem 3 that

Lr" W(V)E

continuously, where Lr is given by
T

Lr" v(’) l AS(T-r)v(r) dr.
o

Therefore

L’:E-(W(V)) (Yosida [16, p. 195])

continuously. (Note E’= E.)
LEMMA 1. Lr: E WI(v)c (W(V)) is given by (L’y)(t)=(AS(t-t)G)*y.
Proof. L’7- is defined by

(LT’v, Y)zE’ (v, L’ry)wv)woov)),

where we take (., .)Ez,=( -, .)z=the inner product in E. We let the pairing
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(.,.)woo(v)(w(v)), be the extension of
T

(v, u)= Io (v(z), u(z)) dz

defined on W(V) x W (V).
Therefore

T

(Lrv, y) Jo (AS(T-z)Gv(z), y)zdr

T

J0 (v(z), (AS(T-’)G)*y)vdz

=(v,(AS(T-.)G)*y)

(v, (AS(T-.

for all y E since (AS(T-.)G)*y WI(V) for all y E. From this we see that

(L’ry)(t)=(AS(T-t)G)*y Vy6E

and that Lr actually is continuous into wa(v). O.E.D.
LEMMA 2. If $(t) is analytic in a sector containing > 0 then L’ry is analytic in a

sector containing < T.
Proof. Let S(t) be analytic in for A, where"

A {open sector in the complex plane containing > 0}.

Then

AS(t) is analytic in A6,

(AS(t)x, y)= (x, (AS(t))*y)z is analytic in A.
In particular then

(Gv, (AS(t))*y)E (AS(t)Gv, Y)E (V, (AS(t)G)*y)v

is analytic in A. Therefore, both (AS(t)G)* and AS(t)G are analytic in A.
It follows that L’=(AS(T-.)G)* is analytic in T-A6, a sector containing

t<T. Q.E.D.

4. Classes of problems covered. In order to show the broad applicability of the
results of the preceding section, we discuss a class of evolution equations in which the
map G satisfies the conditions of Theorem 2.

To this end we require f to be smooth by which we mean it is a bounded open
subset of " with an infinitely differentiable boundary, F, and such that lies totally on
one side of F. The Sobolev spaces H (), H (F), etc., are standard and as described in
[9, p. 1]. We require to be a 2nd order uniformly strongly elliptic operator with real
C() coecients, i.e., r has the form"

(4.1) r(x,D)u a(x)Du, a(.)(real) C(fi)

and is such that there exists a B > 0 such that Vx e we have

(4.2) 7 E a(x) , Ve Nu
1=2
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where 3’ is fixed at + or -1.
If we now define an operator A by

(4.3) au yru for u 6 @(A) AH (lq) (3 @(r)

where: @(r)={u/u, ru L2()}, then A is the infinitesimal generator of a strongly
continuous semigroup $(t), >= 0 in L2(), [6, p. 1,767].

We further have that S(t) is analytic in t. If I) is smooth then Theorem 17.2 [8, p. 67]
implies that if u Ho (f) and ru L2() then u H2(). It follows that

@(A) H (f)f) @(r)= Ho (f) H2().
We state the following specialization of a major theorem of Lions-Magenes.
THEOREM C. Let r r(x, D) be given by (4.1) and satisfy (4.2). Let fl be smooth.

If v 6 H 1/2(F) for arbitrary real s then there exists a unique solution of
(4.4) ’u 0 in f,

(4.5) u v on F.

Further, u Hs(I)) and

(4.6)

The solution u is, of course, infinitely differentiable in lq and therefore satisfies
(4.4) in the classical sense. (4.5) is satisfied in the sense of traces.

Remark. This theorem is contained in the final result of Lions-Magenes, [9, p.
188] on elliptic boundary value problems. We should point out that the result in
Lions-Magenes covers a much larger class of problems than we consider here and
therefore this discussion could be extended. For instance, we could consider more
general and higher order operators with a wide range of boundary conditions.

Proceeding, we have the following theorem:
THEOREM 5. Let G be defined by u Gv where u is the solution to (4.4) and (4.5).

Then

G: Lz(F) [@(A), L2(1’])]1_o, 0<0<1/4.

Proof. To prove the theorem we will establish the following lemma which also has
independent interest.

LEMMA 3. If 0 < 0 < 1 and 20 integer + 1/2, then
(i) HZo(a)c[@(a),L2(n)]x_oH2(f).

If 0<20 <1/2 (0 <1/4), then

H2(ii) Ho (f) [(a), L2(f)]l_o (D,).

If 20 integer + 1/2, then
(iii) [(a),LZ(fl)]_o HZ(f).
Proof of lemma. We recall @(A)=H () i") H2() and note that

H:o H H H

(we omit reference to fl) with continuous injection. Therefore, we have

[H, L23_o c [H 71H2, L2]a_o [H2, L23_o
for all 0 < 0 < 1. However (see [9, p. 40])

[H2, L211_0 H2, 0<0<1,
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and

[H2o, L211_o H, 0 < 0 < 1, 20 # integer + 1/2.
Therefore, (i) and (iii) are proven. Further, if s (0, 1/2) then H =HS[9, p. 55].
Therefore,

H2o H2, 0 < 0 < 1/4,
and (ii) is proven. Q.E.D.

Proof of theorem. From Theorem C we have

G: L2(F) - H1/2(-).
Now H1/2()c H2(l’)), 0< 0 <1/4, see [9, p. 55]. Therefore,

H1/z(fl)HZ(f)=[@(A),L2(I))]I_o, 0<0<1/4,
by Lemma 3, and the theorem is proven. Q.E.D.

This theorem shows that for A, S(t) and G as described above we have

Thus

is a generalized solution of

IAS(t)Ol=O(t-/4).

f(t) Io AS(t r)Gv(r) dr

and, what is important for time optimal control we have f(t) L2() Vt provided v WP

(LZ(F)) for some P > 4.
Remarks. A. We have already mentioned that when f was the square in N2 and

r A we have ]AS(t)G[ 0(/’-3/4) and that the preceding results hold for at least some
regions with corners. In this regard we have the following theorem which is proven in
Appendix B.

THEOREM. If r A and f is any cylinder with a C base then ]AS(t)GI
0(t-3/4).

Note. It is believed that such a result holds for much more general regions (cone
condition) and a large class of operators.

B. The restriction of V and E to Hilbert spaces is artificial and in fact the results go
through if they are merely Banach spaces; thus it should be possible to get similar results
when the boundary functions are required to be spatially continuous, i.e., v
L(0, T; C(F)), etc., although this has not been investigated.

C. The restriction in 4 to 2nd order operators was artificial. The full power of the
theorem of Lions-Magenes on the map G for arbitrary order operators could be used to
obtain results for higher order equations.

D. For additional discussion and examples of the viewpoint presented here, see
[1], [2], [3], [14].

5. A brief look at the time optimal control problem. In 5.1 we use the map and
bound developed in 3 to prove the existence of a time optimal boundary control in a
general setting. In 5.2 we discuss a partial characterization of the control, i.e., we show
that it is the weak star limit of a sequence of bang-bang controls.
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Let A, S(t), G, E, V, and LT be as previously defined and assume that [AS(t)G[
O(t-1) for some 0<0<1. Further denote U={u/u W(V), ]u] <= I}. Let x be a
given W(V) reachable point in E, i.e., assume :iu U and T > 0 such that LTU Xo.
Questions of reachability/controllability for similar problems have been studied by
Fattorini, Triggiani and others.

The time optimal boundary control problem then consists of finding To > 0 and
Uo U such that LToUO Xo and To is such that To -<_ T ’T such that there exists u U
with LTU Xo. Heuristically we wish to drive the internal state of a system governed by a
diffusion equation from the zero state to some predetermined final state, Xo, in
minimum time by appropriately choosing the boundary control function from a
predetermined admissible set in W(V). Here we call To the optimal time and u0 an
optimal control.

5.1. Existence of optimal control. In this part we will show that if x0 is reachable,
then the optimal control always exists.

We first recall the following standard material: If u(.) in WI(G) and v(.) in
W(G), where G is a Hilbert space, then

T

u(" -> (v, u) J0 (v(r), u(r)) dr

is a continuous linear functional on WI(G). In the case that G is separable all of the
linear functionals on WI(G) arise in this way (see Dieudonn6 [5]). Therefore, since
W (G) is the predual of W (G), we have

v(. )--, (v, u), u(. w()
defines a continuous linear functional on W(G). Not all of the continuous linear
functionals on W(G) arise in this way, but the ones that do serve to define the weak
star topology on W(G). If v,(. W(G) we say v,(. converges weak star to v(. iff

(v,-v, u)-.O Vu(.)e W(G).
The well-known theorem of Alaoglu (Dunford-Schwartz [6, p. 424]) states that the
closed unit sphere in a Banach space is weak star compact. For our purposes this implies
that given

v (.) U closed unit ball in W(V)

there exists a subsequence v,, (.) which converges weak star to an element v (.) U. If V
is separable, which we will henceforth assume, this is equivalent to

T

o(V,,(z)-v(z),u(z))vdz->O

Vu(’)e WX(V).

We are now ready to establish the main result of this section: the existence of an optimal
control.

THEOREM 6. If Xo is reachable, then ]Vo U and To > 0 such that LrovO Xo, and

To <-- Tfor all T such that LTV Xo ]:or some v U.
Proof. Let To inf C where C {T/LTv Xo for some v U}. The hypothesis

shows that C is nonempty and since it is bounded below by zero, To exists.
Let T, 6 C, T,, , To > 0, and let v, U be such that LT.v,, Xo.
Since U is weak star compact we may assume that v converge weak star to Vo U.

We may also assume v,(t)= 0 for t> T,, n =0, 1,....
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We will show LT.Vn LToVO weakly in E, and therefore LTovO Xo.

I(LT.V,, LToVO, Y)I

Io(AS(T.-r)Gvn(r), y) dr- (AS(To-r)Gvo(r), y) dr

<_- (as(r-r)avn(r), y) dr

(AS(T,-7")Gv,,(7")-AS(To-’r)Gv,,(’r), y) d"

+11 ((AS(ro-r)G)(v(r)-Vo(r)), y dr.

The first integral goes to zero as n since the integrand is in L(O, T).
The second integral is

T

IttAS(T,-r)G-AStYo-r)G)v,(r), y)] dr
ao

I((AS()G)*-(AS(To- T. + y)a)*)yl dy
T.-- To

<= 0-1 + )0-1 dy[y] 0
.-o (To-T.+

as n oo (i.e., T, To), since the integrand is in L1(0, T).
The third integral0 as noo, since v,(.)Vo(.) weak star and (AS(T-

-)G)*y WI(V). We have established then that

LT.Vn LTov weakly in E.

Since LT.V, Xo we have LToV Xo. Q.E.D.

5.2. Partial characterization of the optimal control. We now seek more informa-
tion on the optimal control v0 and for this we use supporting hyperplane theory. It turns
out that LTU is compact and convex and therefore has no interior points. Thus, we can
only characterize a sequence of controls, v, (.), which converge weak star to an optimal
control v0(’). In at least one case (A---A) we can show that vn(.) has unit norm
(Iv(t)lv- a) except on a countable set.

Throughout this section we assume that G and thus LT is compact. We begin with"
LEMMA 4. LTU is compact and convex in E.
Proof. LTU is obviously convex since U is. It is compact because U is closed and

bounded and LT is compact. Q.E.D.
Recall that if C c E (Hilbert space) is closed convex, we call x C a support point

for C if there exists a y E such that

(x, y) sup (r, y).

We have the following theorem regarding the support points of a convex set.
THEOREM (support). In a Hilbert space the set of support points of a convex set is

dense in the set of its boundary points.
Proof. For the proof see Balakrishnan [1]. Q.E.D.
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In our case it follows from Lemma 4 that every point of LT-oU is a boundary point
of Lao U. In particular then, x0 is a boundary point of LTo U. However, it follows from the
support theorem that there exists a sequence, xn LT-o U, of support points with the
property that xn - Xo in E. Therefore, there exists yn E, lYn 1, such that

(x, y) sup ((, y).
LT-oU

Let v, e U be such that Lrov, xn. We assume at the outset that the v,, converge weak
star to Vl e W(V). We have

(LTo)h, Yn)= sup (ZTov, Yn),
vU

or

(AS(T-r)Gv,(r), y,) dr sup (AS(T-’)Gv(’), Yn) dr
vU

and via the standard argument we have

(AS(T- t)Gvn(t), y,) sup (AS(T- t)Gv(t), y,,)
vU

for a.e. e (0, T). We therefore have

(v(t), (L’roy,)(t))=sup (v(t), (L’7-oy,)(t))
vU

a.e. (0, T). It follows that

(LoY.)(t)
v.(t)

I(t’roy.)(t)]v

for those such that ](L’roy,)(t)]v O. If we assume $(t) is analytic, then (L’roy,)(t) is
analytic (Lemma 2). In this case I(LT-oy,)(t)lv vanishes at, at most, a finite number
of points in [0, T e or else is identically zero. We can now state the following theorem
on characterization of the optimal control.

THEOREM 7. If To is the optimal time for Xo then there exists an optimal control
Vo U and a subsequence v, U converging weak star to Vo such that

x, Lrovn Xo LT-oVo in E.

There exists y, E (we take [yl-- 1) such that

(v, (t), (Lroy)(t))= sup (v(t), (LroY,)(t)) a.e.t.
vU

For those such that [(L’oy,)(t)[v O, v,(t) has the form

v,(t) (LfrY")(t)
[(t’oy)(t)lv

IfS(t) is analytic, then either (LroY,)(t) is identically zero or vanishes at, at most, a finite
number ofpoints in any compact of [0, T).

Proof. It only remains to establish that v, actually converge weak star to an optimal
control. Recall that the v, were assumed to converge weak star to Vl U. Therefore

(LT-oV,, y) (v,, L’roy) (Vl, L’roy) (L’oVl, y)

for all y H. But Lrov, Xo in H. Therefore Lrovl Xo by the uniqueness of weak limits
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and /)1 is an optimal control, which completes the proof. Q.E.D.
The following theorem gives an example where LroYn of Theorem 7 cannot be

identically zero and therefore LroYn vanishes at, at most, a finite number of points in any
compact of [0, T). The v, of Theorem 7 are then such that [vn (t)l- 1 except on a finite
number of points in compacts of [0, T).

THEOREM 8. IrA A (the Laplacian) with @(A) H () f) @(A), then for y E,
y 0, (Ly)(t) does not vanish on any interval.

Proof. Green’s theorem for the Laplacian implies that

---RG*v (O;A)vlr (here R(O,A)= (-A)-I).

Since A and S(t) are self-adjoint, we have

0(L’ryn)(t) (AS(T- t)G)*y G’AS(T- t)y --n S(t)ylr.
Therefore (Lryn)(t) is zero on a interval iff

--S(t)ylr=O(5.1)
OV

on a interval. But S(t)y is just the solution of the heat equation for initial data y. That
is, u(t)= S(t)y solves"

Ou
Au 1) (0, T),

Ot

u(t)lr--O; u(0)-- y.

If (5.1) holds for (/’1,/2), t2 > tl > 0, then u satisfies

Au in (tl, t2),
Ot

u(t)lr=O in F (tl, t2),

Ou(t)l 0 in Fx (tl, t2).
0/ r

This implies that (see [12, p. 340]).

u(t)=-O

which of course implies that

u(t)=-O

in lq (q, t2),

in 1 (0, T).

Therefore, y 0, which is a contradiction. Q.E.D.

Appendix A. Theorem 2(a) is best in a sense. In this appendix we show that the
result of Theorem 2(a) cannot be improved by exhibiting an example where ]AS(t)GI <-

Mr- but G does not map V into [(A), E]l-o for 0 1/4but only for 0 <1/4. The example
we consider is the 1-dimensional problem on a bounded interval of the real line.
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Consider

d2u
dt2

Au for x (0, 7r) where u u(t).-, u(t, x)

Let

on

u(t)lr
Lu(t, r) kv2(t)J

A--A

given in L2(0, T) x L2(0, T).

(A) {f Lz(O, ’ are A.C.; f" 6 L2(0, zr); f(0) f(zr) 0}

The eigenset of A is then given by

O,(x) /-sin (nx); A, =--n 2" n 1 2,...

which is a complete orthonormal set in Lz(0, zr). The semigroup generated by A has the
simple representation

S(t)O, e"’0,
or

S(t) sin nx e- sin (nx).

The map G" 2._.)L2(0, 77") is defined by

d2 a

=a; G =b.

Therefore,

a] b -a
G

b r
x+a.

We therefore have the following representation of AS(t)G in terms of the eigen-
functions of A.

a a

a-- n 2 e G
b

On On(x)

Ion( I-n2t -a 2- n2 e s + a sin (ns) dsOn(x)

-Y n e
-n2, (a b cos (ncr))On(x)4-.
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The bound on AS(t)G is calculated as follows"

AS(t)G
b

y" n2 e-2n2t(a + b cos (nzr))22

<-_ 2n2e (a +b <
b [2

where we have used2

S" n 2 -2n2t 2 -2nEt 1 x/2 e-X 1
e n e dn---t-- x dx---.3/2.

Therefore,

Thus,

M
IAS(t)GI < t3/4

We now show that G does not map R2 into [@(A), L2(0, 7/’)]3/4. Since -A is positive
self-adjoint with @(-A)= @(A) and R(-A) (range of -A) is LZ(0, 7r), we have

[@(A), L2(0, zr)],-o @((-A)).

Further, we have the simple representation of -A.

(-Af)(x) n2(f, sin (nx)) sin (nx).

Therefore, (-A) has the representation

((-A)[)(x) =22 (n)(, sin (nx)) sin (nx)

and

Thus,

f @((-A)) iff (nZ):z(f, sin (nx))2 < c.

f 6 [@(A), L2(O, 7’/’)]1-0 iff E (n2)2(f, sin (nx))2 <.
We have already seen that IAS(t)GI M/t1-1/4 and we now show that G" V

R2-[(A),L2(O, Tr)]I_oVO<1/4, but not for 0=>1/4. This is equivalent to showing

(nZ)z G
b

sin (nx) < V

and all 0 < 1/4, but not if 0 => . Now
Y’. (n2)2 G

b
sin (nx) Y’. na-2(a b cos (nTr))2

The symbol is used throughout to mean "is of the same order of magnitude as."
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which is finite for all
b

6 if 40 2 < -1, i.e. 0 < . However, for
b 0

is infinite when 40- 2 _->- 1, i.e. 0 _-> 1/4. Therefore,

G2 @((-A)) [@(A), L2(0, zr)]0o
for 00 < 0 1/4 but not when 00 => 0 1/4.

Appendix B. Extension to cylinders with C bases. Here we let be a cylinder
with a C base and show that the map.G, defined as in Theorem 5, with z A, satisfies

Gv[(A),L2(lq)]I_, for0<a <1/4
for all v L2(F).
We require of the following cast of characters. Let:

fY c Ru-1 be smooth with boundary F’;
f fY (0, zr) with boundary F;
Fc, I"7, FB be respectively the lateral, top, and bottom boundary surfaces of , i.e.,

FL Fix (0, 7/’); FB(T)-" {X (Xl," ", XN) -]XN 0(77")};
N N 2 2A be the Laplacian in R i.e., A=i=10 /Oxi;

-N-1 x-,N-1 ..2t.. 2A’ be the Laplacian m x i.e., a Li=l o /ox
A be defined by

Au Au for u Ho (1) (] @(A)

(A) {u/u, Au L2(O)};
A’ be defined similarly with A’,
G be defined by u Gv where

Au 0 in , u[v v L2(F);
G’ be defined by u’= G’v’ where:

Au’= 0 in IT, u’]v, v’ L2(F’);
-h,’, 0,," denote the eigenset of A, i.e.,

AOmn. --1mnOmn, Omn {r 0

and we know they form a complete orthonormal .set in L2();
-x,, 6, denote the eigenset of A’, i.e.,

and such functions form a complete orthonormal set in L2(’).
From Theorem 5 we have

G’L2(F’) = [@(A’), L2(’)]1_, @((-A’))

for 0 < a < 1/4. This is equivalent to

2 2(B.1) Z/x" (G’v,

We wish to show that

(B.2) GL2(F) c [@(A), L2(f)]l_t @((-A))
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for 0 </3 < 1/4 which is equivalent to

(B.3) E A2 (Gv, 0,,,) 2
L2(1) < c v e L2(F).

We now seek a representation of Am,, O,,,,(x) by separating variables. We will let

X --(Xl,""" ,XN)’--(Xt, XN).

We seek eigenvectors of A of the form

O(x) 0(x’)(x,);
thus d2

axi

from which we get

/-1A’///-- --/ (I)-l(I)"-- --/A,

which gives the separated equations

(i) A’p(x’)- -/zO(x’); O(x’)lr’- 0;

d2

(ii) d--u (/. A )’, (xu)l=’,,o =0.

The solution of (i) is the eigenset of A’, i.e., ,, 4’, (x’). The solutions of (ii) are given by

CI)m (XN)= sin (mXN)/"
Thus the eigenset of A is given by

O.,. (x’, xu)=

Am" me +"

/ A --m 2, m 1, 2, ’.

where’ .(xu)= sin (mx);
cRecall that x’---n [10, p. 324] where C 2/(N-1) (N-1 is dimension of space

here).
We seek to establish (B.2). We first assume v 0 on the top and bottom faces of F.

(Recall G* from the Theorem 8 proof.) Then

:A U, OmgnlFL L2(FL)

1_ *,n(x) (. x), ,lr, dxmn L2(F’)

" (xu)(G’v (" XN), 4’,,) t.?(a’) dxu

where

Iron O,.(xu)(G’v(’, xu), 4,.)(a, dxu.
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Now
2/3 2

2/3 )2 t ix 2. A,’n(Gv, Ore. E 2,.. Ira.

2-2

2-2B IX

c(2-2o)
2c 1-2/’/

)2-2/3 IX.,
(m + n

We calculate max" n
which yields n c= km 2, (k const.).

Therefore
c(2-2a)n

2 2-2/3 gtmmax
(re+n)

c)-o c)-c(2-2)/(m2 + n by setting (d/dn)n c(2-2),/(m 2 + n 0

2(/3-c) < k’

if/3 < a. We have then, for/3 < a, that

2/2(B.4) 2 A 2/3 (Gv, Ore’)2 <-- K" 2 IX"

Now

E Ixn Iron ., Ixn dPm(XN)(G’v(’, XN), tn)L2(O’) dx

m(XN)IX(G’t(’, XN), n)L2(ff)dx

2 dPm(XN)((-A’)G’v(., XN), O,)L2(a’) dx

2 (-A’)G’v(x’, xN)Omn(X’, XN) dx’ dx

Z ((-a’)G’v, Ore’)2.

Now (-A’)’G ’’ L2(F’) L2(’) continuously, i.e.,

fn I(-A’)G’v’(x’, xr)l2 dx’ <-- C f Iv’(x xu)lz do’x,
F

which follows from (B.1) and the closed graph theorem. Integrating both sides with
respect to xu then shows that

(-A’)G’: L2(F) LZ(fl) continuously.

Therefore

2r2 2
Ix,, 1ran <=C v L2(F)<O0,

and it follows from (B.4) that

E a (Gv, 0,.)< C"lvl LZ(F) < 00.

Then (B.2), (B.3) imply, for v 0 on Fr, Fz, that

Gv e [@(A),
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for all/3 < a < 1/4. However a is arbitrary, a < 1/4; therefore the result holds for/3 < .
We now suppose that v 0 on FL, FT, i.e., v # 0 only on FB, the bottom face of the

cylinder. We note that 0n form a complete orthonormal set on this surface and set

We have

(Gv, 0,n) m, V,
O/ r L2(r) Amn

V, Sn
0’/ rB

m m

We again wish to establish (B.3).
2 2 2 2

2B 2 m Vn m

2 2m v,

.X (m + n)-
2

n (m2+n
2 2v, x dx,n (1/2-2B)c J0 (X 2 +1)2-2B

The integral is finite iff <. In this case we also have 1In /2-2)c < 1 and therefore

2 xZ(Gv, 0.) C 2 v
Equation (B.3) is established for v LZ(F). The demonstration is the same for
v LZ(FT) and we are finished.

Apparently, the method we have used here can be extended to self-adjoint
operators other than A; however, it should be apparent that the technical difficulties
would be considerable. It is undoubtedly true that the result we have established holds
for a wide range of operators (nonself-adjoint) on a much larger class of regions;
however this fact still awaits proof.
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MODIFICATIONS IN OPTIMIZATION AND SADDLE POINT PROBLEMS*

ISAK BEHARt

Abstract. A general optimization problem of finding Inf {f(x) x A} is modified with a sequence of
functions (H,), n to yield the problems Inf {f(x)+ H,(x)lx cA}. The properties of convergence are
studied in two general classes of modifications, These results are applied to modify saddle point problems to
obtain dual modification methods for optimization problems.

1. Introduction. Let E be a locally convex topological vector space. We denote by
CL(E) the space of lower semicontinuous functions defined on E with values on I (the
extended real line) and by F0(E) the space of functions in CL(E) which are convex, not
identically equal to +, and never taking on the value -. The topological dual of E
will be denoted by E*. The value of a linear functional y E* for x E will be denoted
by (y, x). A point y 6 E* will be called a subgradient of a function f Fo(E) at a point
xlE if

f(x)>=.f(xl)+(y,x-xa) for all x E.

The set of all subgradients of [ at x will be called the subdifferential of [ at xl and
will be denoted by cg.f(x). (See [7].) A real valued function [ defined on a closed set
A c E will be called lower (resp. upper) compact on A if for all A R, the sets
S, {x A If(x) =< A } (resp. Sx {x A If(x) -> X }) are compact.

For any function f: E R we note by f* and f**, the conjugate and the second
conjugate functions of f defined by

f*(y) Sup {(x, y)-f(x) x E}

f**(x) Sup {(x, Y)-f*(Y) Y E*}

where E* denotes the topological dual of E.
We shall study the general problem

(1.1) (P) a Inf {f(x) x A}, f= {x A If(x) a}

where f CL(E) and A is a nonempty closed subset of E. Consider a sequence of
function (f,) and the problems

(1.2) (P,) a, Inf ,(x) x A}, fL {x A f,(x) a.,).

DEFINI’rIoN 1.1. Any sequence (x,) such that for each n NIx,, fn will be called a
sequence of solutions of the family {P,,}.

DEFIrrrON 1.2. The sequence of problems (P,) is called convergent to (P) if
f 4 for each n NI, lim,_,/ a, ce, and every sequence of solutions of the family
{P,,} has at least one cluster point and all the cluster points are solutions of (P).

DEFirrior,r 1.3. When the function f, has the form f, =f+ H,, where Hn
CL(E), the problem (P,) will be called the H,-modification of (P).

The nature of the function H, will determine the type of modification. Two types of
modifications will be studied:

Zero limit modifications
Modification by translations (or simply, translations).

Received by the editors March 7, 1978, and in revised form December 29, 1978.
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2. Zero limit modifications. Consider a sequence of functions Hn c CL(E) satisfy-
ing the following assumptions:

1. For every n c there exists Mn c such that

Hn (x) >-_ Mn for all x c A,

limn_,+ Mn 0.

2. For every n c there exists r > 0 such that limn_+ r +oo.
The set of functions {h. c CL(E)[ h. r.H.} is equi-continuous with respect
to A.
The function h, defined by h (x)= lim,_./ h (x), is finite for all x c A.

3. The family of functions {h, n c N} is uniformly lower compact on A (i.e., for
all A c there exists a compact Kx c A such that the sets {x c A h, (x) A }
are included in Kx for all n c ).

DEFINITION 2.1. If a sequence (H.) satisfies the assumptions 2.M, then the
sequence of problems (P) defined by (1.2) is called a zero limit modification of the
problem (P).

THEOREM 2.1. If a is finite and (P,) is a zero limit modification of (P) then
1. f # & for all n c N.
2. lim cn a.

3. If (x,) is a sequence ofsolutions then lim,_, f(x,) and (x) has clusterpoints
if and only if D # 49. In which case (P,) converges to (P) (Definition 1.2.).

4. If is a cluster point of a sequence of solutions then

h (Y) Min {h (z) z c D,}

(where h is thefunction defined in 2..2).
Proof. 1. Because of our assumptions, the function f+Hn is lower compact and

bounded below on A. Therefore fn # .
2. By definition of M,

hence

then

f(x)+M. <=f(x)+H.(x) for all x noN;

a +M, <-f(x)+H,(x) for all x

a<_liminfa<=limsupa,<-f(x) for all x cA;

therefore lim,_.+o a, a.

3. We have

a +M., <=f(x,,)+M,, <-f(x.)+H.(x.)=a..

Since lim._+ a. a and lim._.+ M. O, we conclude that lim._+ f(x.) a. If Y is a
cluster point of (x.), the lower semicontinuity of [ implies [(Y) lim._.+ [(x.) a,
which is possible only if c fl. Conversely if fl O let u c ll. and z c fl. We have

. f,(u) +l(u) <-f(x)+lh.(z).
rn rn

Since f(z) <- f(u) and r, > 0, we get

(2.1) hn(u) <= h,(z) for all u c D,, z c l),, n c N.
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Since the sequence hn (Z) is convergent (to h (z)) there exists X such that

h(u)-<A for all u iq, nN.

The uniform lower compactness of the functions h, implies that there exists a compact
K c A such that f, c K for all n , which implies in turn, that every sequence of
solutions has at least one cluster point. Since lim_,+oo f(Xn)= a, such a cluster point
belongs to f.

4. By (2.1) we have

(2.2) hn(xn)-hn(z) for all z 1, n N.

Thus if is a cluster point of (x,), the equicontinuity of the family {hn} implies

(2.3) h(g) <- h(z) for all z 12.

Remark 2.1. The equicontinuity of the family {hn} is used only to pass from (2.2) to
(2.3). In fact, the assumptions 2.s may be simplified by considering a sequence
Hn (1/rn)h where h CL(E) is lower compact on A. In this case the lower semicon-
tinuity of h is enough to pass from (2.2) to (2.3).

Remark 2.2 (rate of convergence). If Mn _-> 0 and z D. then

c + Mn <-an <= f(z) +Lhn(z);
hence

O=M, <-On-o Nlhn(z).
rn

Therefore cn converges to a at least as fast as H(z)=(1/rn)h(z).converges to
o h(z) O.

Remark 2.3 (convex case). Suppose that the problem (P) is convex (i.e., f Fo(E)
and A is a nonempty closed convex subset of E). In this case i2 is convex. We can choose
the sequence (Hn) such that the functions hn and h are strictly convex. (This can be
done, for example, by choosing Hn as in Remark 2.1 with h strictly convex.) In this case
every problem (P,) has a unique solution, so there is a unique sequence of solutions (xn).
On the other hand, any cluster point of (x,) is also the unique solution of the problem

Inf{h(z) z

Therefore the sequence (xn) is convergent.

3. Convex-concave saddle point problems. Let E and F be locally convex topolo-
gical vector spaces and A and B nonempty closed convex subsets of E and F
respectively. We consider a function L" E x F R satisfying"

1. L(., v)Fo(E) for all v B,
-L(x,. ) Fo(F) for all x a.

2. There exists an ao A and b0 B such that the
3.5f. Inf {L(x, bo)lxA}>- and sup {L(ao, v)lvB}< +o.

3. There exists b B such that L(., b) is lower compact on A.
4. There exists a A such that L(a,. is upper compact on B.

Consider the problems:

(3.1) (P) a Inf {fix) Ix E},

(3.2) (D) fl Sup {g(v) v F},

fe {x A If(x) a},

12D {V B g(v) },
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where

(3.3)
Sup L(x, v),. if x c A,
vB

f(x)
+, if x A,

InfL(x,v), if roB,
(34) g(v)= -, if v B,

when c =/3, a is called the saddle value of the triplet (L, A, B). We consider the
problem

find the saddle value and the saddle points (2, ), of the triplet (L, A, B).(S) (i.e., L(2, v) <- L(2, f) <=L(x, f) for all x cA, v c B).

Problems (P) and (D) are called respectively, the primal and dual problems associated
with the problem (S). It is well known that if the triplet (L, A, B) has a saddle point (2,
then a L(2, ) and 2 c fp, 7 c fD. Conversely, if fp D and a =/3, then
any element of fp ’D is a saddle point of (L, A, B).

The fact that 3. guarantees the existence of saddle points of (L, A, B) can be
easily obtained by the results of conjugate functions and duality theory elaborated by
J. J. Moreau [6], R. T. Rockafellar [13] and P. J. Laurent [6] etc. However, because of
the important role of assumptions 3. in our paper, we give here a proof using the
results of the works mentioned above.

PROPOSITION 3.1. If the conditions 1, 2 and 3 of 3.L are satisfied then the triplet
(L, A, B) has a saddle value (i.e., a fl) and fp . If all the conditions of 3. are

satisfied then the triplet (L, A, B) has at least one saddle point.
Proof. Let E* be the topological dual of E and denote by w(E*, E) and -(E*, E)

the weakest and the strongest topologies of E* for which the dual of E* can be
identified with E. We define

(L(x,v), ifxcAandvcB,

L(x, v) I +’ if x A and v c B,
-, if vB,

and denote (., v), x (x,. ). Then the function " F-/ is concave and
upper semicontinuous for all x cA, and the function /_:" E-->/ is convex, lower
semicontinuous and ()** for all v c B.

We define a function " E* F --> R with

(y, v)= Sup ((x, y)-f_.(x, v)) (v)*(y).
xE

Then 4’ is convex and lower semicontinuous and the function

k(y) Inf if(y, v)
vF

is convex (see [3, Thm. 1]). It is easy to see that

k (0) -Sup Inf (x, v) -/,

k*(x) Sup Iv(x),

k**(0) -Inf Sup L(x, v) -a.
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Condition 3..2 implies that both a and/3 are finite. On the other hand, since the
function b" E-/ is lower compact, applying J. J. Moreau’s theorem about the duality
between the -- continuity of a function and the weak lower compactness of its conjugate
(see[6]), we deduce that the function ,(., b) is -(E*, E)-continuous at 0 E*. There-
fore the function k is bounded above on a z(E*, E)-neighborhood of 0 E* and hence
7-(E*, E) continuous at 0 E* (see 3, Thm. 6.2.7]). We have then k (0) k**(0) which,
with the above relations, imply c-/3. Condition 3 of 3.’ implies that f is lower
compact. Therefore p # b. If condition 4 of 3. is also satisfied then the function g is
upper compact and rio # q5. Thus ’p X -D # t and any element of fp lqo is a saddle
point of (L, A, B).

4. Partial zero limit modifications. Consider a sequence of functions Hn F0(F)
satisfying

1. assumptions 2.M with respect to the nonempty closed convex subset B of F,4.M.
2. the functions hn (1/rn)Hn and h limn_o hn are strictly convex

and the problem

(S,) find the saddle value and the saddle points of the triplet (Ln, A, B)
where L,,(x, v)= L(x, v)-Hn(v).

Remark 4.1. By this modification of the problem (S), the problems (P) and (D) are
also modified. The objective functions of the primal problem (P,) and dual problem
(Dn) associated with (Sn) are

(4.1) /.(x)
tSup {Ln(x, B},
+oo,

(4.2)

g(v) {Inf_c{Ln(x, v) xA},

=g(v)-Hn(v),

ifx A,
if x 6 A,

if v B,
if v6B,

where g(v) is defined as in (3.4). Therefore the problem (Dn) is a zero limit modification
of (D) and all the results of 2 can be applied to the family of problems (Dn). However,
the relationship between (Pn) and (P) cannot be explained by zero limit modification.
This remark will lead us to the consideration of dual modifications. (See 5.)

THEOREM 4.1. I]: the triplet (L, A, B) satisfies conditions 1, 2, and 3 of 3.and the
sequence Hn satisfies assumptions 4. then the triplet (L, A, B) has a saddle value ct and

1. For every n , the triplet (Ln, A, B) has at least one saddle point.
2. I[ an is the saddle value o]’ (L,,, A, B), then lim,,_,+oo Cn C.

3. Let (xn, vn) be a sequence such that (xn, vn) is a saddle point of (Ln, A, B then
(x,, vn) has cluster points if and only if fo # ck and all the cluster points are
saddle points of (L, A, B). Furthermore, in that case, the sequence vn) actually
converges and its limit minimizes the function h on ID.

Proof. The existence of a saddle value a follows from Proposition 3.1.
1. Let aoA be as in 3.o’.2; then the function L(ao,’)-Hn is upper compact.

Therefore, all the conditions of 3. are satisfied for (Ln, A, B).
2. Since Cn is the value of the problem (Dn), Remark 4.1 and Theorem 2.1 imply

that a,, converges to the value a of the problem (D).
3. First we will prove that the sequence (x,) has cluster points and all its cluster

points are solutions of (P). Let b B be as in 3..3. We have

L(xn, b)=Ln(xn, b)+H,(b).
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Since (x., v.) is a saddle point of (L., A, B), we have

L.(x., b) <-L.(x., v.)

Thus

L(x., b)<=ce. +H.(b).

The lower compactness of L(., b) and the boundedness of a. +H. (b) imply that the
sequence (x.) is included in a compact subset of A, and therefore has cluster points. Let
u be an arbitrary element of B. We have

(4.3) L(x., u)=L.(x., u)+H.(u)<-L.(x., v.)+H.(u)=a. +H.(u).

Since a. converges to c and H. (u) converges to 0, for every
such that

L(x.,u)<-a.+H.(u)<-_ce+e for all n > m,
(4.4)

xnT,,={xAIL(x,u)<=a+e} foralln>m.

Since L(., u) is lower semicontinuous on A, it follows that T. is closed and any cluster
point of (x.) belongs to T,,,. That is L(Y, u) =< a + e; hence L(2, u) -< a. Since u B was
arbitrary, we conclude that

f() Sup L(Y, u) _-< a.
uB

This is possible only if f(Y)= a. Therefore 6 lip. On the other hand, Theorem 2.1,
Remarks 2.3 and 4.1 imply that the sequence (v.) is convergent if and only if
and if 6 lim._. v. then t5 6 12D and

h(O)<- h(w) for all w

Remark 4.2. The rate of convergence of an to a is proportional tothe rate of
limn-.+ 1/rn 0, as it can be seen, by applying Remark 2.2 to the problems (Dn) and
(D).

5. Dual modifications. In Remark 4.1 we pointed out that although the problem
(Dn) is a zero limit modification of (D), the problem (Pn) is not obtained by the same
type of modification. On the other hand Theorem 4.1 shows that the sequence of
problems (Pn) converges to the problem (P).

DEFINITION 5.1. The modification (Pn) of (P) obtained by means of the partial
zero limit modification (Sn) of (S) will be called a dual zero limit modification of P.

With the above definition, Theorem 4.1 can be summarized as follows"

A sequence of dual zero limit ,modifications is convergent.

Example 5.1. Consider the convex programming problem

(P) a Inf {fo(x) x a and qi(x) <= Oi 1, 2,..., m},

where fos Fo(E), qi Fo(E) 1," ", m.
The above problem (P) is the primal problem associated with the triplet

(L, A, ’), where

L(x, v)=fo(x)+ viqi(x), xsA, v =(v, v2,’", v.,)e
i=l
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If a is finite, fo is lower compact on A and there exists v e R’ such that

Inf Co(x) +
xA i=1

then by virtue of Proposition 3.1, the triplet (L, A, ) has a saddle value and
Consider a sequence of functions HeFo(N) having the form

H.(v, v2, v)=2i Hn.i(vi) (1/r.) 2i1 hn,i(vi) where
1. H..i(v) + for v < 0 and H..(v) 0 for v 0,
2. nn,i(O) 0,
3. the sequences (H.) (i 1, , m) satisfy the assumptions 4. with respect

to the set +.
We define the triplet (L, A, )with L(x, v)= L(x, v)-H.(v). The objective

function of the primal problem (P.) associated with (L., A, ) has the form

f.(x)= fo(x)+ E O..,(x),
i=1

where

=0 if qi (x <-_ 0,
(5.1) Qn.i(x)-Sup(1)iqi(x)-nn.i(vi))v,o =>0 ifqi(x)>0.

Indeed, if qi(x)<-O since H..i(vi)<-O for all vi-<0, we have 19iqi(x)-nn,i(l)i)<=O for all
vi_->0, and zero for vi=0. On the other hand if qi(x)>0 then Q..i(x)>-_O and
lim._./Q..i(x)=+o. To prove that, let us fix ki>0. Since by assumption
lim._./oo H,..i(vi)= lim._.+oo (1/r.)h,..i(vi)= 0. hi(vi)= 0, for any e >0 there exists noe
N such that o<=nn,i(ki)<=e for all n > no. Then

Q..i(x)>=kiqi(x)-H..i(ki)>-_kiqi(x)-e for all n > no.

Since qi(x)> 0 and ki was arbitrary, that Shows lim._./oo Q..i(x)= +oo for each x such
that qi(x)>0. Therefore the function

is an exterior penalty function. If H,i(ui) (I/(m ))u for ui >0 we have

s-1 1/(s-l) s/(s--1)fn(X)=fo(X)+ n E [qi(x)+]
S

For s 2, we obtain the classical penalty function Q..(x)= (n/2)[qi(x)/]2. Thus, the
exterior penalty methods can appear as dual zero limit modifications. However, it is not
true that all exterior penalty functions can be so viewed. For example the function

Q.(x) n E qi(x)+
i=1

satisfies the requirements for an exterior penalty function (see [2]). The zero limit
modification corresponding to this exterior penalty function is

H.(v)= X ,.(v,),
i=1

where

/ 0, if 0 _-< vi <- n,
+oo, otherwise.
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Such a sequence (Hn) obviously does not satisfy all the Assumptions 5.. Actually,
only conditions 1, 2 of 5. and the fact that limn_.+ H,,.i(vi)= 0, are enough to show
that O,.i is an exterior penalty function, even without the convexity assumptions on f
and qi(i 1,..., m). However, the results of Theorem 4.1 are not applicable in the
nonconvex case, where there is usually a duality gap (/3 or).

6. Total zero limit modifications in convex-concave saddle point problems.
Consider a function h E x F , where E and F are locally convex topological vector
spaces such that

1. h , v) is strictly convex, lower semicontinuous, lower compact and bounded
below on A for all v B,

2. h(x,. is strictly concave, upper semicontinuous, upper compact and
bounded above on B for all x A,

where A c E and B c F are nonempty convex closed sets.
Consider a triplet (L, A, B) satisfying 3. and the problem

(z) find the value and the saddle points of the triplet (Ln, A, B),

where L,(x,v)=L(x,v)+(1/r,)h(x,v) and (rn) is a positive sequence such that
limn-+oo rn

THEOREM 6.1. Under the assumptions 3. and 6.s we have:
1. For all n , the problem (Zn) has a unique saddle point (x,,, vn) A B.
2. The value an of (Ln, A, B) converges to the value a of (L, A, B) and the sequence

(xn, vn) converges to one of the saddle points of (L, A, B) which is the (unique)
saddle point ofthe triplet (h, fp, o) (where fpand fo are the solution sets ofthe
primal and dual problems associated with the triplet (L, A, B )).

Proof 1. One easily verifies that the triplet (L,, A, B) satisfies the assumptions
3.. 2. We have

(6.1) L(x,, v)+(1/rn)h(x,, v)<-a, <-L(x, vn)+(1/rn)h(x, v,)

for all x A and v B.
If (, t;) is a saddle point of (L, A, B), we have

(6.2) L(, v,,)<= a <= L(x,,, ) for all n .
Thus (6.1) (with x , v 5) and (6.2) imply

(6.3) a + (1/r,)h(x,, ) <-a, <-_ a + (1/r,)h(,

On the other hand, the assumptions 6.s. imply

(6.4) hsup(x)=Sup{h(x, v)[vB}<+ for all x

(6.5) hindV) Inf {h(x, v) x A} > -c for all v B.

Thus from (6.3) we deduce

(6.6) a + (1/rn)h,f() <-a,, <=a + (1/rn)hup()

which implies lim,_.+ a, a.

The relation (6.3) implies

(6.7) -cx3<hinf()<=h(xn, )<=h(, Vn) hsup(.) < +00

for all fe, g fo and n N. Therefore the lower compactness of h( , t) and the
upper compactness of h(,. imply that each of the sequences (x,) and (v) and
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therefore the sequence (xn, vn) is included in a compact subset of A x B, which
guarantees the existence of at least one cluster point in A x B.

The relations (6.1), (6.4) and (6.5) imply

L(x,, v)+(1/r,,)hinf(v)<-a,, <-L(x, v,)+(1/r,,)hsup(X)

for all x A and v B. The lower (resp. upper) semicontinuity of L(., v) (resp. L(x, ))
and the fact that r, +oo imply then that for any cluster point (2, iT) of (x,, v,), we have

L(, v) <- a <-_ L(x, ) for all x A and v B.

Therefore (2, t3) is a saddle point of (L, A, B).
Let us finally show that (2, fi) is a saddle point of the triplet (h, lp, l)o), The

relation (6.3) implies

h (x,, t) =< h (, v,) for all Y 6 fe, t fo and n N..

The lower (resp. upper) semicontinuity of h(., ) (resp. h (,.)) implies then

h (2, tT) _-< (, fi) for all fp, t; rio

which shows that (2, fi) is a saddle point of the triplet (h, llp, 12D). This fact is true for
every cluster point of the sequence (xn, v,,), but the strict convexity-strict concavity of h
and the assumptions 6.M imply that such a saddle point is unique. Thus the sequence
(x,, v,) has a unique cluster point. Therefore it is convergent.

Remark 6.1. The relation (6.6) shows that the rate of convergence of a, to a is
proportional to the rate of lim,+ 1/r, 0. Thus, while the partial and total zero limit
modifications have the same rate of convergence (see Remark 4.2), the total zero limit
modifications have two important advantages over the partial zero limit modifications.
In partial modifications, only the sequence (v,) is convergent (and the sequence (x,) has
only cluster points). Whereas, in total modifications, both sequences (x,) and (v,) are
convergent. The other advantage is that here the function L, (x, v) is strictly convex in x
and strictly concave in v, while in partial zero limit modifications, the function L, (x, v) is
only strictly concave in v.

7. Translations in convex optimization: Consider a functionf Fo(E) (where E is a
locally convex, Hausdorff vector space) and the problem

(P) a + Inf (x)[ x E}, = {x E If(x) }.

Let H F0(E) be a function satisfying
1. H(x)+ and H is continuous for all x E,
2. H(x) 0 and H(x)= 0 if and only if x 0,

3. OH(O) {0},
4. H is strictly convex.

It is easy to see that if a is finite and either f or H is lower compact on E then the
problem

(7.1) inf {f(x) +H(x z x E}

has a unique solution Xz for any given z E. Thus we establish the correspondence

(7.2) U: z E Xz E.
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PROPOSITION 7.1. If a is finite and H satisfies 7.eg then the two following
statements are equivalent

2. U().
Proof. 1 : 2 is obvious since H is always nonnegative. 2 1. We set

H-z (x) +H(x z) for all x E.

By assumption, we have

f(2)<-f(x)+H(x-2) for all x E.

Thus OEO(f+H_e)(x). Since H is continuous, we can apply the additivity of
subdifferentials (see [8]). We conclude that 0 E Of(2) + OH(2 2). Since OH(O) {0}, we
have 0 e 0f(2). Q.E.D.

The mapping U can be expressed in terms of the subdifferentials of f and H. We
note by O-1H the inverse of the multifunction OH: E- E*.

LEMMA 7.1. Under the assumptions 7.., O-IH is single valued.
Proof. Suppose that for x x2 we have {x, x2}cO-1H(yo)for some y0 e E*. That

means y0e OH(x1)f’)OH(x2). Then the strict convexity of H implies that

H(xz) >H(x1) q" <yo, x2 X 1>,

H(xl) > H(x2) + (yo, Xl x2)

which is a contradiction.
PROPOSITION 7.2. The operator (I-O-H(-Of))-: E-->E is single valued and

represents the mapping U defined in (7.2).
Proof. Consider Xoe (I-O-1H(-Of))-X(Zo). Then we have ZoE Xo-O-H(-Of(Xo))

and Xo- Zo O-IH( Of(Xo)), which is equivalent to (- Of(Xo) f3 OH(xo- Zo)) # . Then
there exists yo e Of(xo) and yo e OH(xo- Zo). Therefore

0 e Of(xo) + OH(xo- Zo) O(f+ H-zo)(Xo)
and hence x0 U(zo). Q.E.D.

Proposition 7.1 establishes the equivalence between the problem (P) and the
problem of finding the fixed points of U. Frequently the fixed point problems are
studied assuming some contraction properties. The assumptions we have made on H
are too general to imply that U is a contraction. The case whereH is a Hilbert space and
H(x) (1/2)llx[I has been studied extensively, in this case the function U was named
proxr by Moreau [5] who studied the problem of decomposition of an element z by
z proxf (z) + proxr.(z). The results of Moreau have since been generalized by Wexler
[14].

The proximal function prox is proved in [5] to be pseudo contracting i.e.

[[proxr(x proxr(x’)ll2 <_-IIx x’ll= -Ilproxt (x) x (proxf (x ’) x’)ll2.
Martinet [4] showed later that for any pseudo contracting mapping V, the sequence
X,+l V(x,) (for any initial x0) converges weakly to a fixed point of V. More general
results are obtained by Rockafellar [10] who introduced the proximal point algorithm
to find an element 2 such that 0 E T(2) where T is a maximal monotone multifunction
defined in a Hilbert space. The proximal point algorithm consists of defining a sequence
x such that x,/1(1+ CkT)-l(x) where Ck is a certain positive sequence. The case
where T Of (for f Fo(E)) corresponds to

x.+ Arg Min {f(x)+(1/2Ck)[[X --X.[[ X E}.
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Under some reasonable criteria of approximation (of x’,+ to (I +CkT)-(Xn)), the
sequence (x,) converges weakly to a point such that 0 T() (to a solution of problem
(P) when r Of).

In what follows we are going to find a solution of problem (P) by using a sequence
Xn+ U(x,,) where U is the mapping defined in 7.2 and the initial point x0 is an
arbitrary point in dom f. We note

(P,) a, Inf {f(x)+H(x-x,_)lx E}.
DEFINITION 7.1. The problem (P,) defined above is called.a translation of

problem (P).
THEOREM 7.1. Ifa is finite, f F0(E) is lower compact andHsatisfies the assump-

tion 7.4, then for each n , the problem (P,) has a unique solution x, and the problems
(P) converge to (P). Therefore any clusterpoint ofthe sequence (x,) is a fixedpoint of U.)

Proof. Under the assumptions made, the function

xf(x)+H(x-x,,_)

is lower compact bounded below by a, and strictly convex. Therefore problem (P,) has a
unique solution. On the other hand, we have

a,,+=f(x,,+)+H(x,,+x-X,,)<=f(x)+H(x-x,,) for all x E.

For x- x,, we get

f(x,,+a)+H(x,,+x-x,,)<-f(x,,) for all n e.
Since H is nonnegative, we deduce that the sequence (f(x,)) is nonincreasing and
bounded from below by a. Therefore f(x,,) converges to some B->_a, and
lim,_+oo H(x,,+-x,,)= 0. Therefore lim,_+oo a, =/3. We will prove that/3 a.

Since the sequence f(x,,) is decreasing, we have x, e So {x e E If(x) _-</(x0)}. So is
compact by assumption. Therefore the sequence (x,) has at least one cluster point. On
the other hand, the convergence of a, to/3 implies that for every e > 0, there exists
M e such that, for all n > M, we have

fl--e <--a, f(x)+H(x-x,,_l) for all x E.

Hence

(7..3) fl-e <=Inf{f(x)+H(x-x,,_l)[n >M} for all x sE.

If is a cluster point of the sequence (xn), the continuity of H and (7.3) imply that

-e <=f(x)+H(x-) for all x.E and e >0.

Hence

(7.4)

In particular

13 <-f(x)+H(x-) for all x E.

On the other hand, the lower semicontinuity of f implies that f(2)<-ft. Therefore

(7.5.) f()<-_f(x)+H(x-) for all x E.

Thus U() and, by Proposition 7.1, we have/3 a =f(). Q.E.D.

$. Translations in Banaeh slmees. Let E be a Banach case. In this case, the
assumptions of Theorem 3.1 (continuity of H and lower compactness of f for the same
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topology) may be too restrictive. We now assume that H is continuous in the norm
topology and f is lower compact for the weak topology r(E, E*) (where E* is the
topological dual of E). This requires some modifications of the assumptions 7.5d.

Consider a function H Fo(E) such that:
1. H(x) # +oo, and H is continuous in the norm topology for all x E.
2. H(x) >--_ 0 for all x E, and H(x) 0 if and only if x 0.
3. For all x E, OH(x) is a singleton whose only element we denote by H’(x).
4. H’(0) 0, and the mapping H’: E E* is continuous at x 0 for the norm

topologies of E and E*.
5. For any sequence (w) of elements of E, limn+H(w)=O implies

lim w 0.
6. H is strictly convex.

THEOREM 8.1. I is nite, is weakly lower compact, and H satises the
assumptions 8., then the problem (P) dened in (7.4).converges to (P).

Proof. As in the proof of Theorem 4.1 we observe that the sequence (x)) is
decreasing and there exists such that

(8.1) lim

(8.2) lim H(Xn+I--Xn)--O.

The last relation and 5..5 imply

(8.3) lim I[Xn/l-X,,[]=O.

By definition of the subdifferential we have

(8.4) OO(f+H-xn)(Xn+l).

The additivity of the subdifferential remains valid (continuity of H), and we have

(8.5) 0 E Of(Xn+ l) q- n’(xn+ Xn ).

Thus there exists a point y,+l =-H’(X,+l-Xn)ClOf(x,,+l). The relation (8.3) and the
assumption 8.d.4 imply therefore that

(8.6) lim ]lYn+lllE* 0.
-+-

On the other hand, the sequence (x,) is contained in So {x E If(x)<=f(xo)} which
(provided Xo dom f) is, by assumption, weakly compact and therefore bounded. We
have

(8.7) f(x)>--f(Xn+l)+(Yn+l,X--Xn+l) for all x E.

Since the sequence (x,,) is bounded (8.6) and (8.7) imply that f(x) >-_ 8 for all x E, which
is possible only if/ <_- a. Thus/3 a. The lower semicontinuity of f and the fact that a is
minimal together with (8.1) imply that any cluster point of the sequence (x,) belongs
to f.

We could not obtain the convergence of (xn) when H is any function satisfying 8. d.
We also had to assume the weak lower compactness of f to guarantee the existence of
cluster points of (x,). The existence and uniqueness of the cluster points (i.e., the
convergence of x) obtained in [4] and 11] seems to be due to the nonexpansiveness of
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the function proxr. The assumptions 8.s do not seem enough to imply the pseudo
contraction or the nonexpansiveness of our function U.

Corollary 8.1 below is a direct generalization of Proposition 8 in [10].
COROLLARY 8.1. If, in addition to the assumptions of Theorem 8.1, we have one of

thefollowing:
a) fl {g} and 0 Int (Of(g)) (for the topology of the norm of E*),
b) f is polyhedral,

then there exists no such that x, f and x, X,o+a for all n > no.
Proof. If we have a), then, like in the proof of [10, Thm. 3] we obtain the existence

of an e >0 such that {Y} 0-af(y) for all y such that Ilyll< e. On the other hand since
limn-H’(Xn+l-X,)=O, there existg n0N such that Ily,+all--llH’(X,+l-X,)ll<e for
n > no. Since by (8.5) we have

If we have b), we can assume without loss of generality that a 0. We define a
function k E

O if x
k(x)

+, xfl.

It is shovn in [10], that there exists a neighborhood T of 0 E* such that f*(y) k*(y)
for all y 6 T. By (8.6) there exists no such that y,+ T for all n >-no and since
y,+ 0f(X+l), we have x,+a 0k*(y,+l), which implies

0 Ok(Xn+l) +H’(Xn+l- Xo).

Therefore k(x,+) is finite and x+l 6 lq. Hence U(xn+)= Xn+ and the sequence x is
constant for n > no.

9. Uniform convexity.
DEFINITION 9.1. We say that a function q F0(E) (where E is a Banach space) is

uniformly convex, if there exists a nondecreasing function fiq" E+ E+ such that

6q(r)=O if and only if r=0,

q(.a +b) q(a)+q(b)
<- -(a-bll) for alla, bE.

2 2

The Propositions 9.1 and 9.2 are proved in [1].
PROPOSITION 9.1. If q Fo(E) is uniformly convex then the series

(9.1) Aq(r)
n=0

is convergent for all r >= O, and if y0e Oq(xo) then

(9.2) q(x)>=q(xo)+{yo, x-Xo)+

for all x E, n N.
PROPOSITION 9.2. If q F0(E), then the function 6q can be chosen such that

a, (2r) => 46 (r).

Remark 9.1. The assumptions 8.ag.5 and 8.,v/.6 are satisfied if H is uniformly
convex.

Remark 9.2. If, in addition to the assumptions of Theorem 8.1, the function f is
uniformly convex, then the sequence of solutions (x,) converges strongly to the unique
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solution of (P). Indeed, if , is the solution of (P), then (9.2) implies that

f(x,) >--_ flY) + 28f([]Xn 1[).
Since limn_.f(x.)=f(g), we have lim._o 6r([lx.-g[[)= 0 which implies

10. Partial translations. Consider the triplet (L, A, B) satisfying the assumptions
3.5w where F is a Banach space and the upper compactness of L(a, is with respect to
the weak topology o.(F, F*). Let H 6 Fo(F) be a function satisfying 8.4. Under these
assumptions, for any w 6 B the triplet (L, A, B), where L(x, v) L(x, v)-H(v w),
satisfies 3.and hence admits saddle points. We can thus construct the problems

(S) find the saddle value and saddle points of the triplet (L, A, B)

where Ln(x, v)=L(x,v)-H(v-Vn-1) and V,-a is the unique solution of the dual
problem (Dn-1) associated with (Ln-x, A, B). (Vo can be chosen such that v0c dom g,
where g is defined as in (3.4).) This way we obtain a partial modification of the problem
(S) defined in 3. The objective function of the dual problem (Dn) is

gn (v) Inf {Ln(x, v) x cA}= g(v)-H(v -Vn-a).

That corresponds to a translation of problem (D) defined in (3.2).
Assumptions 3.3? imply the weak upper compactness of the function g. Therefore,

all the assumptions of Theorem 8.1 are satisfied. Then if an is the saddle value of the
triplet (Ln, A, B), an converges to the saddle value a of the triplet (L, A, B) and the
problem (Dn) converges to the problem (D).

THEOREM 10.1. Let (L, A, B) and H c F0(F) satisfy assumptions 3..L and 8. 4,
respectively. Then any sequence (xn, vn) c A B such that (xn, vn) is a saddle point of
(Ln, A, B) has one of the following properties:

1. There exists m c such that v,,, v,,,+l and then (Xm/l, Vm/a) is a saddle point of
(L,A,B).

2. The sequence (xn, vn has at least one clusterpoint in the product topology ofE and
r(F, F*) and all the limit points are saddle points of (L, A, B).

Proof. 1. If v,+l v,,,, we have

(10.1) L(x,,+l, v)-H(v-v,)<-L(x,,+l, v,)<-L(x, v,) for all x

The first part of the inequality shows that v,.is a fixed point of the mapping Urn+l" B B
such that, for w c B, U,,/(w) is the unique solution of the problem

Sup {L(Xm+l, v)-H(v w) v

Thus, by virtue of Proposition 7.1, we have

(10.2) L(x,n+a, v)<-L(Xm+l, tam) for all v

Relations (10.1) and (10.2) imply (x,,+a, V,n) is a saddle point of (L, A, B).
2. Problem (Dn) associated with (Ln, A, B) is a translation of the problem (D).

Therefore by virtue of Theorem 8.1, the sequence (.vn) has weak cluster points and
all these cluster points are solutions of (D).

If (xn, vn) is any saddle point of (Ln, A, B) then

(10.3) L(xn, v)-H(v-vn-1)<-L(xn, Vn)-H(vn-Vn-)<=L(x, Vn)-H(vn-Vn-1)

for all x c A, v c B. Let us set L(xn, v)= -L(xn, v). Then

l(Xn, v)+H(V-Vn-a)>--I(xn, Vn)+H(vn-Vn-1) for all v
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which implies OEO((Xn,’)+H_v,,_l)(Vn) (where H_._ is defined by H_._l(v)
H(v- v.-1)). By the additivity of subdifferentials we deduce that there exists u. E F*
such that u. =-H’(v,,-v,,-1), u,, OzL(Xn, Vn) (where 2 is the subdifferential with
respect to the second variable). Then

L(x., v)>-_L(x., v.)+(u., v-v.) for all v F

or

(10.4) L(x., v)<-L(x., v.)-(u., v-v.) for all v F.

On the other hand, since the assumptions of Theorem 8.1 are satisfied for the problem
(D.) we have lim._.+ IIv.- v.-l[I 0, then

(10.5) lim Ilu.[[ 0.

By (10.3) we have L(x., v.)= Inf {L(x, v.)lx A} g(v.). Theorem 8.1 implies
that the sequence (v.) is bounded and lim._.+ g(v.)= . Thus in view of (10.5) we
conclude that lim._.+ (u., w v.) 0 for all w 6 F. Hence for all e > 0 and w 6 F there
exists mw, such that

L(x., v.)-(u., w v.) a + e for all n > mw..
Thus by (10.4), for all e > 0, w e F there exists row.. N such that

(10.6) x.Kw.={xA]L(x, w)Na+e} foralln>mw..
The relation (10.6) may be written for all w e E For w b (see assumptions 3.) Kb. is
compact. Thus the sequence (x.) has cluster points. The sets Kw.. are closed for every
w B; therefore any cluster point of (x.) belongs to Kw. for all w B and e > 0.
That means,

which implies

L(Y,v)-<a+e for allvEBande>0,

L(Y,v)_-<a for allvB.

On the other hand, if t5 is a weak cluster point of (v,), wehave

a g(O)<-L(x, ) for all x 6 A.

Therefore

L(Y,v)<-L(Y,O)<-L(x,O) forallxA, vB.

COROLLARY 10.1. If, in addition to the assumptions of Theorem 10.1, we have one

of thefollowing:
a) D {O} with 0 Int (0(-g(tS))) for the norm topology,
b) g is polyhedral,

then ]’or any sequence (x, v,) such that (x,, v,) is a saddle point of (Ln, A, B) there exists

no N such that ]or all n > no, (x,, v, is a saddle point of (L, A, B).
Pro@ Corollary 8.1 implies the existence of an no tN such that v, IqD and

v, V,o+l for all n > no; then by Theorem 10.1 we conclude that (X,o+l, V,o+l)is a saddle
point of (L, A, B).

11. Dual translations. Although (D,) is obtained by translation from (D), the
relation between (P) and (P) has a different nature. This act motivates the following
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DEFINITION 11.1. The problem (P,) obtained from (P) by means of the partial
translation (S,,) of (S) will be called a dual translation of (P).

Example 11.1. Consider the triplet (L,A,) defined in Example 5.1 and
2Kthe function H(v)-(1/(2K))i=1 vi where K t. Let (S) and (Sn) be the saddle

point problems of (L, A, ’) and (Ln, A, ’) respectively. (Ln (x, v) L(x, v)-
(1/(2K)) i=1 (;i--Vi,n_)2K). The dual translation of the problem (P) is

(Pn) an Inf (x)[ x A},

where fn (x) Sup {L. (x, v) v ’} fo(x) + ,’= (qi(x), Vi,n-) and

2K- 1 ))2K/(2K-1) 1)2K--1q,(x)v,,,-x +
2K

(q(x if (q(x) + (v,.._ _-> 0,
O(qi(x) vi,,,-)

1 2K

--(vi .-1) otherwise.

Also f,,(x) lK(x, tAn-l, 1) where IK :E x"x is defined as

/(x, v, c) Sup fo(X)’-[- Z wiqi(x)--
C

W --V,,
2

wR\ i-1

For K 1, 11 is the well know augmented Lagrangian introduced in 12] and elaborated
in [11], [15] among several other works. When K 1 our method corresponds to the
method of multipliers (see 11]) which can be resumed as the proximal point algorithm
applied to the dual problem (D).
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SUFFICIENT CONDITIONS FOR KUHN-TUCKER VECTORS
IN CONVEX PROGRAMMING*

P. LEVINEf AND J. CH. POMEROL"

Abstract. In this paper, we give new sufficient conditions for the existence of a Kuhn-Tucker vector for
convex programs. These conditions generalize all the previously known ones.

1. Introduction. The aim of this paper is to give efficient conditions for the
existence of a Kuhn-Tucker vector for convex programs in Banach spaces. Three
conditions have already been introdui:ed for convex programs, see e.g. Rockafellar
[14], [16], [17] and Robinson [13]. A fourth, in the framework of continuous program-
ming, can be found in Grinold [6], [7].

In this paper we shall present sufficient conditions which are easy to handle and
which generalize all the previously known conditions.

Our approach will be the following: in 3, by perturbing the objective function of
the program, we prove that the existence of Kuhn-Tucker vectors is related to the
closedness of certain convex sets. This fact will lead us to study three types of sufficient
conditions ( 4). In 5, we study the relationships between our conditions and the
known ones. Section 6 is devoted to continuous linear programming for which it is
possible to weaken the sufficient conditions of Grinold [6].

2. Statement of the problem. We are concerned with the following convex
program (r)"

subject to

Minimize f(x

Ax-a z-Q, x P.

Here P and Q are closed convex sets, A is a continuous linear map from X into U
(where X and U are two real locally convex vector spaces), a U and the functional f,
from X into R (the extended real line), is convex, lower semicontinuous (lsc) and
proper.

We are considering this kind of program to permit comparison with known results.
However it can be easily shown that there is no loss of generality under this form.

We shall denote by inf (zr) the infimum of f(x) under the constraints Ax a -Q,
x P and we shall assume that inf (r) < +o. Let Y(resp. V) denote the topological dual
of U (resp. X). The polar set of a subset C cU is defined by C=
{y Yl/u C(u,y)--> 1} and the indicator function of C is denoted by Oc. In what
follows f* denotes the conjugate of a functional/:.

One can associate with (r) the Lagrangian functional K defined by

f(x)+(y, a-Ax)-O(y) if x P,
K(x, y)=

+ otherwise.

We are now ready to define a Kuhn-Tucker vector for the program (or):
) s Y is a Kuhn-Tucker vector for (or) if:

inf (r)= inf K(x, ).
xX

* Received by the editors December 29, 1976, and in revised form November 16, 1978.
5" Universit6 P. et M. Curie, 75230 Paris CEDEX 5, France.
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The aim of this paper is to derive sufficient conditions for the existence of a
Kuhn-Tucker vector for (r). This problem has been treated by many authors and
several sufficient conditions have already been proposed. Let us list the sharpest ones
known:
(C1) P, 0 and f are polyhedral in finite dimensional Euclidean spaces; see e.g.

Rockafellar [16, Thm. 29.2].
(C2) Vu U, Zle>O such that euA(Pf’) domf)+O-a, i.e. O core (A(Pf)

dom f) + O a).
This condition appears in Rockafellar 1"7, Thm. 6], and 18, Thin, 18, c] when U is

a Banach space and V a Banach space for a topology compatible with the pairing
(X, V). WhenX and U are Banach spaces, this condition is stated by Robinson 13, Cor.
1].

Notice also that (C2) is implied by (see for instance Rockafellar [14] and [18, pp.
47-48] the well-known condition:

There exists P (3 dom f such that:

A a- int (O).

(int (O) denotes th’e interior of O in U.)
A dual condition (C3), which implies (Cz) is given by Rockafellar 18, Thm 8, el.

This condition will be recalled in 5.
However these conditions are never fulfilled or some type of programs having

Kuhn-Tucker vectors. Let us give a typical example. We consider programs such as:

Maximize J, p(t)x(t) dt

subject to A(t)x(t) <= a(t)
x(t)=(Xl(t),. ,xn(t))>=O and xiLl[O, 1]

where L110, 1 is defined by the Lebesgue measure on [0, 1 and the constraints must be
satisfied almost everywhere. The n-vector p(t) and the m-vector a(t) are given such that
for every i, ai(t) and pi(t) belong to L [0, 1]. Moreover a(t) is positive, the (m x n)
matrixA (t) takes on a finite number of values, and possesses at least one positive row on
a nonzero measurable subset of [0, 1].

The fact that this program has a Kuhn-Tucker vector will be proved in 6. But
neither of the conditions (C1) and (C2) can ve applied in the present case. It is clear that
(C1) does not apply. To verify (Cz) we need for every u LI[0,1] a positive e such that
eu(t)>=A(t)x(t)-a(t) is satisfied with a positive x(t). But this is impossible when u is
not bounded from below on the measurable subset where A(t) has a positive row.

The main purpose of this paper is therefore to give sufficient conditions for the
existence of Kuhn-Tucker vectors, more general than (C 1) and (Cz) which are fulfilled
at least by programs such as the previous ones.

3. Abstract conditions for the existence of Kuhn-Tucker vectors. Let us introduce
some notation. The projection from V Y R onto V R is denoted by Pr (i.e.
Pr (v, y, t) (v, t)). The adjoint mapping of a given linear map is denoted by A*. The
lower semicontinuous hull of a functional ]" is denoted by lsc , whereas its upper
semicontinuous hull is usc . In what follows "neighborhood" is written for "closed
convex neighborhood."

We define now the following subset of V Y :
{(v, y, t)l(a, y)-t(y)-(f+e)*(A*y +v)>=t}
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To motivate the .introduction of this set, it is convenient to use the concept of
perturbation [15]; see for instance Rockafellar [18] from whom we borrow the
notation. Thus let us re-express (Tr) as:

Minimize F(x, 0) on X

where F(x, u)= !f(x)

We calculate"

when x e P and Ax -a + u -Q,
otherwise.

G(y, v) inf ((u, y)-(x, v)+F(x, u))

inf (-(x, v)+(-q-Ax + a, y)-f(x))
xP
qeO

(a, y)-sup (q, y)-sup ((x, v + A*y)-f(x))
qO xP

=(a, y)-O(y)-(f+Oe)*(v+A*y).

Note that is just equal to {(v, y, t)[G(y, v)>= t}.
In order to relate the set to the program zr we shall define the family of perturbed

programs (zrv), v e V, as follows:

(rv) minimize f(x (x, v

Ax-a -O, x eP.

Finally we denote by 8o the line 8o =((v, t)lteff} and by 3,(v) the functional
supy yG(y, v).

Let us recall the following equivalence"
PRO’OSITION 3.1. The following two assertions are equivalent:
(i) (Zroo) has a Kuhn-Tucker vector;
(ii) Pr (() Yl oo Pr(:) fq 8vo.
Proof. Replacing F(x, u) by F(x, u)=F(x, u)-(x, Vo) we obtain in the above

formula (y, v)= G(y, Vo + v). Let us consider 3(0)= /(Vo). Applying to 3 Rockafel-
lar’s results [18, Thm. 16a, and Thm. 15d] it follows that (Troo) has a Kuhn-Tucker
vector 37 if and only if el 3,(Vo)= )’(Vo)= G(;, Vo). The assumption inf (r)< +oo implies
inf (ro)< +oo. Thus we are not in Rockafellar’s exceptional case [18, Thm. 7]; hence
for every v e V we have cly(v)=usc),(v)<+oo. Then it is easy to see that
(v, use ),(v)) e Pr() whenever use /(v) is finite. It follows that Pr ()=epi usc /. In
other words we have use ,(v) sup {t (v, t) e Pr (so)}, the supremum being a maximum
when use ,(v) is finite. Thus the equivalence holds when usc 3,(Vo) is finite, and it is
obvious when usc /(Vo)= -oo, both sets in (ii) being empty. Q.E.D.

Then from Proposition 3.1 come two other results.
PRO’OSITON 3.2. The two following assertions are equivalent:
(i) /v V, (Trn) has a Kuhn-Tucker vector;

(ii) Pr (() is weak *-closed.
Proof. Let (v, t) be an element of Pr (:); then (v, t)e 8. From Proposition 3.1 it

follows that (v, t) e Pr(). Conversely if Pr () is weak*-closed, it follows that for every
v V, Pr (:) 8n--Pr (: fq 8 which, at the view of Proposition 3.1, completes the
proof.
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PROPOSITION 3.3. If there exist to [-oo, +oo [satisfying y(O) <- to <- usc y(0) and a
neighborhood (NM) of (0, to) such that Pr ()f’) (N M) is weak*-closed, then (zr)
has a Kuhn-Tucker vector.

Proof. It suffices to prove that Pr (:)0 6o Pr ()(3 6o (Proposition 3.1). Assume
that 3,(0)<use 3"(0). As (0, use 3,(0)).Pr () which is a convex set, it follows that
(0, to) Pr (). Taking an arbitrary 0-neighborhood (No Mo) such that No cN and
to +Mo c M, we have [(0, to) + (No Mo)] f3 Pr (sc) .# .i. Thus (0, to) Pr (:) (3 (N M)
which is equal to Pr (:) (N M). It follows that 3,(0) => to and there exists y such that
G(y, 0)_-> to. If to was such that 3,(0)< to it is absurd. If to 3,(0) we can replace to by
t int (N) satisfying t > 3,(0), which is also absurd. Q.E.D.

Remark 3.1. It has been known for a long time that, in Proposition 3.2. (ii) implies
(i); see for instance Kretschmer [10] in linear programming, and Dieter [2] in convex
programming. To our knowledge the part (i)ff (ii) appears firstly for linear program-
ming in Pomerol (3rd cycle dissertation, Universit6 de Paris 6, 1973) and for convex
programming in L6vine ("Stabilit6, sous-convergence et applications C-ferm6es"
Universit6 de Paris 6, D.P., 1973), then independently in Krabs [9] for linear programs
and Gwinner [8] for convex programs.

Let us now deduce from these three propositions three types of sufficient condi-
tions for the existence of Kuhn-Tucker vectors.

4. Sufficient conditions for the existence of Kuhn-Tucker vectors. First we derive
from Proposition 3.1 a sufficient condition for the existence of Kuhn-Tucker vectors
which holds at point v 0.

TI-IEOREM 4.1. Assume that eitherXis a Banach space or Vis normedfor a topology
compatible with the pairing. Then the following condition implies the existence of a
Kuhn-Tucker vector for (zr).
(C4) 3,(0) is finite and them exist a neighborhood M of 3,(0), a real k >0 and a

weak*-compact set B in Y such that" If (v, t) Pr (:), tM, [[vii=< k then there
exists y B satisfying G(y, v) >- t.

Proof. Since 3,(0) is finite there exists a sequence t, which converges to 3,(0) and
G(0, y,)-> tn. By (C4) y, can be chosen in B. Thus y, weakly converges to Y0 and (0,
yo, 3,(0)) :since isweak*-closed. It follows that G(0), yo) 3,(0)and (0, 3,(0)) Pr ().
Assume now that 3,(0) < use 3,(0). Let us consider to int (M) and 3,(0) < to use 3"(0).
Since (0, to) belongs to Pr () there exists a generalized sequence (v,,, t,,) Pr (s) which
converges to (0, to). Thus this sequence is strongly bounded ([1 Chap. IV 3 No. 2,
Prop. 2] whenX is a Banach space). Then there exists ko > 0 such that [[v[[ <- ko. The set
Pr() being convex (v, t’)=(1-h)(0, 3"(O))+h(v,t) belongs to Pr(s) whenever
h [0, 1]. Setting h min (1, kko) one obtains [Iv’ [[-<- k. Taking t inMwe have t’ M
because 3"(O)<-_t’ <-_t. In view of (C4) there exists y’ B such that (v, y’, t’).
The set B being weak*-compact there exists a subsequence of (v’ y,, t,,) ffhich
converges to (0, yo, (1-h)3,(0)+hto) :, implying that G(0, yo)=>(1-h)3,(0)+hto>
3,(0) which is absurd.

We derive now from Proposition 3.2 a sufficient condition for the existence of
Kuhn-Tucker vectors which holds for every v V (even if inf (rv)= -oo).

TI-IEOREM 4.2. Assume that eitherXis a Banach space or Vis normedfor a topology
compatible with the pairing. Then the following condition implies the existence of a
Kuhn-Tucker vector for (rv), Vv V.
(C5) Vk > O,Ba weak*-compactsubsetof Ysuch thatif (v, t) Pr (:), IIv[I--< k, Ill

_
k,

then there exists y B satis]’ying G(y, v)>= t.

Proof. Let us show that (C5) implies the closedness of Pr (:). Let (v, t) be an element
of Pr (). Then there exists a generalized sequence (v,,, t) in Pr (:) which converges to
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(V, t). Therefore this sequence is strongly bounded and there exists k >0 such that

IIv ll =< k, It l--< k. By (C5) there exists a sequence (y,,) with y,, Bk and (y, v, t) s. The
set Bk being weak*-compact we can extract a subsequence of (y, v,,, t) which weakly
converges to (y, v, t) :, which proves the closedness of Pr (:).

Remark 4.1. Theorem 4.1 and its proof may be regarded as conjointly elaborated
with R. T. Rockafellar to whom we are greatly indebted.

It is not obvious to deduce Theorem 4.2 from Theorem 4.1. Actually when
3,(0) =-o, the condition of Theorem 4.1 does not apply whereas Theorem 4.2 still
holds and implies that 0(0) -o. The original proof of Theorem 4.2 used the concept
of C-closed mapping (linear transformation which maps a closed convex set onto a
closed one). For these mappings the closedness of Pr (:) directly follows from the
closedness of s (see [11 ]).

When U is a Banach space the weak*-compact set B of Theorems 4.1 and 4.2 can
be expressed by a set such that {y[llyll-< k’}. In this case, we deduce from Theorem 4.2
the following sufficient condition which is easy to handle in most examples [12].
(C7) There exist two positive numbers a and such that: For every (v, t) Pr () one can

find y Y satisfying G (y, v) >= and Ilyll <-- c max (llv[I,
Remark 4.2. Let us mention that (C7) has been known for many years. Condition

(C7) is given by L6vine ("Stabilit6, sous-convergence et applications C-ferm6es",
Universit6 de Paris 6 D.P., 1973). Independently, in linear programming, Evers [3,
Prop. 6.15] and Tr61tzsch [19, Satz 1] use (C7). Evers has also obtained (C7) for the
convex program:

Minimize q(x) subject to G(x)<= a and x =>0.
(q and G are convex weak*-continuous functions and X a reflexive space, [4, Thm.
21].)

A strong version of (C7) which consists of replacing "one can find y" by "for every
y" has already been given by Eisner and Olsen [5, Thm. 5.1).

Finally we obtain from Proposition 3.3 a condition for the existence of a Kuhn-
Tucker vector which holds in locally convex vector spaces and does not ask that 3"(0) be
finite.

THEOREM 4.3. The following condition implies the existence of a Kuhn-Tucker
vector for (zr).
(C6) There exist to [-c, +c [satisfying 3"(0) <= to <-<_ usc 3"(0), a neighborhoodMofto, a

O-neighborhoodN in Vfor the Mackey topology and a weak*-compact setB in Y
such that:

If (v, t) Pr () f’) N xM then there exists y B satisfying G(y, v) => t.

Proof. Let (7, t) be an element of Pr(:)fqNM. There exists a generalized
sequence (v, t,,) converging to (6, t) with (v, t) s Pr (:) (3 N xM. By (C6) there exists
y,, s B such that (v,,, y, t)s. The set B being weak*-compact there exists a
subsequence of (v,,, y, t) which converges to (3, 37, t)s :. Thus G(37, 5)>_ and (5, t)s
Pr (s) (’1N x M, which completes the proof.

In the sequel, we denote by (CS4) and (CS5) the strong versions of Conditions (C4)
and (C5) defined as follows:.
(CS4) 3,(0) is finite, there exist a neighborhood M of 3,(0), and a real k > 0 such that

{y G(y, v) _>- t, Ilvll <- k, M} is weak*-compact.
(CS5) Vk >0 the set {y[G(y, v)>-_t, [Ivll_-<k, Itl<-k) is weak*-compact.

5. Comparison v|th knovn results. (a) We have shown that in finite dimensional
Euclidean spaces (C1) implies (C7), [11, Thm. 5.1].

(b) In locally convex spaces Rockafellar has given the following condition [18,
Thm. 18.el, which we denote (C3).
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(C3) There exists a O-neighborhood N for the Mackey topology .3-( V, X) and a real
number , < y(O), such that the set

{yllv 6N, G(y, v)_->fl} is equicontinuous.

Since every closed equicontinuous subset is weak*-compact in Y, it is clear that (C3)
implies (C6).

THEOREM 5.1. The following assertions are equivalent"
(i) q(0) is finite and q is bounded above on a O-neighborhood;

(ii) (C3) is satisfied.
Proof. Rockafellar has shown that (ii) implies (i) [18, Thm. 18(e)]. Assume (i); then

q is continuous at zero and the level sets {ylG(y, 0)-->/3} are equicontinuous [18,
Theorem 10]. We consider %,(v)=supy(G(y, v)-(u, y)); we have usc y(0) q(u)
whenever u core dom [18, Thm. 7’], observing that we are not in the exceptional case
since (u) < +. Thus if 7 denotes a 0-neighborhood basis for a compatible topology
dne has uscy,(0)=inf,vsupf,,(v); therefore there exists V7/" such that
supf,%,(O)_--<uscy(O)+a(a>O). Introducing gf,(y)=supf,G(y,v) which is a
concave functional [18 p. 42], we have g(u)=-supyv supof, (G(y, v)-(u, y)). It
follows that"

(1) -g(u)<-q(u)+a Vu coredom

One has q(0) lsc q(0) y(0) [18, Thm. 7] which are finite. Thus there exists yo such
that G(yo, 0)>-oe. Then since .the level sets are equicontinuous, one has
supyyG(y,0) yo(0)= G(17, 0)< +oe [18, Thm. 9]; hence 3,0(0) is finite. If v V, we
always have

(2) y,(v) _--< sup f,y (v) -g,(u).

Finally yo(O) <=-g*v(O) <= q(O) + a hence since g*v(O) is finite it is proper and
usc gf, gv* [18, p. 43].

Assume now that there exists f V such that G(17, f)__>/3 with/3 < y(0). Then
g. (17) _>-/3; therefore one has usc gf, (17) =>/3. From (1)- g,(u) is continuous at zero and
the level sets {ylg*(y)->fl} are equicontinuous. Recalling that g},* =usc gf,, we
conclude that {y]usc g,(y)->/3} is equicontinuous, and 17 belongs to thisset. Q.E.D.

To obtain a corollary of this theorem, we ifitroduce the functional qv(u)=
infxx (F(x, u)-(x, v)). Thus qv(0) is the value of the program (r), and qo is identical
to .

THEOREM 5.1’. The following assertions are equivalent:
(i) 0 core dom o.

(ii) There exist Vo V, a neighborhood Vo of Vo in the Mackey topology, and fie,
fl < y(Vo) such that:

{yl::tv Vo satisfying G(y, v)>_-/3} is bounded.

Proof. When y(0) is finite, taking Vo 0 our result follows from the proof of
Theorem 5.1 where we have replaced "qo bounded on a 0-neighborhood" by
"0coredomqo" and "equicontinuous" by "bounded". Suppose now that
Vy YG(y, 0)=-oo. Then there exists (yo, vo) such that G(yo, vo)>-ee; otherwise G
should be identically equal to -oo and F=-oo, which is absurd because ’is proper. We
can now consider t(y, v) G(y, Vo+ v); we have ((yo, 0) G(y0, Vo) >-oo. We
observe that (x,u)=F(x,u)-(Vo, X) and that 0coredom qo is equivalent to 0e
core dom q3o (since q3o qo and dom Oo dom Oo). It is possible now to apply the
previous proof to t which completes the proof.
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(C) In normed spaces we can replace neighborhoods by balls.
THEOREM 5.2. Assume that eitherX is a Banach space or V is normed in a topology

compatible with the pairing, then the following assertions are equivalent"
(i) q(0) is finite and q is bounded above on a O-neighborhood.

(ii) There exist k >0 and < y(O) such that the set {yl::iv satisfying ]]vll <- k and
G(y, v) _->/3} is equicontinuous.

Proof. When V is normed in a compatible topology, the result follows directly from
Theorem 5.1. Assume now that X is a Banach space. To prove that (i) implies (ii) we
observe that in the proof of Theorem 5.1 we can choose a basis V of 0-neighborhood for
the weak*-topology. Thus V being a weak*-neighborhood it contains a ball of radius k"

1,... ,n},k<-

Replacing Q by the ball {v[llvll k} we can continue as previously the proof.
To see that the converse implication holds we have to show that Rockafellar’s

proof of Theorem 18(e), 18], is still valid when X is a Banach space andN is replaced by
{vlllvll<=k}. It suffices to prove that limv_0sup y(v)<=supllvll=ky(v) (i.e. that (7.14) still
holds in Rockafellar’s proof). Assume that a =suptlvtl__<k’(v)</" otherwise it is
obvious. If lim_0sup /(v)>a, then there exists a generalized sequence v which
weakly converges to 0 and satisfies 3,(v) > a. This sequence is weak*-compact and its
convex hull also, because V is quasi-complete [1 C0r. 2, Thm. 1, Chap. IV, 2, N2].
Thus this sequence is equicontinuous and strongly bounded 1, Chap. III, 3, Prop. 7].
Moreover 3,(0) is finite. As in the proof of Theorem 4.1 we consider the sequence
v’ A v, and we obtain an absurdity, which completes the proof.

It should be possible to give a similar result for 0 core dom qo using Theorem 5.1’.
To give a more convenient form to the condition (ii) of Theorem 5.2 when X or V are
normed, we need the following proposition"

PROPOSITION 5.1. The following assertions are equivalent when V is normed (not
necessarily for a compatible topology)"

(i) V/3 , Vk :>0 the set {y ]::iv satisfying IIvll<=k and G(y, v)>-fl} is equicon-
tinuous (resp. weak *-compact, bounded).

(ii) ::1/3,) , ::lko > 0 such that there exists (To, Vo) satisfying IlVol] < ko, G(yo, vo) >/3o
and the set {ylZlv satisfying Ilvll < ko and (G(y, v)>-/30} is equicontinuous (resp.
weak *-compact, bounded).

Proof. It is clear that (i) ::), (ii) when G is not identically equal to -oo. Assuming (ii),
there exist /3o and ko such that B ={ylZlv satisfying Ilvll<-ko and G(y, v)_>-/3o} is
equicontinuous. Let [It3]] _-< k such that there exists )7 with G(37, t3) _->/3. We set G(yo, Vo)
/3o+e, (e>0), and IlVoll=ko-e’(e’>O). One has G(ty+(1-t)yo, tt3+(1-t)Vo) >-
tG(y, t3)+(1-t)G(yo, vo). Taking to<-min(1, e[max(O,o-3)+e]-1) we obtain
G(tof + (1 to)To, tot5 + (1- to)Vo) >- o. Then taking tl min (1, to, e’ [-max (k
ko, 0) + e’]-1) we have Iltlt3 +(1-tl)voll<=ko. Thus t137 + (1- tl)yoe B which is equicon-
tinuous. It follows that whenever y belongs to y I::lv satisfying ]lvll =< k and G( y, v) _->/3}
it also belongs to yo+(B-yo)t-1. Since "equicontinuous weak*-compact" and
"bounded" sets are stable by translation and multiplication by a scalar the proof is
completed.

COROLLARY 5.1. With the assumptions of Theorem 5.2 the following assertions are
equivalent"

(i) There exists roe V such that o(0) is finite and bounded above on a O-
neighborhood.
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(ii) V/3 R, Vk >0 the set {y[::lv satisfying Ilvll k and G(y, v)_>-/3} is equicon-
tinuous.

Proof. Applying Theorem 5.2 to d we obtain (i):ff (ii) by Proposition 5.1. The
converse is true at any point Vo where -/(Vo)>-oe. Q.E.D.

We introduce now the following condition:
(C8) V/3 R, Vk > 0 the set {yl3v satisfying Ilvll <- k and G(y, v)---_/3} is bounded.

And we get:
COIOLLAIY 5.1’. With the assumptions of Theorem 5.2, the following assertions are

equivalent:
(i) 0 core dom qo.
(ii) (C8) is satisfied.
Proof. The proof follows from Proposition 5.1 and Theorem 5.1’.
PROXOSITIOrq 5.2. With the assumptions of Theorem 5.2 one has: (C3)

(CS5) =), (C8):>(C2). Moreover if (0) is finite (CS5):>(CS4); finally when (0) is finite
and U is a Banach space, these five conditions are equivalent.

Proof. Th.e first assertion is obvious because equicontinuous implies weak*-
compact which implies bounded, and 0 core dom q0 is the abstract version of (Cz).

When 3,(0) is finite "(CS5) is equivalent to (CS4)" results from Proposition 5.1.
Finally in the dual of a Banach space bounded and weak*-compact sets are

equicontinuous. Q.E.D.
Finally, while neither of the three conditions (C1), (C2), (C3) apply to the programs

described in 2, let us give an example of this type where (C2) holds. At the same time,
this will prove that our conditions (here (C5)) may be satisfied in cases where the strong
versions (here (CS5)) are not satisfied.

We consider the following program (#):

Minimize Jo -(t2xl(t)-xz(t)) dt

subject to tx(t)-xz(t) <- 1,

g(t)x2(t)<-O,

x(t)>-O, x La[0, 1],

x2(t) -> 0, x.L[O, 1].

L110, 1] is defined by the Lebesgue measure on [0, 1], g is the function defined by:

l0 if te[0,1/2],
g(t)= / 1 otherwise

and the constraints must be satisfied almost everywhere.
Let us prove that (#) satisfies (C7) which implies that (C5) is satisfied. Applied to

(#) it is equivalent to the following: there exist positive real numbers a and/3, such
that: if one can find y l, y2, U and u2 in L[0, 1] and a real number 0 satisfying:

(1) 0 _--> Io ux(t) dt,
(2) tub(t) >- yl(t),
(3) -Ul(t) + uz(t)g(t) >- yz(t),
(4) ua(t) >= O,
(5) u2(t) >- 0

then there exist t71 and ti. in L[0, 1] satisfying together with ya, y2 and 0 the constraints
(1)-(5) and:
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(6) II( +a2)’/lGc max
If yl, y2, ul, u2 and 0 satisfy the constraints (1)-(5)

O<=ua(t)<=-y2(t) on[0,].
Thus, we can set

Ul(t) on [0, 1/2],
tTl(t) y-(t)t-1 on ]1/2, 1]

(where y +1 (t) max (0, yl(t))), and

a2(t)
0
(y2(t)+y?(t)t-1)

on [0, ],
on]1/2, 1].

Consequently (6) is satisfied with a 4 and/3 0, since almost everywhere:

tTl(/)2+ t/2(t)2 --< 8(lyl(t)l + lye(t)l)2 16(yl(t)e+ y2(t)2).

Let us notice that it is obvious that the vectors u satisfying the constraints (1)-(5) do
not define a bounded set. Thus (CS5) fails to be satisfied and consequently (C2) and (C3)
do not hold.

However, tightening the inequalities we have found a choice of u which is
bounded.

This example is a special case of a wide class of programs which satisfy (C7), as will
be seen in the next section.

6. Continuous linear programs. Let us consider the following continuous program
(r):

Tt"

Minimize J0 f(t)x(t)dt

subject to B(t)x(t) K(t, s)x(s) ds <- a(t), x(t) >-_ O.

For each t [0, T], B(t) is a m x n matrix, f(t) an n-vector, a(t) an m-vector and
K(t, s) an m x n matrix which is zero if s > t. The functions B, K and f are all bounded
and Lebesgue measurable, a is Lebesgue measurable and (rla(t)ldt is finite (i.e.
a 6 L1,.[0, T]). T is finite, the constraints must be satisfied almost everywhere and the
solution x is required to be in Lan[0, T].

Now, let us consider the following assumptions on (r)
(A1) (i) Vt ’B(t)u >-0 and u _->0 imply (u, a(t))_->0;

(ii) Vt ’B(t)u >-_ 0 and u _-> 0 imply ’K(t, s)u >= 0 V <- t.
Let us denote by H[B(t),d] the convex hull of the extreme points of

{v[vN’v>=O tB(t)v>-d).
(A2) There exists p ->_ 0 such that:

VI[O,T],VdN’,vH[B(I),d] implies Ilvllplldll.

(11" is the Euclidean norm.)
PROPOSITION 6.1. UnderAssumptions (A1) and (A2) theprogram (Tr)satisfies (C7).

Thus (7r) has a Kuhn-Tucker vector if inf (zr) < +
Proof. We shall prove the following: there exists a positive real number a such that
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if (y, v, 0) satisfy
(1) y e L[0, T], y(t) _-> 0 a.e.,
(2) v L[0, T], v(t) >- 0 a.e.,
(3) tB(t)v(t) Tt-t K(s, t)v(s) ds >-_ y(t) a.e.,
(4) 0 => a(t)v(t) dt,

then there exists 5 L satisfying together with y and 0 (2), (3), (4) and
(5) I111o <--
Let us remark that, if v satisfies (2) and (3) one can find t5 and 6 such that (if

Ttone sets d(t)=y(t)+t K(s,t)v(s)ds), v=tS+g with f(t)H[B(t), d(t)] and
g(t) {wltB(t)w >= O, w >= 0}Vt [0, T], Grinold [6, Cor. 9, p. 39]. It follows from (A1)
that t5 also satisfies (2), (3) and (4). Moreover Grinold shows that Ilfll_-< cllyll which
completes the proof.

Remark 6.1. The assumption (A1) is the algebraic assumption II of Grinold [6],
while (Aa) is his boundedness condition (ii). So, we need only the "dual assumptions" of
Grinold [6] and [7], to prove that (Tr) has a Kuhn-Tucker vector.

Programs defined in 2 obviously satisfy (A1). Grinold has shown that they satisfy
(Aj, I-7, Prop. A2, p. 96]. Thus, such programs have a Kuhn-Tucker vector.

Moreover, it is easy to check that the program (?) of 5, which satisfies (A1) and
(Aa) does not satisfy the boundedness condition (i) of Grinold [6]. Thus, (A1) and
are strictly weaker than Grinold’s conditions.

7. Tables of results. In these tables we use the following abbreviations"
K.T. for Kuhn-Tucker vector, and * means: "when 7(0) is finite".
7.1. In locally convex vector spaces

(0 e core dom qo) (C2)

(C3) -----"- (C6) ---->. K.T. for (’tr)

7.2. When either X is a Banach space or V is normed in a compatible topology

(C3) (C54)

(C8)<=(C2)

.’> (C.s) ".>We V, K.T. for (7r)

>(C4) bK.T. for(rr)

>(C.) _’>K.T. for (r)

7.3. When either X is a Banach space or V is normed in a compatible topology and
U is a Banach space.

X and Ufinite
(c,).,

dimehsional

![" ,> (CS) <>(C8)<(C2) >(C5)NN*
_’>Vv V,K.T.[or(Tro)

(C3) <2:==(CS4) >(C4) K.T. ]:or (zr)

. (C6) .) K. T. for (r)
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THE PRINCESS AND MONSTER DIFFERENTIAL GAME*

CARL H. FITZGERALD’["

Abstract. In this game of R. Isaacs, the players are a hider and a searcher. The payoff is the time until
capture. The hider is assumed to be mobile within a bounded set . The searcher has an arbitrarily small
detection radius. There is incomplete information in that neither player knows the present or past location of
the other. For various sets , the value of the game is demonstrated by the presentation of e-optimal
strategies. Specifically, the game is solved in case @ is convex or is the finite union of convex sets in R with
n >- 2. Also the game is discussed in the case where is a network. The results settle two conjectures of S. Gal.

1. Introduction. In this paper we study a search game with a mobile hider and
incomplete information. The original problem was posed by Rufus Isaacs [3] with the
name, "The Princess and the Monster." It can be formulated as follows: The princess
and the monster are in a totally dark room (of any shape). Each knows his own location
and previous path. The monster is searching for the princess. His maximum speed is one
and is known to both. Capture takes place when the monster is within a known detection
distance r of the princess. The princess’ maximum speed is s where s is positive and
known to both. The payoff is the expected time to capture.

The princess and the monster are not given the other’s location. The possibility that
information might be inferred makes the analysis more difficult.

To motivate the problem, the reader might substitute "submarine" for princess
and "destroyer" for monster. Also the reader could compare these results with the
considerable literature on search problems with immobile hider or hider with a random
motion of given distribution. The princess and the monster problem is the worst
possible case of a hider with some type of known random motion.

Various discrete versions and special network problems have been studied (cf. [1 ],
[3]). It is only recently that something close to a general solution has been found [1].
When the "dark room" is a rectangular set in R or a combination of two rectangles, S.
Gal has solved the problem for arbitrarily small detection radius r. Also, he gave a
strategy for the princess in any bounded convex set in Rn and analyzed it. Gal made the
following two conjectures in that paper:

Con]ecture A. Gal’s search strategy for the monster can be extended to convex
sets, and the expected time until capture is the length of time for the monster to cover an
area (or volume) equal to the area (or volume) of the set . Also, it was suggested [2]
that it might work for finite unions of convex sets.

Conjecture B. Suppose the "dark room" is a network and that capture takes place if
the princess and the monster are at the same point. The expected time until capture is
less than or equal to twice the time necessary for the monster to travel a distance equal
to the full length of the network.

These two conjectures appeared to be closely related. In Gal’s paper, the results of
a careful analysis of certain networks were used to solve the problem in the case where

is a rectangle. Also, the conjectures appeared to be motivated by similar intuitive
arguments.

The analyses given in this paper complement each other. Intuition is shown to be
correct in one case, and wrong in the other. Section 4 is a discussion of a modified

* Received by the editors May 31, 1978 and in revised form December 18, 1978.
5 Department of Mathematics, University of California, San Diego, La Jolla, California 92093. This

research was supported in part by the National Science Foundation under Grant NSF-C MCS77-03497.
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princess and monster game. The new problem suggests the pertinent difference
between the domain in the first conjecture and the network in the second.

2. Searching in domains in R". Consider a closed, bounded, convex set
Suppose the interior of has positive area. The strategy Gal gave for the princess is
depicted by the dotted line in Fig. 1. For any e > 0, the strategy can be stated as follows"
a) The princess should start at a point of @ chosen at random with uniform probability
over @. b) She should wait there the length of time it would take the monster to search
of the area of @, then pick a point of @ at random with uniform probability over @, and
move along a straight line to that point with maximum speed s. c) Step b should be
repeated indefinitely.

FIG.

For sufficiently small detection radius r, this strategy guarantees the princess an
expected time to capture which is greater than the time necessary for the monster to
cover an area of the size of @ times (1-e). Since the monster has a speed of one and
searches area at the rate 2r, the expected time until capture is greater than (1 e) (area
of @) + (2r).

For the case in which @ is a rectangle, the analysis of the game was completed by
giving an e-optimal strategy for the monster. Conjecture A is just that the strategy can
be extended to be e-optimal for more general domains and sufficiently small detection
radius. A slightly different strategy is presented here. An analysis shows it is e-optimal
when @ is convex and the detection radius is sufficiently small. The strategy requires the
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monster to move outside of @. Subsequently it is shown that the strategy can be
modified to avoid such excursions. Generalization to finite unions of convex sets, to
higher dimensions, and varying detection radius are discussed. We now present the
strategy for the case in which @ is convex in [2. The strategy is depicted by the solid line
in Fig. 1.

For the moment, we shall assume that the monster can move out of @. Let A
denote the area of @, and let L denote the diameter of . Consider tilings of the plane
with congruent, horizontal rectangles. For e given such that 1 > e > 0 and L > e, we
require the lengths of the rectangles to be d eA/(82L). The heights of the rectangles
are chosen to be h ed/8. We also fix the tiling and let be the collection of rectangles
containing points of @ or rectangles which are adjacent to such rectangles. Every point
in a rectangle of Y is within 3d of @. Using the estimate that A <- L2, one can easily show
that the total area of the rectangles of is less than (1 + e/8)A.

A strategy for the monster is now presented. We assume the recognition radius r
satisfies the inequality O<r<-eSA2/(88L3). Let K be the largest integer such that
2rK < (e/8)h, thus, K >=[(84L)/(3e2A)]. It is not essential how the initial locations of
the princess and monster are chosen or whether they know each other’s locations. Our
strategy for the monster consists of the following steps"

(i) Use a uniform probability" distribution to pick a rectangle from Y at random.
With equal probability pick a vertical side of the chosen rectangle. Go to a point of that
side.

(ii) Use a uniform probability distribution on the vertical side to pick a level at
random. Go straight to that level.

(iii) Go directly across the chosen rectangle.
(iv) If step (ii) has been done K times since step (i) was last done, go to step (i).

Otherwise go to step (ii).
Let A equal 2L which is larger than the maximum length of time that the monster

might need to complete step (i) moving at a speed of,one. Similarly let 6 equal ed/8
which is the maximum time needed for step (ii). Finally d is the time to do step (iii). The
time spent in doing each step is now specified so that at any instant the monster will be
doing the same type of step regardless of the random choices. This specification is done
to simplify later analysis. To keep moving as fast as possible, he must spend exactly A on
step (i), 6 on step (ii), and d on (iii). In step (iii) the monster will always be moving with
maximum speed of one across a rectangle. The length of time for one full cycle of the
strategy is A +K(8 + d). Call that number T.

In each cycle of length T, the time spent on step (iii) is more than (1 e/4)T. Note
that K6=(e/8)Kd. Also Kd>=(84L2/(4e2A))eA/(82L)=(8/e)(2L), and thus
(e/8)Kd>=2L=A. Hence Kd>--K6+Kd-(e/8)Kd>-A+K6+Kd-(e/4)Kd > T-
(e/4)T.

We now examine the area of the rectangle expected to be covered during this time
spent on step (iii) in each cycle of length T. There are at most K strips of width 2r and
length d. The total of the widths is at most K 2r<=(e/8)h by the definition of K.
Since the levels are chosen at random there may be some overlapping. But, since at most
e/8 of the height of the rectangle is covered, the expected area covered is =>(1-
e/15)K 2rd. This inequality also allows for the possibility that some of the area
searched is outside the rectangle and thus is not to be counted.

To demonstrate the effectiveness of this strategy, we will first analyze the case in
which the princess is stationary. Other strategies of the princess will then be compared
with the stationary strategy.

Suppose the princess is farther from the boundary of a rectangle than the detection
radius. To find the princess during step (iii), the monster must have chosen the correct
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rectangle and a height within r of the princess’ height. The chance of doing this within
some full cycle of the strategy is p [area expected to be covered in step (iii) in one full
cycle]+ [the total area of the rectangles]. An upper bound on the expected time until
capture is now determined. Expected time is less than

, kTp(1-p)k-l=T ,,p Z k(1-P)
k=l 1--p t,=x

=T
1-p ,=a k]0= (l-p)

p 1-p 1 T
"-r

1-p 1-(l-p) 1-(l-p) p

Since Kd _-> (1 e/4) T, T <- Kd + (1 e/4). Hence the expected time until capture is less
than [Kd +(1- e/4)] [the total area of the rectangles] + [the expected area covered in
step (iii) in one full cycle]

< (1-e/4)-l(1-e/15)-l[Kd +(K2rd)] [the total area of the rectangles],

< (1 e/3)-a(1 + e/8)A + 2r,

-< (1 + e/2)A + 2r,

(1 + e/2) [the time for monster to cover an area equal that of @].

If the princess is close to a boundary of a rectangle, the possibility of her being captured
while the monster is in an adjacent rectangle must be taken into account. Clearly, the
final result is the same.

Can the princess find a strategy against the monster that will increase the expected
time until capture to at least (1 + e) [the time for the monster to cover an area equal to

that of @]? Suppose such a strategy exists. It can depend only on information which the
princess obtains by not being captured. Hence the intended path for several full cycles
can be chosen before starting on the assumption that there is no capture.

Consider the strategy during the first period of length T, that is, the first full cycle of
the monster’s search; then from T to 2T, etc. During at least some of those intervals, the
princess’ strategy must be sufficiently effective that if she is free at the beginning, her
chance of capture during tlie interval is less than (1 e/2)p, where p is the probability of
capture when she is stationary.

Suppose [0, T] is such an interval of time with an effective defense. If the princess
has not been captured up to time for 0 _-< <_- T, what is the probability that the monster
and princess are in the same rectangle and the monster chose a particular initial

direction of search of that rectangle?

P(monster chose a given rectangle and initial direction and the princess
is caught during the interval 0 to t)

+ P(monster chose a given rectangle and initial direction and the princess
is not caught during the interval 0 to t)

P(monster chose a given rectangle and direction)
[2 times the number of rectangles]-1.

Since P (capture in interval 0 to T)<-(1-e/2)(e/8) [area of a rectangle] + [total area of
rectangles], clearly P(monster chose a given rectangle and initial direction and the
princess is not caught during time 0 to t)> (1- e/4) [2 times the number of rectan-



704 CARL H. FITZGERALD

gles]-1. Thus, if the princess is relatively safe from 0 to T, she has essentially no
information concerning which rectangle the monster is in.

Consider the subcycles involving one step of type (ii) and one step of type (iii). Each
subcycle has a period of 6 + d. Trace the intended path of the princess to be followed as
long as no capture takes place.

Suppose she starts and finishes in the same vertical column of rectangles. By the
intermediate value theorem, there exists a time R at which she will have the same
horizontal coordinate as the monster if he happens to pick a rectangle in that column
and is going to the right. Assume that at such a moment -R she is farther from the
boundary of the rectangle which she is in than the detection radius r. What is the
probability of capture? It has been shown that the probability of the monster picking the
particular rectangle which the princess is in at - and picking the appropriate initial
direction is greater than (1- e/4)+[two times the number of rectangles]. Suppose the
monster picks that rectangle and initial direction and that the princess has not been
caught before the particular subcycle. The probability that the monster will pick a level
within r of the princess is 2r + h. There is the same amount of risk of capture with the
monster moving to the left, there being a time ’L analogous to -.

Hence, if the monster has not caught the princess before the subcycle, the chance of
capture during the subcycle is at least 2{(1-e/4)+[two times the number of
rectangles]}(2r + h (1 e/4)(2r/h + [the number of rectangles]. The assumption that
the princess is away from the boundary is not essential. If she is close at the time -,
the possibility of capture with the monster in an adjacent rectangle must be taken into
account. Notice that the princess can avoid being caught at - or -L, but the
analysis has shown that in doing so she must run as much risk during the subcycle as if
she were stationary times (1 -e/4)= (1 -e/4)p.

A similar analysis can be carried out if the princess ends in a different column of
rectangles from the one which she starts in. If it is to the left, there are at least two times,
’1 and ’R2, when she will have the same horizontal component as the monster if he
chooses a rectangle in the same column which she is in at ’1 or -2 and the
appropriate initial direction. And similarly if she ends in a column to the right. Thus, the
total risk will be as much as calculated in the preceding, that is, at least as much as if she
were stationary times (1- e/4).

Since this estimate holds for each subcycle, the chance of capture during a full cycle
of the monster’s search is at least (1- e/4)p. This contradicts the hypothesis that her
strategy was particularly safe during the period considered. Thus the monster’s strategy
has been shown to be e-optimal for sufficiently small recognition radius.

If one objects to the monster being allowed to move outside of the convex set
@, the following modification is easily made. It is depicted in Fig. 2. Consider a vertical
interval I of length 2r centered on the monster. If in step (iii) the monster is to start or
end out of the set @, then the monster should modify steps (ii) and (iii) as follows. The
monster should determine which end of I is in @ the longest and go to the point at which
that end is first in @ and follow it as long as it is in @ during the original step (iii). For
rectangles along the upper boundary of @, the trajectory is shifted down; for rectangles
along the lower boundary of @ it is shifted up. When the instruction is ambiguous, the
monster should not shift the trajectory up or down, but should follow the original
trajectory as long as it is in @. If step (i) would require the monster to exit the set, he
should consider the first subcycle for which the preceding modification allows the
monster to move within @. If every subcycle stays out of @, then the next full cycle
should be considered. The convexity of @ shows that the modification can be carried out
with the new trajectory consisting of straight line intervals and the appropriate timing



DIFFERENTIAL GAME 705

can be maintained. Note that it suffices to count onl captures taking place during step
(iii) with the monster and princess having the same horizontal component. Hence it is
clear that the effectiveness of the search has not been decreased.

FIG. 2

Various generalizations of the search game are easily solved in a similar fashion. In
particular, if @ is a bounded convex set in n with n > 2 and if has a nonempty
interior, the modifications in the strategies are small. No essential change need be made
for the princess. For the monster, divide the space into congruent rectangular prisms. In
step (ii) pick points at random in the ends of the prisms.

If is a finite union of bounded convex sets, the strategies must be adjusted.
Suppose is a connected set and C1 C2 t_l. Cv where each Ck is convex and
has interior with positive area (volume). The princess should still wait until e of the area
(volume) could have been covered; she should then move to a point chosen with
uniform probability over . It is important that in moving between the points she should
not go past a corner too often or otherwise make some region a good search area for the
monster. Figure 3 depicts a path sufficiently random. Suppose the princess wishes to go
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from P to O. There exists a minimal sequence of convex sets Ckl, Ck2,’’’, C,
contained in such that PCk.I and OC,, and C,,Ck,,+lb for rn
1,...,N-1. Pick Pa at random in C,f’)C,2, Pz in C(qC3, etc. Then
PPa, PaP:z, , Pvt-a0 is a route for the princess from P to O. For a fixed set @, and for
sufficiently small detection radius, the moves are made infrequently enough and are
distributed evenly enough that knowing how and when the transitions will be made
would be of little help to the monster.

FIG. 3

The monster’s strategy must be adjusted also. We are supposing that is the union
of N convex sets. Follow the same tiling procedure as before, except give weight N to
those rectangles within the detection radius of points which are not in . This counting
should be used in figuring the total area in the rectangles and in determining the
probability that the monster picks a particular rectangle in step (i). Figure 2 depicts the
modification of the search of the rectangles needed to keep the monster within if is
one convex set. When is the union of N such sets, the same procedure is followed for
each convex set for those rectangles in the convex set and within the detection radius of
the boundary of . The multiple counting allows for step (i) to include a random choice
of convex set. The monster should carry out the transitions between areas as the
princess does.

The monster’s strategy still is e-optimal for sufficiently small detection radius. The
multiple covering of a small area does not lower the effectiveness of the search
elsewhere. The expected time until capture is essentially the length of time to search out
an area (volume) equal that of . Hence Gal’s Conjecture A has been proved. The
result is now summarized.
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THEOREM. Let C be a closed, bounded, convex set in R for n >= 2. Suppose C has
interior with positive n-dimensional content. Suppose is a finite union of such convex
sets, and the interior of is connected. Consider a mobile hider and searcher within . The
positive, maximum speed of the hider is known to both participants. The maximum speed
ofthe searcher is taken to be one and is known to both. Each player knows its own past and
present location. There is a detection radius r such that ifthe hider and searcher are within r

ofeach other, capture takes place. Let the payoffof the game be the time until capture. Let
g 2r ifn 2, g zrr if n 3, etc. Then given e > O, for sufficiently small r, the value ol
the game to within a factor of (1 + e) is the area (volume) of@ divided by g.

The proof of the theorem suggests a generalization. Let @ be a set as described in
the theorem. If the small detection radius varies from one part of @ to another, the
idealized search problem can still be solved. Let rk be the detection radius in a convex
set k for k 1, 2,... ,M. Suppose these sets ’k represent in the sense that

Ckl ’) Ck2 has no interior for kl 7 k2 and Ca " t.J CM. When the princess picks a
point at random, she should give a relative weight to each area Ck of 1/rk times its area.
Similarly, the monster should give a relative weight to the rectangles in Ck of 1/rk per
rectangle. Fixing the ratios of the detection radii, the theorem can be extended as
follows. Given e > 0, for sufficiently small .detection radii {rk}, the value of the game
is between (1 + e) times and (1-e) times the time it would take the monster to search
out an area the size of C1 using detection radius rl plus C2 using detection radius
/’2, etc.

How essential is the oft repeated condition "’for sufficiently small detection
radius"? If @ were a rectangle with width a small fraction of the detection radius,
obviously the expected time until capture would be many times the time necessary for
the monster to search out an area equal that of . Suppose the geometry of is such
that the monster can search without being closer to the boundary than his detection
radius. Even then the expected time until capture may be many times the time necessary
to search an area the size of . An example of such a is shown in the next section
provided it is understood that any network can be approximated in R3 by a finite union
of cylindrical tubes ending with hemispheres. The radii of the tubes and hemispheres
should be equal to the detection radius.

3. A network counterexample. Gal’s second conjecture is incorrect. Assume the
princess’ maximum speed is at least one. Then, for any number K, there exists a network
for which the expected time until capture is greater than K times the length of the
network.

Consider first the network indicated in Fig. 4. There are N points in a small,
symmetric, circular arrangement. Every pair of these points is joined by a line, thus
forming a complete graph. Also from each point there is a line of length L going away
from the N points; such a line will be called a ray of length L. The total length of the
complete graph is much less than L. The full figure will be called a blossom.

A possible strategy for the princess is now indicated. She could stay far away from
the N points at the end of a ray until a small fraction r/of the total length of the network
could be traversed by the monster; then she could move to the other end of the ray, pick
a ray at random, go directly to it and down it to its far end, and wait, etc. Choose N so
that r/N >> 1. Consider the risk the princess takes in relocating. She moves at least as fast
as the monster. Consequently, even if the monster knew when the trip started, he could
blockade at most one ray of length L from her exit and one ray from her entry. For a
typical choice of edge from the complete graph, there are N congruent edges. The
monster could prevent entry for two of these and exit for two. Thus the probability of
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FIG. 4

capture is less than 6/N. This risk is taken so seldom it can be ignored. The monster is far
more likely to find the princess while she is waiting.

The monster should select a ray, go down it to the end and back; pick a ray at
random, etc. During each such step he goes a distance of 2L plus a small transit distance
and has a chance of finding her of slightly more than 1/N. At each step her chance of not
having been found is multiplied by another factor of (1-1/N). After k steps the
probability of her not having been captured is (1-1/N)k. The expected time until
capture is approximately

k3.o 2Lk 1
1 1 2L 1

--<- k 1-
N-N=o

2__L [0 (1-)]

=gN(- 1/NI.

which is approximately twice the length of the network. Gal [1] alluded to such a
network and conjectured that it is as hard for the monster to search as any network
could be.

Note that the probability the princess is still free after the monster has had time to
travel almost twice the length of the network is p0 (1 1IN) e-. The only type of
edges not searched an average of twice are those joining pairs of the N points.
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Now consider the network sketched in Fig. 5. Again N points are joined by lines in
all possible ways. The total length of those lines is to be much less than L. To each point
a ray is joined. At the other end of each ray is a blossom as in Fig. 4. The length of the N
rays is axNL where a is to be specified later.

L

L

FIG. 5

A strategy for the princess involves a number r/such that 1 >> r/> 0 and Nr/>> 1. She
could move within a blossom as previously described. She could change blossoms every
time the monster would have had time to search out several of them, for example .oNZL
would be an appropriate length of time between moves between blossoms.

How should the monster search against such a strategy? If a were very small, he
should go from one ray of length L to another in the same blossom until the probability
the princess is in that blossom has declined slightly; then he should go to another
blossom. Thus he would never search a length equal to 2NL, the distance to fully search
a blossom.

If a were ten, he should search out the rays in a blossom until the chance of her
being in the blossom is rather small. Certainly he should search it out more than one
time. For any value of a he should search until the chance of finding her in the next ray
of length L is as high per unit distance as the average chance per unit distance of finding
her in traveling back and forth on the ray of length aaNL plus the searching of the
blossom.

There is a value of a such that the optimal strategy for the monster against the
stated strategy of the princess is to search out each blossom a distance equal to 2NL.
Pick that value for a x. As N tends to infinity, the value of a tends to a positive, finite
limit. Thus a can be regarded as independent of N.
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In searching a blossom which the princess is in, the probability the monster will
find her is (1-po). Since the princess rarely changes blossoms, in order to find the
princess, the monster must pick the correct blossom. The chance of finding her in
searching one random blossom once is (1 -po)/N. The chance of the princess not being
found is 1 -(1 -po)/N. After searching N random blossoms, the chance the princess is
free is Pl (1-(1-po)/N)N "--e -l-p) e-leP’--e -1 e 1/e. Thus, the expectation of the
princess still being free after the monster has searched the network a distance equal to
almost twice its length is pl e- e x/e > 1 / e p0. The only types of edges which are not
covered an average of twice are those which join pairs of nearby points.

Consider a network as in Fig. 6. Regardless of the value of c2, an optimal search of
such a network will involve sear.ching each blossom once, covering each ray of length L
an average of twice, before moving away from the blossom by using a ray of length
aNL. A choice of a2 can be made so that in an optimal search the N rays of length
a NL are covered an average of twice, once in each direction, between traversing a ray
of length a2N2L. AsN tends to infinity, the chosen value of a2 tends to a positive, finite
limit. Hence az can be regarded as independent of N.

L

L

FIG. 6
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After this network is searched sufficiently long that each ray of length L and a1NL
and a2N2L is covered an average of twice, there is a probability p2 that the princess has
not been found. Clearly p2 (1-(1-px)/N)N "- e -1 e ’1.

Networks can be built up in this way. Suppose a network is to have a large fixed
numberM of stages as described in the preceding. For large N, the numbers a through
aM closely approximate their limits. The number r/must be chosen so that 1 >> r/> 0.
For N sufficiently large, r/N >> 1 and the risk of the princess being captured while
relocating is small. For sufficiently large N, the approximations p0 -" (1 l/N) "- e
and Pm+X "-(1-(1-p,)/N)

v ’-e -1 e p" for rn =0, 1,... ,M- 1 are accurate. Hence it
has been shown that, for any fixed M, there is a network for which the approximations

-1 --1 PmPo e and Pm/l--e e for m 0, 1,..., M-1 are arbitrarily accurate. In that
sense, these equations can be regarded as exact.

It is not hard to show that lim,_ p, 1. Let f(x) e -1 e x. Then f’(x) > 0 and
is monotonic. Since po<pl, {p,} is increasing. If Pm/l were greater than 1, then
-1e > 1 andp would be greater than 1. Since po < 1, allp < 1. Hence there exists a

limit p. By continuity of f(x) and x, e -1 e p p. If p were less than one, then f(p)-p
f(1)- 1 and (f(1)-f(p))/1 -p 1 =f’(s) for some with p < s < 1. But f’(x) e -1 e
1 only for x 1. Thus lim,_oo p, 1.

We can now complete the final step in the counterexample. Given a large number
K there exists a sufficiently large positive integer M that (pM): > e -1. Thus for a
network of M stages the expected time before capture would be K times the time to
search it out once, that is, almost 2K times the total length of the network.

4. Can a knight help? A story with a princess and a monster should have a chance
for a happy ending. Imagine that a well-prepared knight is in the network with the
princess and the monster. If he can find the monster before the monster captures the
princess, the ending will be pleasant.

We will suppose that when the knight is searching along an edge of the network he
has a rather slow maximum speed Of v in comparison to the monster’s maximum speed
of one. The knight will have the special ability to jump from any point in one of the
groups of N points to any point in another group of N points. The time it takes to make
such a jump will be assumed to be the same as it takes him to move once along an edge of
length L, that is L/v. Can a network of the type described in 3 be found in which the
knight can rescue the princess?

A candidate for such a network is constructed depending on a parameter e. Let e
be given such that 1 >> e > 0. Pick a positive integer M such that 1 > (pM)2/ > 1 e/2.
Consider a network of this M number of stages. Pick N so large that
alNL, a2N2L, aMNML are all much greater than L and large enough that
p,/l e is a good approximation for rn 1, 2, , M- 1.

Consider the following search strategy for the knight. He should consider all the
edges of the network, those of length L, of length a1NL, of length a2N2L, , of length
aMNML, and the complete graphs on N points. Denote this collection by and call its
elements "generalized edges." He should pick at random a generalized edge. He should
select a point on the generalized edge in one of the groups of N points and go to that
point. The knight should move through that generalized edge in both directions. Then
he should start again by picking at random a generalized edge, etc.

Consider the expected results in the time it takes the monster to go through his
search of the network 2/v times. Note that this period is essentially the same as the time
for the monster to cover a distance equal to the full length of the network 4Iv times
since the complete graphs on N points are a small part of the network. In the same
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network period, the knight will be able to cover each generalized edge an average of one
time in each direction and will have the same amount of time for transitions, that is, for
jumping between generalized edges. The chance ot the princess escaping trom the

_2/vmonster during this period is p,, > 1- e/2 without taking into account the possibility
that the knight has found the monster. The chance of the knight finding the monster in
this period can be estimated as follows. If the monster has not been found, the chance of
discovery during the search of the next generalized edges is at least one divided by,the
number of generalized edges. Let n be the number of generalized edges. The chance of
the monster avoiding the knight during this period is less than (1- i/n)" -" e -1 regard-
less of what strategy the monster adopts. Thus, the chance that the knight finds the
monster is greater than 1-1/e > 1/2. Hence the probability that the princess will
ultimately be saved is greater than 1- e. The knight can save the princess because his
jumping ability makes him a more effective searcher than the monster.

A similar problem can be posed for a bounded, closed, convex set @ in the plane.
The knight is to have the same, very small, detection radius r ,as the monster. Suppose
the maximum speed v of the knight is small in comparison to the monster’s maximum
speed of one. The knight has the ability to jump from any point in to any other taking
a time equal to the transit time for a distance 4r. During the jump, the knight cannot find
the monster. It is left to the reader to show that the outcome is not pleasant.

5. Summary. The princess and monster problems has been solved for a wide class
of domains for sufficiently small detection radius. The value of the game has been
shown to be approximately the time necessary for the monster to cover an area (volume)
equal to that of the domain ,. The results extend work of Gal and prove one of his
conjectures.

A network version of the problem was also considered. The results were contrary
to a conjecture of Gal. It was shown that the expected time to capture may be arbitrarily
many times the period required for the monster to search the length of the network.

A modified form of the princess and the monster problem was discussed. The
observations suggested the difference between a domain and a network. The transition
times for the monster in a domain are small in comparison to the time necessary to
perform a local search. In a network, it may be a lengthy process to reach a different part
of the network.
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WIENER-HOPF METHODS FOR OPEN-LOOP
UNSTABLE DISTRIBUTED SYSTEMS*

JON H. DAVIS,

Abstract. A Wiener-Hopf based solution to the linear regulator problem is presented for a class of
distributed systems with a finite-dimensional unstable subspace. The results provide an integral represen-
tation of the optimal feedback gains in terms of the system description and associated spectral factorization.

1. Introduction. In this paper we consider a Wiener-Hopf approach to least-
squares control problems for a class of open-loop unstable distributed systems. Our aim
is to derive an integral representation of the optimal feedback gains dual to the result
given for distributed filters in 1].

Since we consider open-loop unstable systems, the results obtained do not follow
directly from those of [1]; in fact it appears technically inconvenient to attempt an
argument strictly "dual" to that used in [1] even for the stable open-loop case.

Spectral factorization methods have been applied to related problems in [3]. Our
approach is to make sufficiently strong assumptions on the system model so that the
classical spectral factorization results of Gohberg and Krein are applicable. This
produces (as expected) a bounded linear functional as the feedback operator. These
results are a generalization of the results of [5] for finite-dimensional systems, and
similarly require use of "transfer function" data (as well as geometrical knowledge of
the "unstable mode subspace").

The method avoids consideration of distributed Riccati equations, and for this
reason appears to be useful as a computational approach in certain problems [5].

2. Problem torlnulation. We consider the "linear regulator problem" for a dis-
tributed system of the form

(1) Ax + Bu(t), y Cx, >= O.
dt

Since our approach is through Wiener-Hopf methods, we assume that the control
space is finite dimensional, so that the input mapping B in (1) represents a bounded
linear transformation from C to a separable Hilbert space Ho.

In view of results on stabilizability of systems with finite-dimensional controls [6],
[7], it is natural to assume that the open-loop system splits as the direct sum of a finite
dimensional subspace (the unstable subspace) and a complementary subspace on which
the semigroup {St} is exponentially stable. That is, we assume that the singularities of the
resolvent R (A;A) in the right-half plane consist of a finite number of poles of finite
order, that the spectral projections associated with these poles have finite dimensional
range, and that the system is exponentially stable on the complementary subspace. See
Appendix A.

The output mapping C is assumed bounded from H0 to a separable Hilbert space
H1. (It is probably only necessary to assume that C is A-bounded and to make suitable
assumptions on the operator valued function CR (s; A) in order to obtain these results.)
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714 JON H. DAVIS

Consider the Hilbert space ffl "--L2((0, oo); H1) (equivalence classes of strongly
measurable, H1 valued, square integrable functions on (0, oo)) and the linear mapping
T: Ho 0) L2((0, oo); Cm) 1, defined by the relation

(2) T
x

(t)= C Stx + St_,Bu(r) dr
u(.)

 or[ ]u (.)
e (T)’ the domain of T.

In the case that the system is open-loop unstable, T as defined by (2) fails to map
into unless the domain of T is suitably restricted.

The appropriate restriction on the domain is naturally determined in the case that
the subsystem associated with the unstable subspace is minimal; that is, the system
model

dx
=Ax +Bu, y =Cx
dt

is both stabilizable and detectable.
We define the domain of T by

X X

With our assumption on the right-half plane singularities of the resolvent of A, it is easy

to give a frequency domain" interpretation of (.T). In fact, [ x ]u(.
N(T) if and only

if
CR(s; A)x +CR(s; A)B(s)

(a(.) is the Fourier-Laplace transform of u(. )) belongs to the H-valued Hardy space
H(+; H).

Using the assumption of finite dimensionability of the unstable subspace, it is
shown in Appendix A that (T) is determined by orthogonality conditions of the form

(T)
t u(.) u(.) n e-"’61

(4)
{Oi}= a basis for the unstable subspace.}

(Here B, and A, are the input map and semigroup generator associated with the
unstable subsystem.)

These computations identify N(T) as a closed subspace of finite codimension in

Ho Lz((O, m); C); T acting on (T) is everywhere defined and bounded on this

Hilbert space.
We equip N(T)with the graph norm:

2 2
X X X

The linear regulator problem is then identified as a standard minimum norm
problem for the @-norm:

minimize ][[u.)]
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subject to the linear constraint

(6) L[ x ]u(.)
=xo,

L is the projection onto the first component of the element [ x ]where
u(. )_

@(T).

Since the range of the projection L is the entire state space, a unique minimizing
pair exists, characterized by

[x]=L*z,(7)
Uopt("

where z is any solution of LL*z Xo [9].
It now remains to identify a Wiener-Hopf equation for the optimal control, and to

synthesize the optimal control feedback form.

3. Derivation and solution of the Wiener-Hopt equation. For the solution of the
minimum norm problem proved above, it is necessary to compute L*, the adjoint of the
projection L relative to the @-inner product.

If we let P denote the orthogonal projection of H0 @ L2((0, c); C") onto (T),
then it is easy to verify that L*: H0--> @(T) is given by

(8) L*y (I + TP)* Tp)-IP[ Yo].
This follows since

U -OJ HOWL2

(9)

(x,

Using this representation of the adjoint in the determining equation for the optimal
control, we find that the equation

LL*z Xo

reduces to the obvious statement that the first component of the optimal pair is the
initial state. The optimal pair is characterized by

Xo ] L*z.(10)
Uo,
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That is,

Uopt 0

for some z 6 Ho.
From the derivation it might be expected that it is necessary to solve the above for

z. However, this is not the case, as only Uopt is unknown and (see below) the domain
condition is sufficient to calculate the effect of z on Uopt.

In order to obtain a Wiener-Hopf equation for the optimal control, it is useful to
obtain a "frequency domain representation" of the bounded linear operator TP.

Define the projection P+:

Ho L2((-oo, oo); C")--> Ho Lz((O, oo); C")

in the usual fashion.

(12) P+ (t)= 0, t<0,
u(

u(t), >- O,

The operator TPP+" Ho O) Lz((-o, ); C’) Yga then has a simple representation in
the Fourier transform domain"

TPP+’Ho /_2((-c, oo); C")--> al,

TPP+ CR iw A) CR iw A)B]//+
U(w)u(oo)

This follows since @(T) consists exactly of those pairs for which the transform
representation has square integrable boundary values and extends analytically over the
right-half plane.

We consider first

Uop 0

and then pass to the Fourier transform representation

(14) (I+(TPP+)*(TPP+))
Uopt( =P+P O"

We refer to the above as the Wiener-Hopf equation for the optimal control. In the
case of a stable open-loop the "second equation" in (14) reduces to the usual Wiener-
Hopf equation for the optimal control function. That is

tQ(to) + +[G*(iw)G(iw)ffY(to)] -fi+[G*(ito)CR (ito; a)x0],

where

G(iw) CR (iw A)B,

G*(iw B*[R (iw A)]*C*.

This equation is solved by the usual Wiener-HopfAtechnique, which may be loosely
described as a process of dropping the projection P/ from the equation, and making
subsequent allowance for the (unknown) element of the nullspace of P/ introduced by
this process.
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This general procedure is also applicable to the Wiener-Hopf equations (13), (14).
In this case the presence of both the half-line projection P/ and the domain projection P
both interfere with the production of a "whole-line" convolution equation involving the
optimal control function. Unknown elements of the nullspace of each projection must
be added to the equation as the projections are dropped.

Since the projection P is onto a subspace of finite codimension (under our
hypotheses of codimension equal to the dimension of the unstable subspace), P may be
visualized as a Gram-Schmidt procedure carried out with respect to the (linearly
independent by the stabilizability hypothesis) vectors given in (4).

Dropping P from the left side of (13) therefore introduces an unknown term of the
form

lYj .
into the equation. A term which may be compactly represented in the form

B,* (ito + A*)-x , -A={B. e },

where is an unknown element of the unstable subspace, appears in the equation for the
optimal control after P is dropped from the left side of (14).

" orc n X/ contributes a term of the same form, which we absorb

into the above. (This verifies the transient nature of our interest in the element z arising
from the minimum norm formulation.)

The consequence of this procedure is that we obtain the relation

(15) [I+G*(i)G(i)]Uopt()=-G*(i)CR(i; A)xo-B(i +A)-xa +(),
where (. is the Fourier transform of an element of L2((-, 0); C), and remains to
be determined from the condition that the optimal pair belongs to (T). (It will be
shown below that this condition uniquely determines a under our hypotheses.)

Equation (15) is solved by the spectral factorization technique.
In order to obtain the "feedback form" of the optimal control, it is useful to invoke

the spectral factorization theory of [4]. It is therefore necessary to verify that the
(matrix) elements of the expression G*G of (15) are Fourier transforms of integrable
functions. In fact, our assumptions on the original model (1) are suciently strong to
guarantee this.

A typical "matrix element" of G*G has the form

b[R(i; A)]*C*CR(i; A)b,

where bk is the image under B of a standard basis vector in C (i.e., a vector in H0).
Assume first that A generates an exponentially stable semigroup. Then the

functions Yk" (--, ) H
CStbk, O,

yk(t)
0, (0,

are piecewise continuous Hi-valued functions, integrable in norm. Define (for each t)
y (t) as the canonical element0f the dual of HI defined by y(t). It then follows that the
scalar valued function

(16) h(t) y(-t)y(r) d,
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belongs to Ll(-O, c). Since the Fourier transform of hit(" is the desired matrix
element, the conclusion follows.

In the case that the system has a finite dimensional unstable subspace, a similar
argument applies. It is necessary only to interpret terms in the resolvent corresponding
to the unstable subspace as Fourier transforms of integrable vector-valued functions of
negative support. The functions {Yk(’)} may then be appropriately defined, and the
conclusion then follows as above.

An argument parallel to that used above leads to the conclusion that the term

G*CR (iw A)xo

appearing on the right side of (15) is the Fourier transform of an Lz((-c, );
function, so that the usual Wiener-Hopf methods are available to complete the solution
of (15). We factorize the coefficient matrix in the form

(17) (I + G*G)(o) F-(iw)F/(iw),

where F+(iw), [F+(iw)]-1 (resp., F-(iw), [F-(iw)]-1) differ from an identity matrix by
the Fourier transform of a causal (resp., anti-causal) L1 convolution operator [4]. We
recall that with this normalization at infinity, the factors are unique and related (for real
w) by the adjoint mapping. (Writing the arguments of the spectral factors as "iw"
facilitates later Laplace transform computations.)

Using this factorization, the Fourier transform of the optimal control is given as

(18) Uopt((.O) [F+(io)]-lfi+{[F-(iw)]-a[G*(iw)CR(iw A)xo+B*(iw+A*.)-lua]}.

Applying the domain condition via Parseval’s theorem (see Appendix A) leads to

the finite-dimensional system of equations for the vector a,

(19)

)] Bu(iw+Au) dw a
2zr

(-iw + A,)-lB,[F+(iw)]-l+{[F-(iw -1 , , -1}

Pxo-- (-ieo + A.)-IB,[F+(iw)]-1

+{[F-(iw)]-1G*(iw)CR (iw; A)x0} dw.

This system has the form

(20) I {I(X0)]rn a =/(Xo)
L/3,ix0)J

where each of the/i(" represents a bounded linear function on H0.
The coefficient operator in (20) is self-adjoint; in fact, it is essentially a "Gram

operator" closely related to the usual controllability (matrix) operat,,or.
Consider the linear mapping : Hu (the unstable subspace) Lz((0, ); C’)

-1 , , -1a=P+{[F (tw)] B,(iw+A,) a}.

Then is one-to-one, since the condition

/+{[F-(iw-1, ,-1)] B,(iw+au) a}=0
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implies that for some transform/3 (.) of a function of negative support

B* (iw +A* -1
a F-(iw). fl(to),

since the left and right sides of this equality are transforms of functions of opposite
support, we have

B*u (iw +A*)-la. 0.

Since the unstable subsystem is controllable by hypothesis, this forces

--0

so that is one-to-one. Since

(21) m =*
we conclude that rn is invertible. These considerations uniquely determine the open-
loop form of the optimal control. We collect these preliminary results as Lemma 1.

LEMMA 1. Consider the linear regulator problem

min f [1ull2 + IlYll2 dt
a0

subfect to the constraints

x(t) Stxo + S,_,Bu(r) dr,

y(t) Cx(t)

and with assumptions on the system model as given in Appendix A. Then the unique
optimal control is given in (Fourier-transformed) open loop form by

Uopt(to) -IF+(iw)]-1/3+{[F-(iw)]-l{G*(ioo)CR (iw; A)xo + B*, (iw +A*)-la }},

where F/, F- are the associated spectral factors (17), and the vector is uniquely
determined by (20), (21).

4. Feedback synthesis ot the optimal control. The previous sections have derived a

form of open-loop control for a distributed linear regulator problem. It is expected, of
course, that the optimal system is governed by a linear system of the form

(22)
dx
d--- {a B[B*K]}x

with [B’K] (the "feedback gains") some bounded linear mapping H0--> C" (hence
essentially consisting of m continuous linear functionals on H0).

The problem that remains is to derive an "integral representation" of the optimal
feedback gains (see [5], [1]) and the conclusion that the optimal trajectory is governed
by (22) (or a mild form thereof). In [1], a dual result was obtained by simply verifying
that the hypothesized gain meets the requirements of the problem. In the present
problem, this approach appears inconvenient due to algebraic complications which
arise in the open-loop unstable case.

The approach taken below is based on the following intuitive argument. If the
optimal trajectory is associated with a solution of anevolution equation (22), then the
Laplace transform of the optimal trajectory must represent the resolvent of the
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corresponding semigroup generator. Since conditions are known determining opera-
tor-valued functions which are resolvents of semigroup generators [10, Thm. 5.8.3],
these should determine the optimal closed loop dynamics.

We denote by topt(s) the evaluation of the Laplace transform of the optimal control
function at a point s, Re (s)> 0. That is,

(23) Uopt(S)=-[F+(s)]-lp+{F-[(ito)]-l{G*(ito)CR(ito A)xo+B* (ito+A*)-ina(Xo)}}(.s).

(We use the notation P/{. }(s) to denote the Laplace transform of the corresponding
function of time defined on a half-line. This is naturally computable in terms of a

Cauchy-type integral (cf. [1]).) It is clear that for each fixed s, Re (s)> 0, the above
defines a bounded linear map Ho C’: x0-/opt(S)(X0).

Now define an operator-valued function by

(24) L(s)xo R (s; A)(x0 + Bto,t(s)(x0)).

From our assumptions on A and the fact that the pair [ x0 ] belongs to @(T), it
I_ Uopt_1

follows that L(s) is analytic for Re (s) > 0.
LEMMA 2. The operator-valued function L(.) defined above satisfies the first

resolvent equation, that is,

1
(25) L(x )L(s) [L(; L(s)]

for Re A, s > 0, A s.

Proof. Denote by /opt(; 7") the Laplace transform (with respect to h) of the
optimal control left-shifted by z-> 0.

(26) topt(A ’) e-’Uopt(t + z) dt, r -> 0, Re (h) > 0.

From the time invariance of the system and the "principle of optimality", it follows
that

(27) /opt( 7") /opt(/ )(X (’/’)),

where x(-) H0 is the value of the optimal state of time -.
Compute now the Laplace transform of the above with respect to the r-variable.

The right side becomes

ao.,(x)(Z(s)x0),

since the Laplace transform commutes with the bounded linear functionals represented
by topt(A). The left term may be computed either directly from the definition (26), or by
identifying the result as the representation of the resolvent of the left-shift semigroup
on Fourier-Laplace transforms of L2((0, c); C’). This results in

(28)
/opt(S)(X0)-/opt(/ )(X0)

_./opt()(L(s)x0).

(29)

If we denote by .(s),

(s) R (s; A)(xo + Baopt(s)(xo)),
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then we obtain successively

L(l)L(s)xo R (Z A)((s) +Btopt(Z)((s))

R (A A)(R (s; A)(xo + nlopt(S)(Xo))

[R(A;A)-R(s;A)]
(Xo + Baopt(s)(xo))

R(A;A)
(Blopt(s)(Xo) Btopt(A (Xo))

1
s_--[()-(s)](xo),

so that the operator valued function L(. satisfies the first resolvent equation.
LEMMA 3. The operator-valuedfunction L(. defined above is in fact the resolventof

a closed operator which has the form of a finite-dimensional perturbation of the
semigroup generator A. That is,

A =A-B[B*K],

where [B*K] is a bounded linear map: Ho C’.
Proof. Since L(. satisfies the first resolvent equation, it follows from [10, p. 183]

that it is sufficient to show that L(,o) has an inverse (not necessarily bounded) for some
ho in the domain of L(. ). Consider, then, the linear equation in Ho
(30) L(ho)Xo R (Ao; A)(xo + B/opt(Ao)(Xo)) w

for w (A) and ho tr(A). Then

(31) Xo + Baopt(Ao)(Xo) (Ao- A)w.

Assuming (without loss of generality) that B is "full rank", recall that

(32) 7rn B(B*B)-IB *

is the projection onto (B), and define

(33) rB I--TrB
as the complementary projection. Then

(34) - -(ho-A)w7]’BXo 71"B

and

(35) rBxo+Baopt(ho)(rrBXo) zrB(ho-A)w -ntopt(Ao)(’rr(Ao-A)w).

Multiplying by (B*B)-IB * results in

(36) v + ao.t(Xo)(Bv) (B*B)-IB*(Ao-A)w ao.t(;to),r(;to- A)w,

where v (B*B)-IB*xo. Solving the above equation for v (the coefficient matrix is
invertible for Re (ho) sufficiently large, for example) and using

Xo rrBXo+Zrnxo=Bv+rr(ho-A)w
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gives

(37) Xo (Ao-A)w -B(I + opt(Ao)B)-iopt(Ao)((ao-A)w).
(/opt(Ao)B here represents the matrix of the linear map C"+ C": v + o(Ao)(Bv).)
This represents the (unbounded densely defined) inverse

Xo [L(Ao)]-x w, w (A),

so that (by [10, Thm. 5.8.3]) L(A) is the resolvent of

i (o-[L(o)]-’),
(38) w =Aw +B(I + Uopt(Ao)B)a-i^Uopt(Ao)((Ao_A)w).
That is,

(39) Aw =Aw-B[B*K]w,

where the linear mapping [B’K]: Ho+ C" is defined as the extension (by continuity) of

--(I +/opt(Xo)B)-x/opt(Ao)((Xo- A)w).

(At first appearance, the above is only densely defined and unbounded; it is shown in
Appendix B that the explicit form of topt(A0)(" guarantees boundedness.)

LEMMA 4. The operator A-B[B*K] defined above generates an exponentially
stable semigroup o[ class Co in Ho.

Proo[. Consider for each Xo Ho the vector-valued function

(40) R (s; A B[B*K])xo L(s)xo.

It follows from the definition of (T) in the derivation of the optimal control that

L(s)xo HE(rr+; Ho),

and hence that (for each Xo)

/0 IIg,xoll= dt <

where {,} is the semigroup generated by A-BIB*K]. By.the results of Datko [11], it
follows that {,} is exponentially stable.

$. Computation of the optimal gains. It was shown above that the optimal control
takes the expected form

(41) Uopt(t)(Xo) -[B*K]Xopt(t),

where the optimal trajectory is given by

(42) Xopt(t) SA--B[B*K](t)’Xo.
From these it follows that [B*K] may be evaluated as

(43) [B*K]xo= lim Uopt(t)(Xo).
tO

The open-loop optimal control is given in Fourier-transform form by Lemma 1"

Uopt(o) -[F+(iw)]-x

+{[F-(iw)]-X{G*(ioo)CR (iw a)Xo +B* (iw +a ,)-Xu a (Xo)}}.



OPEN-LOOP SYSTEMS 723

It follows from the consideration of 3 above, that

[F-(iw )]-I{G*(iw)CR (ito A)xo}

is the Fourier transform of function in L1 f’) L21") C0(-o3, o3). Further,

[[F-(iw)]- 1]B* (ito + A,*)-la(x0)
has the same properties, while we have

* , [ B*u e -A-at,
(44) - {B (io / Au )-1} ] 0,

t>0,
t<0.

These observations lead directly tQ the following theorem.
THEOREM. The optimal feedback gains for the open-loop unstable linear regulator

problem described above are given by

[B*K]xo=-}-- [F-(ito)]-G*(ito)CR(iw; A)xo dw

1
| {[F-(iw)]- I}B* (ito + A*) ct(Xo) dto +B*a (Xo).

27r J_

Proof. Since (F+)-1 as an operator represents an identity plus a causal L1 con-
volution, it suffices to compute the limit at 0 of the right-continuous function defined as

(45) -l{[F-(iw)]-a{G*(iw)CR(iw; A)xo+B* (ito +A*u)-ct(Xo)}}.
From considerations similar to those of 3, it follows that

[F-(iw)]-l{G*(iw)CR(iw A)xo}

belongs to L1((-o3, o3), dto; C").
From an argument dual to that in [1], it follows that

(46) F+-I=P+{G*G(F-)-a},
so that (F+ I) (L f) L2)^. Since (similarly)

(47) P-((F+)-G*G) (F-)- I,

so that [F-(ito)]-l-I represents a matrix of transforms of functions in L1 fqL2. This
shows that

[[F-(iw )]-a I]B*u (ito +A* -1
a (Xo)

also belongs to L1((-o3, o3), dw;C"). The desired result now follows from Fourier
inversion and the direct evaluation of

(48) lim --I{B* (iw + A*,)-o (xo)} B*,a (Xo).
t->O

5.1. Some computational considerations. As described in [5], results of the sort
presented above lead to effective computational methods in the case of systems for
which the resolvent is compact. Use of an eigenfunction basis for evaluation of the
optimal gains leads to evaluation of the spectral factors at points inside the half plane of
analyticity. This procedure is inherently more stable in the numerical sense than the
evaluation of the boundary values of the factors which may appear to be required for the
gain evaluation.

These remarks also apply in the case of the open-loop unstable system considered
above. In this case the "unstable poles" of the resolvent also contribute to the residue
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calculations.
Evaluation of the terms a(Xo) in the optimal gain formula also proceeds on the

basis of a residue calculation. This computation requires the "Gram operator" asso-
ciated with

P+{[F-(iw)]-aB* (iw + A*)-}.
By direct calculation in the case that the eigenvalues of Au are simple, so that the
resolvent may be represented as

N 1
(49) (iw + Au*)-1 2 __iqg, Re (A-.) > 0,

i=a iw+A

the function required for the Gram matrix calculation may be obtained in closed form.
The Laplace transform of the positive projection of the function

--l{[F-(iw )]-lB*. (iw + A*.)-1}
may be represented in the form

1 I I___{[F_(iwl]_IB, (ioo + A.*)-1} dw.
2i s iw

Using the fact that [F-(. )]-a (by definition of the spectral factor) extends analytic
and uniformly bounded over the left-half plane, the above integral may be evaluated by
residues to give

N B* *
2 [F-(-Ai)]-1
i=

Passing to the boundary value to obtain the Fourier transform representation gives
the result

+
= iw + A.

Using this result, the Oram operator required in g above may be explicitly
evaluated in terms of the structure of the unstable subsystem and point evaluations of
the spectral factor F-(. ).

It is clear that analogous "explicit" calculations are possible in the case of higher
multiplicity for the unstable subsystem. The results in this case also require point
evaluations of derivatives of the spectral factor (in the region of analyticity of the
factor).. dsions. A Wiener-Hopf derivation of the optimal control law for a class of
open-loop unstable distributed systems has been given.

The derivation leads to a closed form representation of the optimal feedback
operator, which may be evaluated in terms of the associated spectral factors. For certain
problems (for example, those exhibiting spatial symmetries in the control actions) this
provides direct computational methods [5].

It ma be possible to generalize these results to systems containing more general
unstable subsystems than the finite dimensional case considered above. In view of
condition (A.5), systems for which the (time reversed) unstable subsystem is exactly
reachable in infinite tim sem obvious candidates. The computational prospects of
such an extension do not appear hopeful.
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The cases of A-bounded output mappings and boundary controls may also be
considered. In these cases it appears difficult to retain use of the Gohberg-Krein
factorization results; this loss substantially complicates the arguments, as properties of
the factorization are repeatedly used in the derivations above.

Appendix A. Description of the domain conditions. The basic system description is

dx
(A.1) Ax + Bu(t), y Cx

dt

in differential form; more convenient is the corresponding "mild solution" formulation

I0(A.2) x(t) StXo + t-,Bu (r) dr, y Cx,

where {St} denotes the semigroup generated by A.
We assume that the singularities of the resolvent of A in the open right-half plane

consist of a finite number of poles which may be separated from the remainder of o-(A)
by a rectifiable simple contour C (or union of such contours).

As in [6], we construct the projection P

1 Ic(A.3) P R( A) dA

and decompose the system into a strictly unstable and complementary subspace"

I0xu(t)= Su(t)x,(O)+ S,(t-r)B,u(r) dr,

(A.4)
xs(t) S,(t)xs(O)+ S(t-r)B,u(r) dr,

where B PB, B (I- P)B.
We assume that"

(i) H, a_g_ PHo is a finite dimensional subspace;
(ii) if Cu represents the restriction of the bounded linear operator C to H, that

[A,, B,, C] is a minimal realization;
(iii) the complementary semigroup {Ss(t)} is exponentially stable;

for some 6 > 0.

[ x ]forwhich(withWith these assumptions, (T) is determined as those pairs
x (.)

denoting the Laplace transform of u(. ))

R (s; A). (Pxo + B,a(s))

is analytic at each of the poles of the resolvent R (s; A).
This condition may be translated into an orthogonality condition by following a

procedure suggested by that used in [4] to determine the range of certain Fredholm
operators associated with Wiener-Hopf equations.

Expand

R (s; Au)" (Pxo + Bua(s))

in a Laurent series about each right-half plane pole of the resolvent. Since the Taylor



726 JON H. DAVIS

series coefficients in the expansions

a(s)= Z u.(s-,)"

may be identified with

(-t)" -tu,= e u(t)dt,
n!

the condition that the above expression be analytic at each of the right-half plane poles
may be rewritten in the time domain.

Using the Jordan canonical form for the finite dimensional unstable subsystem (see
[8], Jor example), one verifies that the required condition is equivalent to

(A.5) Pxo + I e-AtB,u(t) dt O.
o

A verbal description of (A.5) is simply that the net equivalent initial excitation on
the unstable subspace should vanish.

Selecting a basis {4’i}= for Hu allows one to express the condition (A.5) in terms of
N dim Hu orthogonality conditions

(A.6) O*i Xo+ (B* e-A*utl,.)*u(t) dt O, i= 1, ., N.
That is,

(A.7)

or

X0 _L _A,u(. i= 1 N.
u(. B*

Using Parseval’s theorem, (A.5) may also be written in the form

Pxo +-- (-iw + A,)-aB,a(iw) doa =0

(A.8) g/Xo +-- (-ito + A,)-aBua(ito) dw 0, i 1,..., N.

These computations identify (T) as a subspace of finite co-dimension in H0 03
L2((0, ); C"). The linear mapping T restricted to @(T) is bounded, and the norm
may be estimated by the usual frequency-domain methods. (T acts on @(T) according
to the usual frequency-domain multiplication; the domain restriction ensures exactly
that the resulting Fourier transform is the boundary value of a function in the Hardy
space H2(Tr+; Ha)).

Appendix B. Boundedness of the optimal gain. From Lemma 3 it follows that the
optimal gain operator, [B*K] is densely defined by

(B.1) [B*K]w --(I "+" opt(Ao)B)-lopt(Ao)((Ao-A)w)
for w (A).

Now from Lemma 1,

aopt (A 0)(x0) -IF+(Ao)]-aP+{[F-(iw )]-l{G*(iw)CR (ito A)xo
(B.2)

+ B*(iw + Au)-aa (Xo)}}(Ao),
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so that to verify the existence of a bounded extension of [B*K] it suffices to consider the
mappings

w P+{[F-(io)]- G*(io.,)CR (iw; A)(Xo A) w}(Ao)

and

wa((Ao-A)w).

The explicit form of the first of these is (for Re (A0)> 0)

1 [F_(iw)]_G,(iw)CR(io., A)(o-A)w- &o.,
2r A0- iw

the integral is seen to be convergent for w (A) by considerations similar to those
used in the derivation of Lemma 1 (i.e., Parseval’s theorem).

Using the fact that for w (A)

(B.3) R(ito; A)(Ao-A)w =[(Ao-ito)R(iw; A)/I]w,

the above becomes

1 | [F-(iw)]-a G*(iw)CR (iw; A)w dto + P+{[F-(iw)]-x G*(iw)Cw}(Ao).
2"n" 3_

The above integrals are easily seen to be strongly convergent, defining a bounded linear
map Ho- C".

Since we have

a((Ao-A)w) m-l((Ao-A)w),
consider

((Ao-A)w) P(o-Ao)w --- (-iw + Ah)-B,[F+(&o)]-
+{[F-(io)]-G*(ioo)CR(ioo; A)(Ao-A)w} do).

Considerations closely related to those immediately above lead to the conclusion
that the integral expression above defines a bounded mapping as required. With regard
to the term

P(Ao-A)w,

recall that (A0-A) commutes with the projection P (on (A)). Since the restriction of
A to the unstable subspace is bounded, this completes the proof that [B’K] extends to a
bounded linear mapping H0 C’.
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JUMP-DIFFUSION APPROXIMATIONS FOR ORDINARY
DIFFERENTIAL EQUATIONS WITH WIDE-BAND RANDOM

HAND SIDES*
RIGHT

HAROLD J. KUSHNERf

Abstract. Let y(. be a stationary mixing process and J(. an approximation to a random impulsive
process. Kurtz’s (1975) results on approximation of a general semigroup by a Markov semigroup are used to
prove (weak and a similar type of) convergence of the solutions to (1.1) and (1.2) to jumping diffusions.
Previous results are generalized in various ways. The case of unbounded y(. is also treated as is the
combined jump-diffusion case. Also, a limit theorem for an integral with respect to "approximate white
noise" in terms of an It6 integral is given. The method has the advantages of generality and relative ease of
use.

1. Introduction. In [1], Kurtz gave some fairly general semigroup methods for
showing convergence of a sequence of non-Markov process to a Markov process, either
in the sense of weak convergence or in the sense of convergence of finite dimensional
distributions. Let y(. denote (a Euclidean space valued) right continuous strong

2),mixing stationary process. For each e > 0, define y (t) y(t/e and for suitable F, G,
define the process x( by

F(x t, Y’)+G(x,yt), Xo=xoR ",y(t)R(1.1) xt

Khazminskii [2], Papanicolaou [3], Papanicolaou and Kohler [4] and Blankenship and
Papanicolaou [5] have all treated the problem of weak convergence of x( to a
diffusion. The problem is, of course, closely related to the original problem of Wong and
Zakai [6]. In this paper, Kurtz’s results, (together with a technique exploited in
references [3] and [5]) will be used to get similar types of results under conditions which
are weaker. The method of proof has the great advantage of being quite straightfor-
ward and easy to use for both the diffusion and jump-diffusion cases.

We also treat limits of systems of the type

F(x, y)
(1.2) x, +G(x, yT)+EHi(x)Ji.,,

F,

where . J,s ds is an approximation to a pure jump process, and we obtain a limit which
is a jumping diffusion.

Sections 2 and 3 recapitulate Kurtz’s method of proving convergence of finite
dimensional distributions and tightness, resp. The results are recapitulated partly for
the sake of self-containment, and partly to state the precise form in which they are to be
used. Section 4 states the assumptions used in Section 5, which gives the result for limits
of (1.1) when y (.) is bounded, a restriction also used in the past references. Theorem 3
gives a result which is useful in approximating stochastic integrals with respect to a
Wiener process by ordinary integrals. Such results are needed for identification and

* Received by the editor October 2, 1978, and in revised form January 30, 1979.
f Divisions of Applied Mathematics and Engineering, Brown University, Providence, Rhode Island

02912. This research was partially supported by the Air Force Office of Scientific Research under
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Naval Research under N0014-76-C-0279-P0002:

References [2] and [3] allowed F and G to depend also on t. At the expense of extra detail, this case
could be handled by our method.
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related problems (see Balakrishnan [8], [9]). A result on convergence of finite dimen-
sional distributions for unbounded y(. is given in Section 6, and tightness for
unbounded y (.) is proved in Section 7. Section 8 deals with the relatively simple case
where the input is an approximation to a random impulse process, and (1.2), an
approximation to a jumping diffusion, is treated in Section 9. The result in Sections 6
and 7 cover the much used case where y (.) is a Gaussian diffusion.

A method similar to that of Section 5 is outlined in Section 4, [3], for the problem of
showing convergence of finite dimensional distributions for the bounded y (.) case. The
results there are not in a particularly usable form, and actually require more smoothness
of F and G than needed here since partial differential equation methods are ultimately
used there. Here, we do not need to solve or even to approximate solutions of partial
differential equations but merely to check, the action of certain operators on smooth
functions. In Reference [14] (where the terminology t and t0 have different mean-
ings), a similar method is used for a different oise structure, the total noise effects on.
the system being effectively the cumulative esults of the effects of a sequence of
"small" random variables.

2. Convergence of finite dimensional d|stributions.2 Let (f, P, ) denote a
probability space, {t} a nondecreasing sequence of sub r-algebras of , the space of
progressively measurable real valued processes f on [0, c), adapted to {t} and such that
sup, EIf(t)l<o. Let [, and f be in . Define the limit "p-lim" by p-limit,
/" iff sup, sup, EIL(t)I < o and EIL(t)-1(t)[--, 0 for each t. For each s > 0, define the
operator 3(s)" by 3(s)f function in whose value at is the random variable
Es,/’(t + s). There is a version which is progressively measurable [1, Appendix] and we
always assume that this is the ,ne which is used. The (s), s => 0, are a semigroup of
linear operators on ?. Leto denote the subspace of of p-right continuous functions.
If the limit p-lims_.o[1/s(3-(s)]:-f)] exists and is in 0, we call it//" and say that
[eN(A). The operators if(s) and A are analogous to the semigroup and weak
infinitesimal operator of a Markov process. Among the properties to be used later is
([1], equation (1.9))

(2.1a) (s)f f (r),fdr, f e (),

or, equivalently

(2.1b) Es,f(t + s)-f(t) Es, .2,f(t + r) dr, for each _-> 0.

Equation (2. lb) also holds for uniformly bounded random times s. If, for some process
Z ("), t tr(Z, s _-< t), we may write3 , T and A for ,, if(t) and A, resp. Let t
and i denote the spaces of real valued functions on R which vanish at and which
are continuous and which have continuous partial derivatives up to order (and which
also vanish at infinity), resp. Let 0 and t denote the sets of these functions which
have compact support.

The following Theorem (a specialization of 1 ], Theorem 3.11) is our main tool for
dealing with (1.1). Henceforth, unless otherwise mentioned, e 0 replaces n o in
p-lim.

From ], with slightly altered terminology. Sometimes we write It and sometimes f(t) for the value of a
process f at time t.

The g-algebras will often be completed, but the same notation will be used.
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THEOREM 1. LetZ (.) x (.), y* (.), e > O, denote a sequence ofR "/"’ valued
right continuous processes, x(. a (R"-valued) Markov process with semigroup Tt
mapping " into and which is strongly continuous (sup norm) on . For some h > 0 and
dense setD in , let Range (h -A[o) be dense in " (sup norm, A infinitesimal operator
ofx )). Suppose that, for each f D, there is a sequence {if} ofprogressively measurable
functions adapted to {} and such that

(2.2)

(2.3)

p-lim [ff -f(x( ))] 0,

p-lim [A*ff -Af(x’( ))] 0.

Then, ifx ; Xo weakly, the finite dimensional distributions ofx (.) converge to those of
x(.).

Equations (2.2) and (2.3) are equivalent to (the limits are taken for each as e 0)

(2.2)’ sup Elf3(t)-f(x (t))l < o,
e,t

Elf3(t)-f(x (t))l 0,

(2.3)’ sup E[{f Elff(t)- Af(x (t))l- 0.

3. Tightness. Let y(. ), y(. ), x( denote the functions in the model (1.1) or
(1.2). Let tand denote the (completed) tr(ys s <= t) and tr(y, s <-_ t). Write EtandE7
for E, and E,, resp.

Again, we describe results from [1]. Let D"[0, ) denote the space of R" valued
functions on [0, c) which are right continuous on [0, ) and have left hand limits on
(0, o). Note that x( ) Dm[0, o) w.p.1. Suppose that the finite dimensional dis-
tributions of x( converge to those of a process x(. ), where x(. has paths in
D’[0, ) w.p. 1. Then, as noted in [1, bottom of page 628], {x (.)} is tight in D"[0,
if {f(x ))} is tight in D[0, ) for each f 0 ((?o is used there, but it can be replaced
by4 03.) It follows from [1, Theorem 4.20], that {f(x’( ))} is tight in D[0, ) if
x -> x0 weakly and if, for each real T>0, there is a random variable y() such that

(3.1) ETy,()>=E7 min {1, [f(xt+u)-f(xT)]2},
for all 0 =< -< T, 0 -<_ u -< 6 <- 1, and

(3.2) lim lim Ey() 0.
8-*0 e--*0

In [1, p. 629], Kurtz suggests a method of getting the y,(). This method is
developed in Lemma 1 and is used in the sequel. The ff below will be obtained in the
same manner as we will obtain the ff of Theorem 1. We have (1111-supl(x)l)

(3.3) E[f(x ,+ )-f(x, )3= --< 21111Etf(x t+,)-f(xT)] + [Ef2(x t+u)-f2(xt )l.

LEMMA 1. Let f (3o, and let there be a sequence {if} in , where (ff )i
1, 2, and such that, for each real T > 0 there is a random variableM such that

(3.4) suplff(t)-f(xT)l-O w.p.1, as e-O,
t<=T

(3.5) supl (ff (t))1 <-M, w.p.1, i-- 1, 2,
t<=T

and sup P{M >-_ N} 0 as N c. Then {f(x (.))} is tight in D[0, c).

4 Or by any set of functions dense in o in the sup norm.
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Proof. By (2.1)

(3.6) E(ff(t+u))’-(f(t))’=E A(ff(t+-))’d-=E z{(ff (v))i dv.

If sup, EM <, then (3.3), (3.5) and (3.6) yield the existence of a y, (,5) of the desired
form (for each interval [0, T]) for the sequence of processes {ff (.)}. Then, by (3.4), we
can get the ,/ (.) of the desired form for the sequence {f(x (.))} which is, consequently,
tight.

In the general case, when EM , a truncation argument can be used. For each
8>0, define T=min{t’lfi*ff(t)]>=l/8 or I(F(t))2l_->x/}. In (3.6) replace the
(t + u) and on the left and right sides by (t + u) f) Tg and f-) Tg, resp. A repetition of the
argument of the previous paragraph yields tightness of {/(x( f"l Tg))}, hence of
{f(x(. ))}, since P{T a3} 1 by hypotheses. Q.E.D.

4. Assumptions for Model (1.1); bounded y(" ).
(A1) F(.,. and G(.," are continuous, and the first x-partial and first and

second x-partial derivatives of G and F, resp., are continuous.
(A2) There is a constantMsuch that

IF(x, y)[ + IG(x, y)l =<M(1 +Ix[).
(A1) and (A2) assure the global existence of solutions to (1.1).

(A3) y (.) is a right continuous, bounded stationary process andEF(x, ys O, each
X.

There is a measurable function p (. such that

sup [P(BEIB1)-P(B2)I <--p(r),

where BI tr(yu, u _-< t), B2 E tr(yu, U >-- + r). Let

(4.1) pX/2(t) dt <.
Define the operator A on t2 by (the subscript x denotes gradient)

(4.2) Af(x)=EG’(x, ys)/x(X) + d’EF’(x, y)(F’(x, y+,)/x(X))x.

0 1 oEf(x)=- ., bi(x) f(x) +’ X a,j(x).
i,j ,gxOx

By (A1) and (A3), the integrals on the right exist. In fact, the improper Lebesgue
integral is absolutely convergent (i.e. oTIE(" )1 dr converges) uniformly in x.s Further-
more, if f e 7o3 then Af(x) is continuously differentiable in x, and the gradient of Af(x)
is the function obtained by simply replacing the argument ofE in (4.2) by its x-gradient.
If this is done, then the improper Lebesgue integral still is absolutely convergent,
uniformly in x. In a paper in preparation, martingale methods are used to obtain similar
results without conditions such as (A4).

(A4) A is the restriction to 2o ofthe strong infinitesimal operator ofa strongMarkov
conservative (nofinite escape time) diffusion process x(. ), with semigroup Tt.
Tt maps into C and is strongly continuous on .

This follows readily from the strong mixing. It is also a consequence of Billingsley [7], p. 170, by using
EF(x, ys)==0, (4.1) and the fact that the functions have bounded support (let r 1, soo in [7], equation
(20.23), with a proper identification of , r/there). We will use this and similar facts frequently in the sequel.
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(AS) {t} is right continuous. That is, t fqs>0@t+8, each >-O.
(A6) The set (h -a) -{g" g=(A-aft, f63o} is dense in forsome A >0.
Remark on (A5). Let f t0 and let/ denote either Ff,.Gf of any of the gi or fi

introduced below. Condition (AS) is introduced only because we want ET+sf(xt+s, +
s + u) to converge to Ef(x, + u) in probability as s$0. Many of the calculations in
Theorems 2 and 4 involve this type of right continuity together with uniform
integrability.

Remark on (A6). Some condition such as (A6) is required for use of Theorem 1.
Let Ac denote the strong infinitesimal operator of Tt acting on t. ThenA2 (A6) sequivalent to Ac being the closure of the operator A (of (4.2) acting on Co, or on 0,

^3 ":2
since Co s dense n Co n the norm i]fl12 supx (If(x)[ + [f(x)l + ILx(x)l)). This condi-
tion does not seem to be particularly restrictive. We only remark that it holds in the two
extreme cases" (1) the bi(. and aj(. in (4.2) are bounded, satisfy a uniform H61der
condition and a(. is uniformly positive definite; (2) where T maps t2 into ,2 and is
strongly continuous on t2 with respect to the norm Jill[2 defined above. The same
remarks were made by Kurtz [1, p. 632].

In case (2), we can actually consider Tt as acting on the Banach space (2 with norm
Ilfl[2, and where f(x) and its first and second derivatives go to zero as Ix --> c, and modify

^2(A4) accordingly. In this case, the closure of the operator A (the domain of A is Co
here) is just the strong infinitesimal operator (of Tt) acting on its domain in 2. Suppose
that there is a matrix valued o-(. such that cr(x)cr’(x) a(x), that (A4) holds (as
modified above) and that bi(" ), crj(. are locally Lipschitz. Then (see remarks below on
bounding), it is enough to prove Theorem 2 under the additional condition that bi(. ),
rii(’) are bounded and, for arbitrary N, arbitrarily smooth out of the sphere Su of
center 0 and radius N. Assume that bi(" and o’i(" have continuous first and second
derivatives. Then by the above remark on bounding, we can assume that the coefficients
are bounded on R". Then (Gikhman and Skorokhod [13, Chap. 8.4], case (2) above
holds. The conditions imposed are weaker than those in [4] when F and G do not
depend on t.

Remark on (A6) and time dependent coefficients. Let us elaborate the case of the
last paragraph when the coefficients in A are time dependent. In particular, let
a(.,. or(.,. )or’(.,. ), where or(.,. and b(.,. are bounded and continuous, together
with their first and second partial x-derivatives and first t-derivative. Theorem 2 can be
proved under conditions close to (A1)-(A6). We only replace A by the operator
(A + O/Ot) acting on its domain in c, where c is defined to be the closure under uniform
convergence of Co, the set of bounded continuous functions on [0, o)R with
compact support. Here, c replaces . For u(.,. qXo’2, define f(-,. by

f(t, x)= Io Et.xu(t + s, xt+s) e -’ ds.

Then (A + O/Ot-h)f =-u and If(x, t)l (and its first and second x-derivatives and first
t-derivative) goes to zero as [xl 0, uniformly in t. For each 6 > 0, there is a [8 (.,.)
c.2 such that I(A + O/Ot- h )(f -/8)[ -< 8, which yields (A6)in this case.

Remark on bounding the coefficients. Suppose a(x)= cr(x)tr’(x), where bi(" and
o-ij(. are locally Lipschitz continuous and x(. ), the diffusion with generator A, is
conservative. Define an N-truncation as follows. Let b/( ), 0-(. equal bi(" ), trgi(" ),
resp., in Sv, be bounded on R’, have bounded derivatives of any desired order in the
complement of S2zv and be at least as smooth in S2N SN as b(. ), o’ii( are. Then the
It6 process x (.) with coefficients b(. ), try(. is called an N-truncation of x(. if the
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bN( and rN( can be obtained by a modification of F and G in R’-SN.
N-truncations always exist since we can multiply F and G by suitable smooth real
valued functions mr(x) and rag(x), resp., which equal unity in SN. We only need prove
Theorem 2 and verify (A4) and (A6) for some N-truncation for each N.

The proof of the assertion will be omitted. It is essentially a note that the parts of
xN(. and x(. up to the first escape from SN are equal, and that the probability of
escape from Sr on an interval [0, T] goes to zero as N o, for each fixed x0. Here, we
suppose that x (.) are defined with respect to the same Wiener process.

5. Proof of weak convergence; bounded y(. and (1.1). The main job in using
Theorem 1 is to get f" when f is given. To do this, we use an idea exploited for a similar
purpose in 3 of [5] and ih 4 of [3]. We look for functions of the form6 f (x, t)=
f(x)+efl(x,t)+e fa(x,t), and define f(xt, t)=f’(t). Define operators and A
as follows. Let g(x, t) be smooth as a function of x and such that g(x, t) is a function of

lety s N t, for each x. At x x t, y y t,

(5.1) :g(x,/)= g:(x,/)IF(;, Y)+ G(x, y)];
i.e., 2 is, but acting on g(x, t) considered only a function of its first argument. Let
Ayg(x, t) be g(x, t), but where g is considered to be a function of its second argument
only. Assume for the moment that + y. Then, in order to use Theorem 1, we
apply to f (x, t), and insist that

[f,(x)+efl,,(x,t)+e f2,,(x,t)]’ X’t)+G(x,t)
E

(5.)’ +(ef (x, t) + ef (x, t)) Af(x, t) + O(e),

where equation (5.1)’ must determine both the operator A and equations yielding the
f (x, t). In Theorem 2, we merely write down formulas for the f (x, t) and verify the
conditions of Theorem 1.
TORM 2. Under (A1) to (A6), x(.) converges weakly in D[0, ) to the

diffusion x (. ), with initial condition Xo.
Proof. First (Parts 1 to 3) we prove convergence of finite dimensional distributions,

using Theorem 1. In Part 4 tightness is proved, via Lemma 1. Henceforth, f is a fixed
element of . Since is dense in in the norm IIll=, it is enough to work with .

Part 1. f(x, t) is defined to be a solution (suggested by (5.1)’) to f(x, t)=
-g(x, y) -F’(x, y)f,(x). More precisely, define f (t)=f (x, t), where

(5.

(both forms will be used). The improper Lebesgue integral exists and is bounded and
absolutely convergent, unitormly in , x and in in bounded sets, by the strong mixing
(A3), and the facts that NF(x, y) 0 and that g has compact x-support. Furthermore,
there are versions of [ (x, t) and (x, t) which are progressively measurable.

6 For each x and t, f (x, t) will be a function of y, s -< t. The discussion in this paragraph is purely formal.
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We next show that f (t) 6 (). We have.f(t) p -lim [Etf (x, + 8)-f (x, 0]/8
8-0

(5.3) =p -lim [E{fx (xt%, + 8)-f (x, + 8)}]/8

+p -lim [E,f (xT, + 6)-f (xT, 0]/6

if the limits exist and are in o. It is easy to verify that the second limit exists, is in ’o and
equals -gl(x, y)/e 2. Now, f (x, t) is differentiable in x. Indeed,

f,(x, t)=-- Tg,(x, y,) ds,

since [ [Tg,(yT+)l ds converges uniformly in x, and in tin bounded sets, as T .
This fact together with the representation

ET[ (xT+, t + )-[ (xT, + )]/
(5.4)

],
F(xt+, Yt+)

E[f,(x t+) +G(x,+,y,+ du

and the facts that f, is right continuous in the mean at t, and that the integrand is zero
out of a bounded x, y range, can be used to show that the first limit on the right side of
(5.3) exists, is in 0 and equals (x x, y y)

[f.x(x, t)]’[F(x, y)/e + G(x, y)] fi-f (x, t).

Part 2. With x=xT, we will define f(t)=f(x,t), where f(x,t) is the formal
solution to

(5.6)
f (x, t)=-g2(x, t)

= [F’(x, y)/.x(x, t)+G’(x, y)fx(x)-Af(x)],

where A is defined in (4.2). More precisely, define f2 by

(5.7) f (x, t) ETg2(x, + s) ds.

There are versions off (x, t) andf (x 7, t) which are progressively measurable. We now
ignore the G terms, for the difficulty lies with the Ff.x term. The improper Lebesgue
integral ]ETg2(x, + s)l ds of (5.7) converges absolutely, uniformly in w, x and in in any
bounded set, by the strong mixing property and the definition of A. (Indeed, this is the
reason for the choice of A.) To see this, note that (5.7) (without the G-terms) equals

- ds {E F’(x, y t+s)f,x(X, + s)-EF’(x, y+s)f,x(X, + s)},

where the average value of the coefficient of ds is zero (by stationarity and the definition
of A), and use the strong mixing condition. In fact, hsing the change of variables
s/e 2 --> s’, it can be seen from (5.8) and the strong mixing and compact x-support of f
that If(t)l is bounded w.p.1, uniformly in x and w and in bounded intervals.
Furthermore, g2(x, t) is continuously differentiable in x. In fact, the convergence
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assertion in the sentence above (5.4) also holds for g2 replacing gl and

f2.x(x, t)=- Eg2,x(X, + s) ds.

Expression (5.3) holds with f replacingf if the limits exist and are in o. Again,
we readily verify that the second limit in (5.3) exists, is ino and equals -g2(x, t)/e2(x
xT). An argument similar to that leading to (5.5) yields that the first limit in (5.3) exists,
is in o and equals (5.5) with f replacing f.

Part 3. Now, we apply Theorem 1. Since

sup E([f (t)[ +
t,e >0

we have
p-lim If" -f(x’( ))] 0.

Now, calculate ff. By Parts 1 and 2, with x xT, y y t,

2/dAf (x, t) .f(x) +e fl (x, t) + e f (x, t)

=[F(x, y)/e + G(x, y)]’/x(x)

+e[-F’(x, y)f(x)/e 2 +(F(x, y)/e + G(x, y))’f.x (x,/)]

(5.9) +e[-(F’(x, y)fT.(x, t)+G’(x, y)f(x)-Af(x)}

+(F(x, y)/e + G(x, y))’f-., (x, t))J
=Af(x)+ e[G’(x, y)f.x(X, t)+F’(x, y)f,x(X, t)]

26+e ’(x, y)/2.x(x, t)

We now readily verify that p-lim [/f-Af(x’( .))]= 0. Since x Xo, Theorem 1
implies that the finite dimensional distributions converge.

Part 4. Tightness. For tightness, we use Lemma 1. Each f Co can be approxi-
mated uniformly arbitrarily closely by an f 3o. Thus, by the lemma and discussion
preceding it, we only need prove that {f(x (.))} is tight for each f ’03. Let f ’o3 and
construct f, f exactly as the f, f were constructed above, and define f (t) as above.
Note that [(f(t+8))2-f(t)]2/8=[f(t+8)+f(t)][ff(t+8)-f’(t)]/& Now use the
facts that f is uniformly bounded and in (") and the right continuity properties off
(as implied by (A3), (A5)) to get that (f’)2 @() and (f(t))= 2ff(t)ff(t).
There is a constantM such that w.p. 1

sup [/] (ff (t))il M, 1, 2,
>0,to,/

sup If (t)-f(x (t))l 0, as e - 0.

Thus, Lemma 1 implies that {f(x (.))} is tight in D[0, oo), for each f e o3 hence {x (.)}
is tight in D"[0, oo). The tightness, together with the convergence of finite dimensional
distributions implies weak convergence. Q.E.D.

An approximation to an integral. In problems where changes of measure via
Girsanov-like transformations are involved, such as occur in some identification
problems (Balakrishnan [8], [9]), we need to get limits of integrals such as z7
o q’(xs)(yf/e) ds, as e -0, where q(. is some given function.
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Let ( denote the real valued functions on R m+m’+l with compact support, whose
ith partial derivatives are continuous. Let Y7 (y/e) ds and u (x, Y, z’). Then

is R m+m’+lu valued and

where

a 8(x *, y) +- P(x, y ),

G(x,y)=(G(x,y),O,O),

F(x, y)= (F(x, y), y, q’(x)y).

The remarks below (A6) all pertain here also.
THEOREM 3. Let q(. satisfy the conditions on F(. in (A1)-(A2). Assume (A1) to

^2(A6) where (A4) and (A6) hold for the process u(. and operator A defined on Co by

(5.10) A-f(u)=E’(x, yo)fu(u)+ I0 drE.#’(x, y0)(P’(x, y)fu(u))u.

Then u*(.) converges weakly in D’+"+I[0, oo) to u(. (x(. ), Y(.), z(.)), u0
(Xo, O, 0), a diffusion with generator on . The process Yt is a Brownian motion with
covariance R _o Ey,y’o dr. The limit z( has the It8 representation (the expectation is
over y(. )) in terms of the limits x( ), Y(.

(5.11) dz q’(x) dY + EF’(x, y0)(q’(x)y,)x d dt.

(The last term in (5.11) is the so-called correction term of the limiting integral
approximation.)

The proof of weak convergence of u (.) to u(.) is simply an application of
Theorem 2. Once the weak convergence is known, then the representation (5.11) is not
hard to get, and we omit the details.

6. Unbounded y(.) and (1.1). Our approach here will be only a little different
from that in 5. In order to avoid conditions which look overly complicated, we
specialize F(x, y) and G(x, y) to F(x)y and G(x), resp.

Assumptions. In this section, the convergence of finite dimensional distribution is
proved, and tightness is treated in the next section. Owing to the unboundedness of
y(. ), it is convenient to artificially bound the F and G. We do this by dealing with a
sequence of approximations to the original processes. The operator A is still defined by
(4.2).

(B 1) F(. and its first and second order partial derivatives are continuous.
(B2) G(. and its first order partial derivatives are continuous.
(B3) {} (again completed) is right continuous, and so is the stationary process

y(. ), w.p. 1. (See the remark concerning (A5).)
Define

v, =- Ey+,ds, v, E,y,+,ds.

(B4) For some p > 0, sup,E(
Thus, v; and v, are well-defined.
(B5) Elyt[2+ < oo, some p > O.
(B6) suptE(f ds [EtYt+sV’t+s -Eyt+sVt+s’ I)2+0 < 00, some p > O.
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du Ey,y t+ du and does not dependNote that Eyt+sv’ Ey,+st+s

on or s, and is well-defined by (B4), (B5).
Owing to the special form ofF and G, there are locally Lipschitz b (.) and o-(. such

that (see (4.2)) r(. )r’(. a(. ). See also the remarks on bounding below (A6). x and
x’r (.) denote the N-truncations of x(. and .x (.).

(B7) For a sequence N o, there are N-truncations which satisfy (A4) and (A6).
Remark on assumptions (B3)-(B6). Let w(. denote a vector Brownian motion, Q

a matrix with eigenvalues in the open left half plane and letD and G be matrices. Define
processes Y(. and y(. by

.dY=OYdt+Ddw,
(6.1)

y(.) GY(.).

Then (B3) to (B6) hold. In this case, we can let and t measure Y, s <-_ tie 2, and
Y,s<=t, resp., in all the foregoing. Then vt is proportional to Yt and IEtyt/sl <-

Y,[cxe-, where the ci are positive constants.
Theorem 4 deals with the convergence of finite dimensional distributions.
THEOREM 4. Under (B1) to (B7) and the first sentence of (A4), the finite dimen-

sional distributions ofx( converge to those of x(. with initial condition Xo, as e O.
Proof. If the finite dimensional distributions of x’v (.) converge to those of xr (.)

(initial condition Xo) as e - 0 for a sequenceN c, then the conservative and the strong
Markov properties of (A4), (B7) yield the theorem. So we only need prove convergence
for a fixed N. Consequently, we may assume that F and G are bounded and drop the
affixes N.

The details are very similar to those of Theorem 2, and we only make a few
remarks. As before, define f and f by

f (t)=f (x, t), f (t) f (x, t),

where f (x, t) is defined as in Theorem 2. These functions are no longer bounded, but
still sup,.>o EIf (t)l < c. It is rather straightforward to verify (in fact, easier than in
Theorem 2 owing to the special form of F(x, y) and G(x, y) here) via (B1) to (B6), that
f e() and7 take the same values as in Theorem 2. Furthermore, the expectations

2of the absolute values of the coefficients of e and e on the far right side of (5.9) are
bounded, uniformly in e. Also

Thus,

sup E{lYT (t)l + lfT (t)l}< oo.
t,e >0

p-lim[ff-f(x’(.))]=O and p-lim[,,ff-Af(x’(.))]=O,
from which the theorem follows, by Theorem 1. Q.E.D.

7. Tightness; unbounded y (.). Owing to the unboundedness, it is more difficult to
prove tightness via the method of Lemma 1. To avoid (what are at the moment)
awkward conditions, we suppose that y (.) satisfies (6.1). Then the ff can be explicitly
evaluated and the proof is easy.

THEOREM 5. Assume (B1), (B2), (BT), the first sentence of (A4) and that y(.)
satisfies (6.1). Then {x (.)}/s tight and converges weakly to x(. as e O.

7 For example, to show that the expression for Aef7 (t) is in Lo, we note that the compact support off and
(B4) to (B6) imply uniform integrability of the expression. This, together with (B3) yields p-right continuity.
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Remark. The tightness argument only uses the compact support of f, (B1)-(B2)
and (6.1).

Proof. The method and notation of Lemma 1 and Theorem 2, Part 4, will be used
here. We need to show that, for each T and each f 30

(i) lim,_,0 supt<__T If(x)--f(t)l 0 w.p.1;
(ii) (if)2 @(A);
(iii) lim,_,0 sup,_<_T [A (ff (t))l < o, 1, 2, w.p.1.

In our case, there is a matrix Co such that

f (x, t) [F(x)Co Y(t/e2)]’fx(x),
g(x, t) {F(x)y(t/e2))’{[F(X)Co Y(t/e2)]’fx(X)}x + G’(x)f(x)-Af(x).

2)f(x, t) is a quadratic form in the components of Y(t/e where the coefficients are
bounded differentiable functions of x with compact support. Also, as is readily
verifiable, (ff(t))2@(), and ,(ff(t)), = 1,2, have terms in powers of the
components of Y(t/e 2) up to 2 + 1. Thus, to verify (i) and (iii) it is enough to verify that
for each T> 0

(7.1) lim sup e[Y(t/e2)13=O w.p.1.
eO tT

Equation (7.1) holds since, for each a > 0, the Gaussianess, stationarity, and special
form (6.1) imply that there are finite w.p.1 to-functions C1 and C2 such that IY(t)[<_-
Cxt + C2 for all t, w.p.1. Q.E.D.

8. An approximate jump case; (1.2) with no ye (.) term. Since the classical papers
of Wong and Zakai [6], the problem of using It6 or other types of equations to
approximately model processes which are the solutions to ordinary differential equa-
tions has received much attention; e.g., [3]-[5] and 5-7 above. Alternative
approaches have been taken by McShane [1 0] and Sussmann 1 1 who sought either a
theory of integration or a differential equation and a topology on the input functions so
that the output is a continuous function ofthe input. The differential equationswere of the
so-called Stratonovich form, which, in fact, are precisely It6 equations with appropriate
dynamic terms.

Little has been done when the input is an approximation to an impulse (its integral
is an approximation to a pure jump process). Marcus [12] has done some work along
McShane’s "belated integral" point of view. This work [12] has some interesting
aspects, but also a number of shortcomings. The dynamics are rather special, being (in
part) analytic functions. This is a disadvantage in any approximation theory, where
robustness is a key word. Some heavy lie algebra machinery was used, and the form of
the results tended to obscure the basic simplicity of the problem. Also, a very particular
impulse approximation.was used (piecewise constant). In this section, we take a simple
minded but inherently natural and robust approach, using pathwise approximations.and
limits. The limits being either ordinary or stochastic differential equations with
impulsive or jump inputs.

Let Ni(ds x dy), 1, , k, denote a sequence of scalar valued random measures
and define N/(t)= J ol]Qi(ds x dot), where Ni(" is taken to be right continuous. The
range of the jumps of Ni (.) is a bounded set R. Each N(. is assumed to have a finite
number of jumps on each bounded interval w.p.1, and the probability is zero that
different N(. have simultaneous jumps.
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In this section, we deal with the equation

k

(8.1) G(x)+ E Hi(x)J (t),
i=1

where the input J (t) is an "approximation" to the impulse lQi(t). Figure 1 illustrates
some ways in which an actual integrated input ’o J (s) ds might approximate an ideal
integrated impulsive input Ni(t). In the figure a jump of Y occurs at t= to. With
approximation (1), Ji(t) Y/e on[t0, to + el. Define Ki(x, y) to be such thatx + K(x, Y)
is the solution to : =/-/ (x) Y at 1, with Xo x x(0).

"------(2)

to to +

FIG. 1. Illustration of 3 possibilities for J (s) ds.

(t)

It is convenient to start with the vector of ideal integrated inputs N(. )= {N(. ),
i-< k} and to get the actual inputs J from this, as indicated in Figure 1. When the
parameter is e, we work only with paths for which the interjump times of the vector
{N(. ), 1,..., k} are >=e. Obviously, this involves neglecting a set of paths whose
probability goes to zero as e --)0, and it has no effect on the limiting process. Thus, for
our "limit" results, only the case of one input need be treated, and unless noted
otherwise set k 1 and drop the indices on J, N, H and K. Let N(. jump Yj at

=trj, its ]th jump time. Define p =J/Yi on [trj, tr + e], and equal to zero out of
(.J [o-j, trj + e] and defineP gp ds. Thus Pj/ -Pj 1. Now (8.1) can be rewritten
in the form

{G(x)+n(x)Yp on [o,i,(r+e],
(8.2) x

G(x otherwise.

The value of p (.) can depend on the jump time and size and on the state prior to the
jump (and on the index in case (8.1)).
Assumptions.

(C1) The G and Hi are continuous.



JUMP-DIFFUSION APPROXIMATIONS 741

(C2) Them is one and only one solution to G(x), ]’or each Xo in R"; for each
T < oo, the solution is bounded on [0, T] uniformly in bounded Xo sets.

(C3) For each i, there is one and only one solution on [0, 1] to b Hi(w) Yfor each
Y Ri and Wo R". This solution is bounded, uniformly on bounded (Wo, Y)
sets.

(C4) There are real numbers m >0, M < oo, such that m <-_ p (t) <-M on the
[ri, ri + e intervals andp (.) is continuous.

(C5) Let O</z(t), where tz(.) is bounded and continuous on [0, 1] and
tx (s) ds <= e. Define w (.) by b G(w)tz (t) + Hi(w) Y. For each i, let

w (.) exist and be bounded on [0, 1] uniformly on bounded Y, w) sets and
in {e,/x (.), e =< Co} for some eo > O.

Remarks. (C2) implies that x(. is continuously dependent on Xo, and (C3) implies
that (for each i) w(.) is continuously dependent on Wo, Y. (C2), (C3) and (C5) are
partially redundant, but it seemed easier to state the assumptions in this way.

Let rO Hi(w) Y and w) --> Wo. Then (C5) and (C3) imply that [w (t)- w(t)[--> 0 as
e --> 0 uniformly on [0, 1] and on bounded (Y, Wo) sets, and in {tz( )}.

THEOREM 6. Assume (C1) to (C5). Let x(. be defined by

(8.3) xt Xo + G(xs) ds + Ki(xs-, a)Ni(da ds).

Let x =- Xo. Then ]’or each T <

sup Ix xt[-> 0 as e --> O, w.p. 1,
t T.

where T [0, T]- t.J [o’j, o’i + e ].
Remarks. Equation (8.3) is the correct limit equationmthe analogue of the

Wong-Zakai or Stratonovich equation for the modeling of the output of a system with
approximate jump inputs. The sequence {x(.)} does not converge to x(.) in the
Skorokhod topology since x(. is discontinuous and the x( are continuous.

A main feature of the theorem is the robustness of the result; the limit does not
depend on the precise ]’orm of the approximations J (.). Obviously, the interpolation
need not be over only an e-interval.

Proof. We need treat only one jump and one Hi term, owing to the assumptions on
N(. and on the continuity with respect to parameters implied by (C2), (C3) and (C5).
So return to (8.2) with ri set equal to zero.

We change the time scale. Define a monotone increasing function on [0, e ], z(t) "
by dz/dt=p or ’(t)=p ds. Thus, ’(e)= 1, and the inverse t(z) exists by (C4).
Define z (-) x (t(z)). Then

(8.4)
dz (’)

G(z (-))tz (-) + H(z (r)) Y, r < 1
dr

where

dt(z)

z (0)=x (0).

Now/x (’) dr e and/x (.) satisfies the conditions in (C5). Let x (0) x(0) as e 0.
Then x(e) K(x(O), Y)+ x(O) as e 0. This, together with the continuity conditions
(C2), (C3), (C5) and a concatenation of the argument, implies the theorem. Q.E.D.
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9. The jump-diffusion case (1.2); bounded y(. ). We now return to the full model
(1.2). Owing to the nonweak convergence of x (.) -> x (.) in the pure jump case, (see
the remark below Theorem 6), the combined jump-diffusion case will be treated by a
"piecing together" argument. Here N(.), 1,..., k, are independent Poisson
random measures with rates A > 0, jump distributions D(. (with bounded support R)
and are independent of y(. ). With A defined by (4.2), define the operatorA on t by

Aft(x) Af(x) + A, f [f(x + Ki(x, ot))-f(x)]Di(do).(9.1)

Let (. denote the jump-diffusion process whose infinitesimal operator on 20 is A.
Except for the nonconvergence problem at the jump points, x (.) will essentially
converge weakly to $(. ).

Set tr0 0 and o’ qth jump of the vector valued process N(. {N(.), <- k}. Let
the qth jump be a jump ofN. (.) and have value Y. Define x to be the solution of (1.1)
with initial condition Xo and let x (.)(q => 1 be the solution to (1.1) with initial condition
x(tr + e), and where y’(tro + e +.) is used in lieu of y(.). Let x(.) denote the
diffusion of 4 and 5, with initial condition x0 if q=0, and x(0)=
X-l(r-tr_)+K(X_l(tr-tr_l), Y) in general. We will need either (D1) or (D2)
to replace (C5). Let A(Y) denote the operator on t0 functions which is defined by
(ni(w) Y)’(O/Ow).

(D1) iz (s)/e is bounded in s <- 1 and e. The functions F, G and Hi are bounded.
(D2) ix(s)/e is bounded in s<-i and e. Each Ai(Y)(YsRi) is the strong

infinitesimal operator of a conservative Markov semigroup mapping (and
strongly continuous on) (; into . Also (A -Ai(Y)) is dense in for each
Y Ri and i, and some A > 0 (which can depend on Y and i).

THEOREM 7. Assume (A1) to (A6), (C1), (C4) and either (D1) and (C3) or (D2).
Then for each N, {x(. ), q <=N} converges to {x(. ), q <-N} weakly in D"*v[0, oo).

Note. The remarks below (A6) apply here also.
Proof. Owing to the independence of N(. and y (.) and right continuity of y (.),

y(tr + e +.) has the properties of y(.). Due to this independence, the independent
increments property of N(.) and the uniqueness and strong Markov property of the
x(.) of 4 and 5 we can use a "piecing together" method based on the following
assertion: Let a component NI(") jump Y at r, with no other jumps on [tr e, tr + e ],
and let x (o-) (tr) - (tr) weakly as e - 0 and define (.) for 6 (tr, tr + e by

(9.2) 1
Xs G(;, y)+-F(;, y)+Hl(;)pY.

Then (to be proved) 7(tr+e) converges weakly to 7(tr) +K(7(tr), Y), as e 0. We
will prove only the assertion, and the proof uses a combination of the ideas in Theorems
2 and 6. For notational simplicity, let o-= 0 and drop the index ll.

As in Theorem 6, change the time scale by defining r(.) on [0, e] and w(.) by
d’(t)/dt p (t), w (r)= (t(r)), where t(. is the inverse of r(" ). Then

dw (r)
d----- G(w (r), y (t(r)))/z" (r) + g (r)

F(w (.), y, (t(’)))
(9.3)

+H(w (r)) Y, w (0) ; (0),

where ix(-)=[p*(t(r))]-l=dt (r)/d-. We need only show that, for fixed Y, w(1)
converges weakly to (0)+K((0), Y), the value at t= 1 of the solution w(.) to

H(w)Y, w(0)= 7(0), o-=0. We will actually.prove the stronger result of weak
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convergence of w (.) to w(.) in Din[0, 1], for each fixed nonrandom Y.
First, the proof under (D2) will be given. Using the method of Theorem 2, let 6

and set Ixe(r) 0 and t(r)= t(1)= e for z=> 1 and define [l(W, r) by (r -< 1)

f (w, r)=-- E(,)f’(w, ye (t(r + s)))ixe (r + S)fw(W) ds.

In the definition of T and e, use FT(,) just as F was used in 3 to 5. Set
fe (r) f(w (r)) + ef(w (r), r). Then, it can readily be shown that f(w (r)) and
f(w (r), r) are in the domain of A and that

efe(r)=f’w(We(r))[G(we(r), ye (t(r)))ix (r)

+F(w (r), ye (t(r))) Ixe(..__) +H(w (r)) Y]

-V’(w (z), ye (t(r)))fw(W (r)) ixe (z)
+ efiw(We (z), r)rb (r),

which equals A(Y)f(we(r))+ O(e) (we dropped the 11 subscript on A(Y)). This yields
convergence of the finite dimensional distributions of w e(.) to those of w(.), as in
Theorem 2. Tightness is also proved in the same way as done in Theorem 2, completing
the proof under (D2). Note that the function f, which we used in Theorem 2, is not
needed here.

Now, we prove the assertion under (D1) and (C3). In this case lif (r)] is bounded
uniformly in e >0 and r=< 1 and we(0) (0) weakly. Thus {we(.)} is tight in cm[o, 1]
and so is the function with values

Io F(we (r), ye (t(r))) + G(w (r), ye (t(r)))ix (r) dr.

Consequently, drawing a convergent subsequence and indexing it also by e we have that
w (.) converges weakly to a continuous process (.). By using a Skorokhod imbedding
technique, we can assume for our purposes that the convergence is w.p.1, uniformly on
bounded intervals and write

(9.4) (v) Y(0)+ H(ff(s))Yds+li
tx e(r) F(w (r), ye (t(r))) dr.

We wish to show that the limit in (9.4) is zero w.p.1 for each v. If so, then since it is
continuous w.p.1, it must be identically zero w.p.1. Then, by the uniqueness (C3),
ff (.)= w(. and the proof will be concluded.

The limit equals

lime Io Ixee(z) F(v(z), ye (t(z))) dr

by the continuity of F and boundedness of y(. ). Let a >0. Define #(t) v(ma) on
[ma, ma+a) for each integer m. The difference between the last limit and
lime (ixe(r)/e)F(ff(t), y’(t(r))) dr goes to zero as a 0. Thus, we need only show
that lime ,,’2+ (ixe(z)/e)F(#(ma), ye(t(z))) dz is zero w.p.1 for each a. Now, by
changing the time scale back to the original one, the last limit equals

Ct(mo+o)
rime Jt(,) (rtwtma), y (u))/e)du. Sincet(na)-Oforeachn as e-0, the results of
Theorem 2 imply that this last limit is zero w.p.1. Q.E.D.
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NONLINEAR PERTURBATION OF LINEAR PROGRAMS*

O. L. MANGASARIAN" AND R R. MEYERf

Abstract. The objective function of any solvable linear program can be perturbed by a differentiable,
convex or Lipschitz continuous function in such a way that (a) a solution of the original linear program is also a
Karush-Kuhn-Tucker point, local or global solution of the perturbed program, or (b) each global solution of
the perturbed problem is also a solution of the linear program.

We are concerned here with the linear program

(1) Minimize px subject to Ax >-_ b,

where p and b are given vectors in R and R respectively and A is a given rn n real
matrix. We shall assume throughout this work that this problem has a nonempty
optimal solution set $c S ={x lAx >-_b}. We shall be interested in the perturbed
problem P(e) definied as follows"

(2) Minimize px + el(x) subject to Ax >-b,

where f: RnR and e is a nonnegative real number. For convenience we define the
optimal solution set of (2) as {(e). Note that g(0)= S-. Perturbed problems such as (2)
are considered in [3], [4]. In [3] it was shown that if (1) has a unique solution and f is a
differentiable function at , then there exists a positive 7 such that for all e in [0, g],
satisfies the Karush-Kuhn-Tucker conditions [1 ], [2] for the perturbed problem (2). By
considering a specific perturbation f(x) rx x in [4] an iterative technique is proposed
for solving linear programming problems. In this work we show that, under suitable
conditions, given by f there exists a positive number f such that some solution of the
linear program is a Karush-Kuhn-Tucker point or a local or global solution of the
perturbed problem (2) for e in the interval [0, 7]. In Theorem 1 we show that if f is
differentiable and has a bounded level set on , then there exists a Karush-Kuhn-
Tucker point of the perturbed problem (2) which also solves the original linear program
(1). In Theorem 2 we indicate how the same type of perturbation applies to a nonlinear
programming problem. The rest of the paper is again devoted to the perturbed linear
program. In Theorem 3 we show that if f satisfies a local Lipschitz or local convexity
property then there exists a solution of the linear program (1) which is a local solution of
the perturbed problem (2). Among other things Theorem 4 globalizes the result of
Theorem 3 and shows that for sufficiently small e => 0 the set of optimal solutions of the
perturbed problem is actually a subset of the solutions of (1). Corollary 1 deals with the
case when the linear program (1) has a unique solution, while Corollary 2 treats the case
when the perturbation function f is strictly convex on R n. We begin with the first result.

THEOREM 1. Let f be a function from R into R which is differentiable on the
nonempty solution set S of (1). Let either the level setL {x Ix S, f(x <= } be nonempty
and bounded ]’or some real number , or let 0 be the minimum value of (1) and let the
nonlinear program

(3) Minimize f(x) subject to Ax >-b, px <-0

have a Karush-Kuhn-Tucker point. Then there exists an in R and an f > 0 such that

* Received by the editors November 8, 1978 and in revised form March 25, 1979.

" Computer Sciences and Industrial Engineering Departments, University of WisconsinmMadison,
Madison, Wisconsin 53706. This research was supported in part by National Science Foundation (rant

MCS74-20584 A02.
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746 O.L. MANGASARIAN AND R. R. MEYER

for eache in [0, g] there exists a a(e) in R"such that (2, ti (e)) is a Karush-Kuhn-Tucker
point of the perturbed problem (2), and is also a solution of the linear program (1). If in
addition f is convex or pseudoconvex at , then 2 solves the perturbed problem (2) for e in
[0, ].

Proof. By explicit assumption or by the boundedness of L, problem (3) has a
Karush-Kuhn-Tucker point (2, 5, /) in R "+’+1 which satisfies

V/(2)-A 7- + /p 0,

A2>-b,

(4) p2 0,

5(a2-b) 0,

#, /->0.

Since $ is also a solution of the linear program (1), there exists a in R such that

(5) -aT"+p=0, AY>=b, ff(AY-b)=0, >-0.

Case 1" 2 0. From (4) and (5) we have that for any e -> 0

e Vf(X)-a T( + e5) +p 0,

A2 => b,

(, + es)(a$ b) O,

Hence (, ff + eS) is a Karush-Kuhn-Tucker point of (2) for any e >= 0.
Case.2" /> 0. When z/> 0, it follows from (4) that (, K 5//) is a Karush-Kuhn-

Tucker point of (2) with e g 1 / /. From (4) and (5) we have for 35 > 0 and A [0, 1

Vf(2) AT((1 A)+A) +p =0,

that

A2 _-> b,

+A)(A$- b) 0,

(1-A)+h--=>0._

Hence (, (1-h) + h (5/z/)) is a Karush-Kuhn-Tucker point for (2) for e hg A/q
and A e [0, 1].

The last statement of the theorem follows from the standard sufficiency theory of
nonlinear programming [2, Thm. 10.1.2]. ]

We can apply the same proof technique above to a considerably more general
problem than (1), namely to the nonlinear programming problem:

(6) Minimize O(x) subject to g(x)=<O, h(x)=O,

where 0, g and h are functions from R" into R, R and R k respectively. However
because of a constraint qualification restriction the results apply to a narrow class
outside linear programs. Hence we shall merely state the result and omit the proof
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which is quite simil.ar to the proof of Theorem 1. We shall again associate with (6) a
perturbed problem, namely for some e >= 0
(7) Minimize O(x)+ef(x) subject to g(x)<=O, h(x)=0,

where f is from R into R. We shall assume that (6) has a local solution at 2 with
minimum value of 0 0() and that B is the open ball with center 2 such that
0() <= O(x) for all x in B satisfying the constraints g(x)<=0 and h(x)= 0. We further
admit the possibility of the nonuniqueness of and define ={xlO(x)= , g(x)<=0,
h(x)=O, xsB}.

THEOREM 2. Let (6) have a nonempty set of local optimal solutions satisfying a
constraint qualification. Let O, g, h. and f be differentiable on and let the nonlinear
program

Minimize f(x) subject to g(x) <- O,

(8) h(x) 0,

O(x)<-O, x B

have a Karush-Kuhn-Tucker point (2, , L /) in R n+"+k+l Then there exists an > 0
such thatforeach e in [0, f] there exists a (, ?)" [0, f]- R"/ksuch that (, t(e), ?(e)) is
a Karush-Kuhn-Tuckerpointfor the perturbed problem (7), and is also a local solution
of the nonlinearprogram (6). In fact it is possible to take 1 // when / > 0 and as any
positive number when /= O.

The main cause of the restrictive nature of this theorem outside linear program-
ming is that in order for (8) to have a Karush-Kuhn-Tucker point its constraints must in
general satisfy a constraint qualification. This is difficult when g, h and 0 are nonlinear
because of the constraint O(x) <= O. However when h is linear and 0 and g are pseudo-
concave or concave at 2 then a constraint qualification is automatically satisfied [2,
Thm. 11.3.6]. This is a somewhat restrictive extension which does however include the
case when (6) is a linear program.

The rest of the paper is devoted exclusively to the perturbation (2) of the linear
program (1). We will first show that, under appropriate assumptions, some element 2 of
the solution set S of (1) will be a local (global) solution of P(e) for all sufficiently small
e -> 0. We will then show that under slightly stronger assumptions, each global solution
of P(e) for sufficiently small e =>0 is also a solution of (1). We begin by assuming that
minx/(x) has a local (global) solution , so that there exists an open ball B with center
such that S f’)B is optimal for the problem

(9) Minimize f(x) subject to x g f’lB.
The proof of the subsequent results depends crucially on establishing a minimum

rate of increase of px in certain directions that lead "away" from S. These directions are
related to pro]ections of points in $ on $. The projection of a point x on S is denoted by
Ix (x) with Ix (x) S and

]l (x)-xll min I[ix -xli,

where I1"11 denotes the c norm throughout this paper unless otherwise subscripted. We
state now the key result which gives the desired lower bound on p(x Ix(x)) and give the
proof in the Appendix.

LEMMA 1. There exists an a > 0 such that

p (x Ix (x)) _-> a IIx Ix (x)[[ for all x S.,



748 O. L. MANGASARIAN AND R.R. MEYER

We shall also need the following Lipschitz property on the perturbation function
There exist positive numbers 8 and K such that

(10) f((x))-f(x)<-KIIx-m(x)ll for x S and IIx-(x)ll<=.

Note that it follows from the definition of/z (x) that Ilx (x)l[ whenever ]Ix
With the above concepts we establish our next principal result.

THEOREM 3. Let be a local solution of minxg/(x). Then, for sufficiently small
e >= O, is both a global solution of the linear program (1) and a local solution of the
perturbed problem (2) provided that either of the two following conditions holds"

(a) The Lipschitz property (1 O) holds.
(b) f is convex on some open set containing .
Proof. (a) Let (10) hold and let B B(, g) {xlllx < g} where g is chosen

such that 0 < 8-< 6 and is an optimal solution of (9). Note that if x e B(, 6), then

Hence by part (b) of Lemma A.3 of the Appendix we have upon noting the equality

ef()+p<--ef(x)+px forxeSB ,

Hence solves (2) for e e [0, /K] with the added constraint that x e B(, /2).
(b) Let be convex on B(, r) for some r>0. By Theorem 10.4 of [5] is

Lipschitzian on any open ball B(, 8) with 8 < r, and again we have that

IIx- (x)ll llx- ll< for x B(, 8).

Hence because f is Lipschitzian on B(, 8) the first inequality of (10) holds for
x B(, 8), and because [ is convex on B(, ), is an optimal solution of (9) with
B B(, 8). Again by part (b) of Lemma A.3 of the Appendix we have that

e() +p e(x) +px for x e S B ,
and e e 0,

Hence solves (2) for e e [0, /K] with the added constraint that x
Example 1. To illustrate the need for the Lipschitz property (10), let x e R , let

S {x 0}, p 1, [(x)=-x/. Note that is continuous on S, but does not have the
Lipschitz property in a neighborhood ol g {0}. (Note also that [ is convex on S, but
cannot be extended to a finite convex function on R .) In this case it is easily verified that
g(e) e/4 for e 0 and thus g(e) never includes {0} for any positive

Note that in Theorem 3, the Lipschitz property (10) is needed only
that lie in some open neighborhood of , since only such points are involved in the
statement of the theorem and its proof. On the other hand by using the full strength
(10) and under slightly stronger assumptions than those of Theorem 3 we can show that
each global solution of the perturbed problem (2) for suciently small e 0 is also a
solution o the linear program (1). In particular we have the following.

IIx (x)ll IIx 11 < ,
p plz(x) that
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THEOREM 4. Let S be a solution of minxgf(x) and letpx + e*f(x) be bounded
from below on S for some e*>0. Then S(e) S for sufficiently small e >=0 provided
that any of the following conditions holds"

(a) The Lipschitz property (10) holds.
(b) f is convex on some open convex set containing S.
(c) f has continuous first partial derivatives on some open set containing S and S is

compact.

Proof. We will first establish that $ S(e) S for sufficiently small e _->0 under
hypothesis (a) by showing that for sufficiently small e _-> 0

(11) p +ef().<px +el(x) for x S\S

and

(12) p2 + el(2) <-- px + ef(x) for x S.

Inequality (12) holds because 2 minimizes f on S. To establish (11), let x S\S; thus
x #/ (x), and consider the two following cases.

Case 1" O<llp,(x)-xll<-6. The strict inequality (11) follows from part (a) of
Lemma A.3 of the Appendix for e e [0, a/K) upon noting that p2 pi,(x).

Case 2" IIl(x)-xll>6. Let u be such that px+e*f(x)>= for x eS, so that
f(x) >- /e * px/e *. By defining

q -p/e* and p u/e* +f(2) + pY/e*

we have that

f(Y)-d(x)<=q(i.t(x)-x)+p forx 6S.

Because I]/ (x)- xll > 6 it follows upon using the H61der inequality that

e(f(X)-f(x))/[lx-l(x)ll<=e]lq[l+ep/ for x S

and consequently for e small enough, that is e [0, a/(]lq]l + p/6)), the right hand side
of the last inequality is less than a. Thus, for such e

e (f(2)-fix)) <  llx (x)ll

<-px p2 (by Lemma 1).
This establishes (11) for this second case also.

Now note that hypothesis (c) implies (a) and that hypothesis (b) also implies (a) in
the case that S is compact [5, Thin. 10.4], so that the proof will be completed by showing
that the result holds under hypothesis (b) even when is not compact. Let

T {x I[Ix :]]--< k},

where k is some positive number, let S’= S 0 T, and let S’ S 0 T. Note that S’ is a
compact polyhedral set and that S’ is the set of optimal solutions of minxes, px, so that
the preceding arguments imply that there exists an e’> 0 such that Y S’(e) S’ for
e [0, e’] where S’(e) denotes the solution set of min,sTpX +el(x). Now suppose
that for some e [0, e’], S(e) contains a point S. By the convexity of px + el(x),
S’(e) implies that S(e) (since a local solution of P(e) must also be a global solution),
and consequently by the convexity of S(e) it follows that

x(h)=(1-h)2+hS(e) for all h [O, 1].

However, for h (0, 1] we have that x (h) ,q and hence x (h) ’. But for sufficiently
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small A > 0, x(A) S’(e) c S’, which is a contradiction. Thus S(e) S for e [0, e’], and
since 2 S(e) the theorem is established under hypothesis (b). [q

In the terminology of point-to-set mappings the result S(e) S of Theorem 4 for
e -> 0 sufficiently small implies that the mapping S(e) is upper semi-continuous at 0 in a
strong sense. (Note that if px + el(x) is not bounded from below for any e > 0, then the
inclusion S(e)S holds trivially, since S(e) b for all e >0.)

To see that the compactness of S is necessary in hypothesis (c) of Theorem 4 we
give below an example in which the conclusion of Theorem 4 fails when the compact-
ness assumption of part (c) is dropped.

(0)Example 2. Let x R2’ P 1
S {(x1, x2)[1 <X1, 0=<x2 < 1} and f(x)

--XIX2q"X31X22. Note that on S, px +ef(x)>-e(-XlX2+(xlx2)2)>=-e/4. Moreover,

S {(X 1, x2)lXl 1, xz 0}

and f(x)= 0 on S, so that px + el(x)- 0 on S for all e-> 0. However for 0 < e 2,
2

xl 2/e, x2 e2/16, we have that (x, x.) S, px + ef(x) -e /32 < 0, and hence no
solution of minxgf(x) can be in S(e), the solution set of minxes px + el(x). It can also be
shown that S(e) is nonempty for all e > 0 so that $(e) is not contained in S.

Note that in the case that the linear program (1) has a unique solution, many of the
results above may be simplified. In particular, Theorems 1 and 4 yield the following.
(See also Remark 4 in [3].)

COROLLARY 1. Let S consist of a single point.2. Iff is differentiable at 2, then 2 is a
Karush-Kuhn-Tucker point of (2) for all sufficiently small e >-0. If, in addition,
S(e *) ( for some e * > O, then S(e) {2} for all sufficiently small e >- O.

Proof. The first conclusion follows directly from Theorem 1. The second follows
from the fact that S- {2} implies that /x(x)= 2 for all x S, so that the Lipschitz
property (10) holds as a consequence of differentiability of f at 2. This part of the
corollary then follows from Theorem 4.

A similar result also holds without assuming uniqueness in (1) if a strict convexity
property is assumed instead.

COROLLARY 2. Iff is strictly convex on some open set containing S and if 2 is the
solution of mingf(x), then S(e)= {2} ]:or all sufficiently small e >0.

Proof. The proof follows from Theorem 3 and the fact that, for e > 0, px + el(x) is
strictly convex and therefore assumes its minimum at not more than one point in S. [-1

Appendix.
LEMMA A. 1. There exists an a > 0 such that

p(x-z(x))=llx-(x)[[ for all x S.

Proof. Obviously the lemma holds trivially when x S or equivalently when
x =/z (x). Suppose now that x S\S and let e be a vector of ones in R n. Then

0 < IIx (x)ll Minimum {6I-e x 6e, AI >- b, plz <- }

Maximum {x(y -v)-0- + bwly -v -p+Arw O,

ey + ev 1, y, v, r, w -> 0}

(by linear programming duality)
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(A.1) Maximum {((px -)+ w(b -Ax)ly -v -p(+A7"w O,

ey + ev l, y, v, (, w >-O}.

((x)(px -ptt(x))+ w(x)(b-ax)

(since 0 ptz(x) and (y(x), v(x), (x), w(x)) is a
solution to the maximum problem)

<-(x)p(x-(x))

(since w(x)>--O, and b-Ax 0).

Thus ((x)> 0 for x SS, and in addition

(A.2) l(x)
p(x-(x))

for x S$2
I1-()11

But since (x) may be chosen as a component of a solution vertex of the linear program
(A. 1) and since the feasible region of (A. 1) is independent of x and has a finite number
of vertices, (x) for x SS may be bounded as follows

1
((x) -<--- := maximum {srl(y, v, sr, w) is a vertex of y v -p( +ATW O,

ey + ev l, y,v,r,w=>0}.

This bound on r(x) together with (A.2) establishes the lemma. 71
LEMMA A.2. If 2 S and x R then

[[t (x) 2[[ <- 211x 211.
Proof.

I1 (x)- xll <--11 (x)- xll + I[x

I1 xll + IIx 11 (since (x) is the projection of x on )

LZMMA A.3. Let the Lipschitz condition (10) hoM, let Y S B be a solution
mingn[(x) with the ball B B (Y, [or some g> O. Then for llx (x)ll 6 and
xSB(Y, 6/2)

(a) e(f($)-f(x))<p(x-(x)) [or x U(x) and e [0, a/K)

and

(b) e(f(2)-f(x))<=p(x-(x)) for e 6[0, a/K].

Proof. Let x S B(2, 6/2) and IIx -t(x)ll<--6; then

([()-(x)) _-< ([( (x))-f(x))

gll(x)-xll

<ll(x)-xll
<-p(x -(x))

(since by Lemma A.2 tz(x)eSfqB(2, 6))

(by (10) and

(for e [0, c/K) and x # t (x)),

(by Lemma A. 1).

This establishes part (a) of the lemma. Part (b) follows by changing the strict inequality
in the above string of inequalities to an inequality for the case of e [0, a/K]. 71
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NULL CONTROLLABILITY OF,NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS*

ROBERT G. UNDERWOOD’ AND DONALD F. YOUNG:I:

Abstract. For various types of linear and nonlinear functional differential equations null controllability
(local or global) is established. Previously it was believed that for a broad class of nonlinear equations local
null controllability was implied by the null controllability of the linear approximation. Such an implication
does not hold in this generality, as is demonstrated by a counterexample in the present paper. However, under
certain conditions on the system structure, one is able to establish this type of relationship. For equations of
certain other forms (both linear and nonlinear), null controllability can be deduced from the null control-
lability of related equations with the delays removed. The systems considered include those not only with
delays in the state but also with delays in the control.

1. Introduction. In this paper we shall study techniques for establishing null
controllability of linear and nonlinear functional differential equations. The linear case
has been actively studied, as in [1], [2], [7], [9], [13]. However, the nonlinear case has
received little attention in the existing literature. In [12] Weiss considered the null
controllability of nonlinear systems in terms of their linear approximation, in a manner
analogous to the standard approach used for ordinary differential equations [8].
Unfortunately, Weiss’ nonlinear results are incorrect.

In the proof of Theorem 5 in [12], Weiss introduces a parameter c R" into his
control. This approach is essentially the same as the one used for ordinary control
systems (see [8, p. 366]). There, the control u in the nonlinear system is parameterized
by the point : steered by u to the origin for the approximating linear system. Using the
implicit function theorem, one then shows that the mapping which associates with the
corresponding initial condition of the nonlinear system is an open mapping in a
neighborhood of the origin. For functional differential equations, however, this
argument will not work, because it would involve establishing a linear homeomorphism
from the parameter space R" onto the space of initial conditions, which is infinite
dimensional. It is precisely such an error that Weiss makes in proving Theorem 5 of
[12].

The infinite dimensionality of the state space is what makes investigating null
controllability of nonlinear functional differential equations difficult. In order to
circumvent these difficulties in this paper, the problem is reduced to one involving
ordinary differential equations. We consider two situations in which such a reduction
can be of use. One of these is a situation in which the difference between a nonlinear
control system and its linear approximation is equivalent to one or several ordinary
differential equations. (Throughout this paper, "linear approximation" will always
mean the linear approximation about the point x 0, u 0.) We apply to this difference
(the solution of which we label z) a parametrization argument in the spirit of_J8]. The
parameters are the initial conditions for the linear approximation. We shall show that
the mapping Zto has its Fr6chet derivative equal to zero. This will imply that the
mapping x is an open mapping (where x is the solution of the nonlinear control
system). Critical to these arguments is the ability to "backout" the z equation from the
origin. In the second situation which we consider, a control system involving functional
differential equations can be converted into an ordinary differential control system by

* Received by the editors April 16, 1979.
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making a "cascading" substitution. What is meant by this will become clear in 3. Also
in 3 we consider certain situations in which lags appear in the control.

A counterexample to Theorem 5 in [12] is the system

21(t) x2(t) + xl(t- 1)2 + x2(t- 1),
(1.1)

22(t)=u(t).

The linear approximation is

21(t)=x2(t),
(1.2)

A2(t) u(t)

which is easily seen to be null controllable. (Controllability results used throughout this
paper for ordinary differential equations can be found in [8].) However, (1.1) is not
locally null controllable to the zero function in C([-1, 0], R 2) on any interval. To see
this, suppose [to, tl] is an interval of length greater than one, suppose b C([-1, 0], R 2)
and suppose u L2([t0, tl], R) steers x b to xtl 0 for the system (1.1). Let x be the
corresponding trajectory. Then x(t) x2(t) 0 for t 1 _-< -<_ tl, and so for tl 2 _-< _-<

tl 1 the first of the two equations gives Xl(t)2 + x2(t)2 0. Therefore, x(t) x2(t) 0
for tl 2 -< -< tl 1. Continuing in this way, we conclude that x(t) 0 for to- 1 =< -< tl.
In particular, b 0. Thus, the only function that can be steered to 0 C([- 1, 0], R 2) at
time tl for (1.1) is the zero function.

For function space controllability, results obtained must depend on the particular
state space chosen (e.g. [1], [2], [9]). In our state space, C([-r, 0], Rn), one could expect
only denseness results when considering complete controllability (see [1, p. 611]).
However, we deal in this paper only with null controllability; for nonlinear systems this
is the appropriate approach (cf. [8, 6.1]).

We shall’consider null controllability only on a specified time interval [to, t], rather
than on arbitrary intervals of length greater than the lag, as in [1]. Since most of our
results depend so heavily on the length of the interval, there is no real advantage to
considering arbitrary intervals here.

1.1. Notation. Suppose p and q are positive integers and is any interval of the
real line R. Denote by Rp the space of real p-tuples With the usual Euclidean norm. The
norm in R p will be denoted by l" I, and the norm in any other Banach space will be
denoted by I1" I[. The space of real p x q matrices with the operator norm will be denoted
by d//oq. Vectors in R will be identified with p x 1 matrices. However, occasionally for
compactness such vectors will be written as rows when no ambiguity will result. The
space of bounded linear transformations from X to Y will be denoted by (X, Y),
whereX and Y are Banach spaces, and ifX Y we shall write (X) for (X, X). The
identity operator on any Banach space will be denoted by L The usual Lebesgue space
of square-integrable (equivalence classes of) functions from to R will be denoted by
L2(, Ro). Here, and throughout this paper, any statements involving measures are
understood to refer to Lebesgue measure. IfX is a metric space, C(, X) represents the
set of continuous functions from to X. If is compact and X is a Banach space, then
C(, X) is a Banach space with the supremum norm. If r >0 and It r, t] c for some
real number and if x .C(, RP), then x, denotes the element of C([-r, 0], R) given
by x,(O) x(t + 0), -r <-_ 0 O. (It will always be clear from context whether such a
subscript is being used as just noted or is being used to indicate the component of a
vector.) All vector spaces will be over the field of real numbers.

If[ is any continuous function from a subset of a Banach space U to a Banach space
V and if f has a Fr6chet derivative at x U, then this derivative will be denoted by
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Dr(x). If U is the Cartesian product of several Banach spaces, then the partial
derivative with respect to the ith variable will be denoted by Dif(x).

Throughout the remainder of this paper, r will be a positive real number; n and rn
will be positive integers; and to and tl will be real numbers, with tl-to> r. For any

[to- r, tl], max {to, t} will be denoted by a(t). Denote the interval [to, tl] by J and the
Banach space C([-r, 0], R") by X. The space of-admissible controls will always be
L2(J, Rm).

2. Techniques using the implicit function theorem. LetN c R be an open convex
set containing the origin. In this section we shall consider control systems of the form

(2.1) Yc(t) f(t, xt; u(t)) + L(t, x,) + C(t)u(t)

where C: J --> ///n,, is square-integrab!e and where f: J C([-r, 0], N) R" + R" and
L: J xX-R satisfy certain assumptions to be described. The technical assumptions
needed on the nonlinear term f are the following:

(A1)
(A2)
(A3)

(2.2)

f(t, .,. is continuously differentiable for each t.
f(., , w) is measurable for all and w.
For each compact set K cN there exists an integrable function MI:J-->
[0, oo) and square-integrable functions Mr,.: J [0, oo), 2, 3, such that

IlD2f(t, , w)ll<=M(t)+M2(t)lw[,
(2.3) [ID3f(t, , w)ll<=M3(t)

for all and w and all C([-r, 0], K).
We also assume that xt 0, u 0 is a critical point of the system (2.1):

(A4) f(t, 0, 0)= 0 for all t.
The technical assumptions on the linear term L are as follows:

(A5) L(t, (X, R) for each t.
(A6) L(., ) is measurable for each $.
(A7) There exists an integrable function M4: J-+ [0, oo) such that

(2.4) IIL(t,’)ll M4(t)
for all t.

Assumption (A8) below gives an important special relationship between f and L.
This relationship is utilized in the "backing out" argument (for the interpretation of this
phrase, cf. [8, pp. 4-11]) involved in the proof of Theorem 2.7, when the implicit
function theorem is applied to the difference between system (2.1) and its linear
approximation. It makes possible the use of functions f specialized enough for the
backing out process while providing greater generality by the inclusion of L.

By the Riesz representation theorem, there exists a unique function r/" J
I-r, 0]-->///,, such that for each t.eJ, r/(t,.) is of.bounded variation on I-r, 0], is
left-continuous on (-r, 0) and satisfies r/(t, 0)= 0, and such that L(t, )=
r[dort(t, 0)] (0) for all e J, e X. With r/(t, 0) as described, our assumption relating]"
and L is the following:

(A8) For each and 0, the range of f is contained in the null space of rt(t, 0).
Throughout this section, assumptions (A1)-(A8) will always be in force regarding f

and L in (2.1). For emphasis, we shall reiterate them in the statements of the theorems.

2.1. The basic approach as applied to one general class of null controllable
systems. If F: J x C([-r, 0], N) x R --> R" satisfies (A1)-(A4), then for the control
system

(2.5) (t) F(t, x,, u(t)),
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(A1)-(A8) hold with L 0, C 0 and f= F. On the other hand, if we denote the
right-hand side of (2.1) by F(t, x,, u(t)), then it is easily seen that F satisfies (A1)-(A4).
Thus, without further assumptions on the structure of the right-hand side of (2.1), there
would be no point in considering (2.1) separately from (2.5). It is precisely because we
wish to make sure further assumptions that we consider (2.1) in the form as given.

With additional requirements on the structure of the right-hand side of (2.1), (2.1)
will properly be a special case of (2.5). We now make a tew observations and give some
definitions regarding the general system (2.5), where F is assumed to satisfy (A1)-(A4).

A solution of (2.5) on [to-r, ], where (to, tl], is by definition an absolutely
continuous function x" [to-r, ]R such that (2.5) holds almost everywhere on J.
Thus, if x is such a solution, then F(t, x,, u(t)) must be integrable. In order to justify the
definitions of certain integral operators to be given later, we shall establish this
integrability under the more general assumption that x is any continuous mapping from
[to-r, tl] to N and that u L2(j, R"). Under this assumption, there exists a compact,
convex set K cN containing the origin such that x(t) K, to- r <= <= tl. For this K, let
M1 and M3 be as in (A3) (as regards F). Then for all J, 4 C([-r, 0], K), w R m, we
have

(2.6) IF(t, , w)l <--M(t)llll/M3(t)lwl.

This is easily established using (2.2), (2.3) and the mean value theorem (which requires
the convexity of K). It follows from (2.6) that F(t, xt, u(t)) is an integrable function of t.
(The required measurability is easily established using standard results in [10].)

For any u L2(J, R"), 4 C([-r, 0], N) and (to, q], there exists at most one
solution of (2.5) on It0- r, ] satisfying the initial condition x b. This can be proved by
using (2.2) and standard Gronwall type arguments.

If for some (to, t] and some u L2(J, R"), (2.5) has a solution x on [to- r, ],
then we say that x is a tra]ectory on [to-r, ] corresponding to the control u. If x also
satisfies the initial conditionx b, then we say that x is the trajectory corresponding to
u and b. If x is the trajectory on [to- r, ] corresponding to u and b and if x if, then we
say that u steers 4 to at time . We shall say that (2.5) is (globally) null controllable on
[to, ] if for every b X there exists a control u which steers b to 0 X at time . We
shall say that (2.5) is locally null controllable on [to, ] if such a u exists for each b in
some open neighborhood of the origin in X.

Let A(t,. D2f(t, 0, 0) and B(t) D3f(t, 0, 0). Then the linear approximation to
(2.1) is

(2.7) Yc(t)=A(t, x)+L(t, xt)+(B(t)+C(t))u(t)

which itself is of the form (2.5), with F(t, 4, w)=A(t, )+L(t, 4)+(B(t)+C(t))w
satisfying (A1)-(A4). (Note that the measurability of A (t, b) in t and the measurability
of B(t) follow easily from the measurability of f(t, , w) in and the definition of
Fr6chet derivative.) The following theorem gives one criterion on the structure of (2.1)
which makes it possible to deduce the local null controllability of (2.1) from the null
controllability of (2.7). The integer/" [1, n] is fixed. For any x R ", we shall let l-[xX
denote the projection of x onto its first components and let IIx denote the projection
of x onto its last n -] components, and we shall write x (x , x), where x IIx and
x2= I/x. Of course if/" n, then IIx is vacaous and in the notation x (x , x) the x
entry is vacuous. Define I" x - C([-r, 0], R) and I: X- C([-r, 0], R-) by (I’I4)
(0) I-I,tb(O), i= 1, 2.

THZORM 2.1. Let (A1)-(A8) hoM. Suppose q-to> 3r, and suppose them exist

functions fl" J x R x C([-r, 0], R "-) x R" -+ R and /2: J x R"- x R"* -+ R"- such
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that

(2.8) f(t, , W)-- (fl(t, IIi(0), 1-I2, w), f2(t, H2(0), w))

for all (t, , w) in the domain off. Then the null controllability of (2.7) on [to, tl-2r]
implies the local null controllability of (2.1) on [to, tl].

This theorem will be proven as a corollary to Theorem 2.7. Note that under the
hypotheses of Theorem 2.1, (2.1) takes the form

l(t) f(t, xl(t), X 2,, u(t))+ Lx(t, x,) + Cl(t)u(t),
(2.9)

2(t)= f2(t, x2(t), u(t))+L2(t, x,)+C2(t)u(t),

where L(t, &)= (Ll(t, ), L2(t, )) and C(t)w=(Cl(t)w, C2(t)w) for all teJ, CeX,
wR".

The simplest case of (2.9) is when /" n and [ is independent of w, so that
[(t, b, w)=/l(t, b (0)) (suppressing the third and fourth arguments of/l in (2.8)). In this
situation, (2.9) takes the form

(2.10) (t) fx(t, x(t)) + L(t, xt) + C(t)u(t).

Besides Theorem 2.1, two other theorems of a similar nature will be proven as
corollaries to Theorem 2.7, and corollaries relating to further special cases of (2.1) are
possible. Theorem 2.9 relates specifically to system (2.10).

The reason for choosing to give special attention to system (2.9) in Theorem 2.1 is
that (2.9) retains some of the simplicity of (2.10) while at the same time illustrating some
of the more complex situations that can arise. Theorem 2.7 is the main result of the
paper in so far as it provides a general theoretical viewpoint, but it is cumbersome to
apply. In terms of practical applications its corollaries, Theorems 2.1, 2.8 and 2.9, are of
primary interest. Before proceeding further with the general case of Theorem 2.7, we
shall discuss system (2.10) in some detail, since (2.10) illustrates well the reasons for the
particular form of system (2.1) and the significance of the hypotheses in Theorem 2.7.

The linear approximation to (2.10) with y in place of the state variable is

(2.11) (t)=A(t)y(t)+L(t, yt)+C(t)u(t),

where A(t) D2f(t, 0). As applied to (2.10), the central idea of the proof of Theorem
2.7 is to subtract from (2.10) its linear approximation (2.11) and then to drop the L
term, giving the ordinary differential equation

(2.12) (t) =/(t, y(t)+z(t))-A(t)y(t),

where z =x-y. Suppose a control u steers y to 0sX at time tl for system (2.11).
Substituting the u and y of (2.11) into (2.12) and solving the "final-value problem"
consisting of (2.12) with the initial (or in this case, final) condition Z(tl)= 0 gives the
function z(t) which satisfies the condition ztl=O, due to the fact that the origin in
z-space is a critical point of (2.12) for tl- r -< -< ta. (Note that y,1 0.) For [It,ll and Ilull
sufficiently small, the function z(t) will exist for to=< t=< tx. With z(t) existing on this
interval, and with z(O) set equal to Z(to) for -r =< 0 =< 0, we can conclude from (A8) that
L(t, z,)=0 for to=< t=< tx. Adding the term L(t, z,) to the right-hand side of (2.12),
adding (2.11) to the result and setting x y + z then gives (2.10). Thus, the control u
which steers y to 0sX at time ta for system (2.11) (we shall show that this control
can be chosen in a bounded linear way depending on ,) also steers b +z to 0 s X at
time tl for system (2.10). By an argument using the implicit function theorem, we are
able to show that if the functions cover a neighborhood of the origin in X, then so do
the functions b. Hence, the null controllability of (2.11) on [to, tl] implies the local null
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controllability of (2.10) on [to, tl]. The details of this argument are contained (somewhat
more abstractly) in the proof of Theorem 2.7. Note that for the special case (2.10) we
only require null controllability of the linear approximation on [to, tx] instead of on
[to, tx--2r] as is required in Theorem 2.1.

We have seen that the essence of proving the local null controllability of (2.10) is to
"back out of the origin" the difference between (2.10) and (2.11), using the ordinary
differential equation (2.12). Here assumption (A8) is necessary in order to drop the
term L(t, zt). On the other hand, if the term L(t, xt) were not present in (2.10) (in which
case we would have L 0 and (A8) would automatically be satisfied) then (2.10) would
simply be an ordinary differential equation and the well-known results from [8] would
be applicable. Now the reason for the particular form in which (2.1) is written, the
significance of assumption (A8) and the need for some type of special structure of the
function f in (2.1) should be clear.

In applications of Theorem 2.7 to more complex situations, the "backing-out"
system might not be just a simple ordinary differential equation. For example, the
"backing-out" system for (2.9) analogous to (2.12) is (2.35).

We now show how the techniques we have discussed can be applied to two
examples.

Example 1. Consider the system

21(t) Xl(t)2 + x2(t) + x2(t- 1)2,
(2.13) 22(t) x3(t-- 1)-+- x2(t)2 +sin u(t),

.3(t) x3(t)+ x3(t- 1)+ u(t).

This system may be written in the form of (2.1), with

L(t, 4,) [ 0 1(-)
(0) +(-1)

f(t, , w)=
(o)+ (o) +2(-1)212(0)2 +sin w

0

C(t)

It is readily verified that (A1)-(A8) are satisfied. Assuming we have taken our interval
[to, tl] to be of length greater than 3, the hypotheses of Theorem 2.1 are satisfied, with

fl 1(0)2 -[- 2(0) -[- 2(-- 1)2,

f [(0)+ sin w].
The linear approximation to (2.13) is

21(t)=xz(t),

,2(t) X3(t-- 1)+ u(t),

.l3(t) X3(/) + x3(t 1) + u(t).

This system is null controllable on [to, ] for any > to + 1, by [1, Corollary 3.3]. Thus, we
can conclude from Theorem 2.1 that (2.13) is locally null controllable on [to, tx] for any
ta>to+3.
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Example 2. Consider the system

(2.14)
.l(t) Xl(t)2 + x2(t) + x2(t- 1),

2(t)=u(t).

This system may be written in the form of (2.10), with

+ 1
0

f(t,x)=
LOJ

The linear approximation to (2.14) is

:fl(t) x2(t) + x2(t- 1),

Yc2(t)= u(t).

This system is null controllable on [to, to + 2 + e] for any e >0. In fact, a control u
steering Xto 4/ to 0X at time to + 2 + e can be calculated directly by assuming
x2(t)=a(t-to)2+b(t-to)+t2(O) for to <- <= to + e and requiring x2(t) =0 for to+e <-_
-< to + 2 + e and Xl(t) 0 for to + 1 + e --< --< to + 2 + e. It now follows from our remarks

above concerning system (2.10) that (2.14) is locally null controllable on [to, ta] for any
tl>to+2.

2.2. The underlying concepts. The main result of this subsection is Theorem 2.7.
Although the hypotheses are somewhat abstract, the significance of this theorem can be
appreciated by seeing how the theorem is applied to the special cases in Theorems 2.1,
2.8 and 2.9. Also, Theorem 2.7 can itself be applied directly to systems more general
than those covered by these particular corollaries, as we shall see by the example
following Theorem 2.9. Before presenting Theorem 2.7, we develop some preliminary
results.

For Ilull and IIxll sufficiently small, the existence of a solution x on [to- r, t] to (2.1)
is established by Proposition 2.5. More generally, we consider the existence of a
solution on [to-r, tl] to the initial value problem

Yc(t) F(t, xt, u(t)),
(2.15)

Xto (,

where F: J C([-r, 0], N) R" -R" satisfies (A1)-(A4).
DEFINITION 2.2. Let F: J x C([-r, 0], N) x R R satisfy (A1)-(A4), let

A (t, D2F(t, 0, 0) and let B (t) DaF(t, 0, 0), and consider the initial value problem
(2.15) and its linear approximation:

(t) A(t, x,) + B(t)u(t),
(2.16)

Xto-" (.

Define functions p and pc on subsets of X xL2(J, R) as follows. Let p(d, u)
C([t0- r, t], R) b the (necessarily unique) solution of (2.15) on [to- r, t] for any pair
(d, u) such that that solution exists, and let pc(d, u) C([t0- r, t], R) b the solution
of (2.16) on [to-r, t] for any pair (d, u) such that that solution exists.

Although p and p depend on F,. we have not indicated such dependence in the
notation because in any particular context where p and pc are needed, F will be fixed.
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It will be convenient to treat (2.15) in integrated form and consider it as an operator
equation. Define Z: X --> C([t0 r, tl], R n) by

to) ifto-r<=t<to,
(2.17) (Zb)(t)=

&(0) if to<=t<=t.
Then x is a solution of (2.15) on [to-r, tl] if and only if it satisfies

(t)

(2.18) x(t)= F(s,x,u(s))ds+(Zc)(t) (to-r<-t<-_q).
to

(Recall that we use the notation a(t)=max {to, t}.)
LEMMA 2.3. Let F: J x C(E-r, 0], N) x R" -R satisfy (A1)-(A4), and define

H: C([to- r, tl], N) L2(J, R’)--> C(Eto- r, tl], R) by

(2.19) H(x, u)(t) F(s, Xs, u(s)) ds (to- r <- <- t).
o

Then H is continuously differentiable, and
,(t)

(2.20) (DH(O, 0)x)(t)= D2F(s, O, O)xs ds,
"to

(2.21) (D2H(0, O)u)(t)= DF(s, 0, O)u(s) ds
o

hold for all x C([to- r, tl], R"), u 6 L2(j, R’) and [to- r, tl].
Since most of the computations involved in proving this lemma are quite standard,

we shall not give a complete proof. The formulas for DtH and D2H are

(DH(, a)x)(t)= DzF(s, s, ff(s))xs ds

and

(DzH(Y, a)u)(t)= D3F(s, X, a(s))u(s) ds,
to

where [to- r, tl], C([to- r, ta], N), x C([t0- r, q], R"), and u, a LZ(J, R").
The use of the dominated convergence theorem involved in proving these two formulas
is justified by (A3). At certain points in the proof of the lemma, arguments involving
extraction of subsequences are ,necessary. For example, in proving the continuity of
Dart, one shows that lim(x,)-(,a)DH(x, u)= DIH(Y, ) by showing that

lim IIOf(s, Xs, u(s))-D2F(s, , ti(s))[[ dx O.(2.22)

To prove (2.22), suppose by way of contradiction that there existed an e >0 and
sequences x - , u fi such that

I,’ D2F(s, s, a(s))[I ds eIIOzF(s, x,,i ui(s)) =>

for ] 1, 2,.... Then there exists a subsequence {i} of {u i} and a corresponding
subsequence {i} of {xi} such that 6i(t)--> a(t) a.e. and {ti} is dominated by a function
v s L2(J, R) (see [10, p. 66])..Then by the.dominated convergence theorem (justified by
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(2.2)), we have

tl
lim IID2F(s, xs,"j (J(s)) D2F(s, , a(s))ll as o

giving the desired contradiction and establishing (2.22). The continuity of D2H is
established similarly. We also note that the measurability of all integrands involved in
the proof can be verified by standard techniques (see, e.g., [10]).

LEMMA 2.4. Let A J X Rn satisfy (A5)-(A7), and define K
3(C([to-r, tl], R")) by

a(t)

(Kx)(t)=. A(s,x) ds (to-r<-t<-tl).
o

Then (1 K)-1 exists.

Proof. It follows from (2.4) (with A in place of L) that {Kx: x C([t0- r, tl], R"),
Ilxll-<- 1} is equicontinuous. HenceK is a compact operator. For fixed b X, any solution
of the initial value problem

Yc(t) A(t, xt),

Xto (

is unique. Therefore, the unique solution of x Kx is x 0. It now follows by the
Fredholm alternative [11, p. 103], that (I-K)-1 exists.

If A is as in Lemma 2.4 and B: J - J//n, is square-integrable, then it follows from
Lemma 2.4 that, for any b X and any u L2(J, R"), the initial value problem

Yc(t) A(t, xt) + B(t)u(t),

Xto (

has a unique solution on [to-r, t].
If F and H are as in Lemma 2.3 and pc is as in Definition 2.2, then it follows from

Lemma 2.4 that (I D1H(O, 0))-1 exists and that pc is a continuous bilinear function on
XxL2(J,R’).

Using the operator H defined in Lemma 2.3, (2.18) can be rewritten as

(2.23) x H(x, u) + Zck.

Note that by (A4), H(0, 0)= 0.
PROPOSITION 2.5. Suppose F: J C([-r, 0], N) R" R satisfies (A1)-(A4),

let p be as given in Definition 2.2, and let H" C([to-r, tl],N)xL(J,R’)
C([to-r, tl], R n) be given by

a(t)

H(x, u)(t) F(s, x, u(s)) ds (to- r <=t <- tl).
o

Then there exist open neighborhoods N1 and N2 of the origin in X and Lz(J,
respectively, such that, ]:or each ck N1 and each u N2, (2.23) has the unique solution
x p(ck, u), and such that p is continuously differentiable on N1

Proof. Define t71(x, u, 4) x H(x, u) Zck. Then/-(0, 0, 0) 0,/- is continu-
ously differentiable on C([t0- r, tl], N) Lz(J, R’) X, and D1/-(0, 0, 0)
I-D1H(O, 0). Since (I-D1H(O, 0))-1 exists, it follows by the implicit function
theorem that there exists a continuously differentiable function ,6 defined on an open
neighborhood 2Q of the origin in X L2(J, R’) such that/-(/(4, u), u, 4) 0 for all
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(, u)N. For each such pair (, u), x =/(, u) satisfies (2.23), or equivalently x
satisfies

(2.24)
(t)=F(t,x,,u(t)) (tJ a.e.)

By uniqueness of solutions to (2.24), we conclude that x =/(, u) is the unique solution
of (2.23) and that/(, u)= p($, u) for all (, u)/Q. Choosing N1 and N2 such that
N1 N2 cN completes the proof.

For ordinary linear control systems, it is well known [6, p. 92] that if the system is
null controllable, then a control which. "does the job" can be chosen depending on the
initial condition in a bounded, linear manner. We now prove an analogous result
pertaining to system (2.25) below.

LEMMA 2.6: Let A: J X--> R" satisfy (A5)-(A7), let B: J-> ln,, be square-
integrable, and let p be as in Definition 2.2, where F(t, , w)=A (t, ) + B(t)w. Suppose
the system

(2.25) (t) A(t, x,) + B(t)u(t)

is null controllable on [to, ] for some (to + r, tl], and let

U {u L2(j, R’)" u(t) 0 ]:or <= t <-_ tl}.

Then them exists a bounded, linear mapping S" X U such that/’or each X and ]:or- r =< _-< t, p(, S&)(t)= 0.
Proof. For all x s C([to- r, tl], R"), u s L2(j, R’), s [to- r, tl], define (Kx)(t),f(t)a(s, xs) ds and (Gu)(t)-f"(t)B(s)u(s)ds. Then Ks(C([to-r, tl],R )),Jto Jto

GYd(L2(j,R’), C([to-r, tl],R")) and the integrated form of (2.25) with initial
condition x is

(2.26) x Kx + Gu +Z
where Z is given by (2.17). The operator (l-K)- exists, by Lemma 2.4, and
p(, u) (1-K)-X(Gu +Z). Note that U is closed in L2(j, R’). Define P (X) by
(P)(O)=((1-K)-IZ)(+O), -r<-O<-O, and define Qe9(U,X) by (Qu)(O)=
((I-K)-IGu)( + 0), :-r<= 0 <=0. The statement that (2.25) is null controllable on [to, ]
is equivalent to the statement that for every eX there exists a u U such that
Qu +PC 0. This in turn is equivalent to the statement that

(2.27) P(X) Q(U).

Thus, (2.27) holds by hypothesis.
Let ag" be the null space of Q, denote the orthogonal complement of Ac in U by ag’+/-

and let Qo: Ac- --> Q(U) be the restriction of Q to Azx. Then QI exists and Qa is linear
but not necessarily bounded (since Q(U) is not necessarily closed in X). Referring to
(2.27), we define S: X --> U byS -QIP. Then p(, S)( + 0)= (QS +PC)(0)=
O, X,-r<-O<-O. SinceS U, it follows that p(, S)(t)=Ofor-r<-t<-tl. Tosee
that S is bounded, let {.} be a convergent sequence in X such that {S.} converges in
U, and let lim._.oo ., u lim._. S.. Since A;+/- is closed in U, u a+/- and
Qu +PC lim,._.oo (QSn +PC.) 0. Thus, u -QIP S, and therefore by the
closed graph theorem, S is bounded, and this completes the proof.

In Theorem 2.1, certain criteria were given regarding the structure of f. The
following two hypotheses, (H1) and (H2), generalize these criteria. Here A(t, .)-
DEf(t, O, 0), B(t) D3f(t, 0, 0) and e (to + r, tl].
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(H1) For any uL2(j,R
C([to- r, tl], N) satisfying y(t) 0 for r -< t -< tl, there exists no solution z
of

(2.28) .(t) =f(t, y, + z,, u(t))-A(t, y,)-B(t)u(t)

on [to- r, tl] which satisfies both z(q) 0 and ztl 0.
(H2) The only solution z C([to- r, tl], R ") of

2(t)=A(t, zt) (to <=t<=t a.e.)
(2.29)

Z(tl) 0

which is constant on [to-r, to] is z -0.
Note that for fixed yC([to-r, q],N), for fixed u L2(J,R

C([t0 r, tx], R n) of sufficiently small norm, the right-hand side of (2.28) is an integrable
function of on [to, tx].

THZOM 2.7. Let (A1)-(A8) hold. Let A(t,.)=D2f(t,O,O) and B(t)=
D3f(t, 0, 0), so that the linear approximation to (2.1) is

(2.30) Yc(t)=A(t, xt)+L(t, xt)+(B(t)+C(t))u(t).

Let (to + r, tx], suppose (H1) holds for this and suppose (H2) holds. Then the null
controllability of (2.30) on [to, ] implies the local null controllability o] (2.1) on [to, tx].

Proof. Let (2.30) be null controllable. Define F" J x C([-r, 0], N) x R" - R" by
F(t, ok, w)=f(t, c, w)+L(t, ck)+C(t)w, and for this F, let p and p be as given in
Definition 2.2. Let N1 and N2 be open neighborhoods of the origin in X and L2(J, R"),
respectively, as in Proposition 2.5, and let U {u L2(J, R")’u(t)- 0 for -< _-< tx}.
By Lemma 2.6, there exists an operator S(X, U) such that, for all bX
and for -r<-t<-q, pL(4,Sqb)(t)=O. Define T=pL(b, Sqb). Then T
(X, C([to- r, tx], Rn)). Define M" 1 x2 C([to- r,/1], R n) by

(2.31) M(z, 0)(t) [f(s, (T)s + zs, (S)(s))-A(s, (Tb))

-B(s)(S)(s)]ds (to-r<-t<-ta),

where 1 and 2 are open balls around the origin in C([to-r, ta],R ) and X,
respectively, such that + T(/2) c C([to- r, tl], N). We claim that M is continuously
ditierentiable and that D2M(0, 0)= 0.

To verify this claim, define H: C([to- r, t], N) x L2(j, R"*) C([to- r, tl], R ") by
(t)H(x, u)(t) $to f(s, x, u(s)) ds, o- r <-_ t <- tl, and let K DIH(0, 0) and G

D2H(0, 0). Then referring to (2.20) and (2.21), we find that (2.31) can be written as

M(z, )(t)= (H(T + z, $p)-KT-GS)(t)-(H(T + z, Sg/)-KT-GS)(q),

so the continuous differentiability of M now follows from Lemma 2.3 and the chain
rule. Also, for all ff X, [to- r,

(D2M(0, 0))(t) (DH(O, O)T +D2H(O, 0)$ KT G$)(t)

(DH(0, O)T +D2H(O, O)S KT GS)(q) O,

which shows that D2M(0, 0)= 0.
.(t)The operator D1M(0,0) is given by (DM(O,O)z)(t)=tl A(s,z)ds, so

DM(O, 0) is a compact operator, by the same type of argument as used in the proof of
Lemma 2.4. It follows from (H2) that z DM(O, O)z has only the solution z 0. Thus,
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by the Fredholm alternative, (I-DIM(O, 0))-1 exists. Since M(0, 0)= 0, we can now
apply the implicit function theorem to solve the equation z M(z, if): there exists an
open ball N3 about the origin in X and a continuously differentiable function ’:N3
C([to-r, tl],R n) such that ’(0)=0 and ’()=M(r(ff), ) for all N3. We may
and shall assume that N3 is chosen so that for any ff N3 we have SO N2 and

For fixed e N, let z ’(), u $, and y T. Since z M(z, ), (2.28) holds
for to <_- _-< tl a.e., z is constant on [to- r, to] and z(tl) O. By (H1), zt = 0. Let (t, ) be
as in (A8) and denote by the intersection of the null spaces of (t, ), e ], -r _-< <_- 0.
By (A8), the ranges of f, A and B are contained in . Since z(tl)= 0, it follows from
(2.28) that z(t)e for all t.e], and since z is constant on [to-r, to], z(t)e for
to- r _<- t _<- tl. Thus, from (2.28) we get

(2.32) 2(t)=f(t, yt+zt, u(t))+L(t, z,)-A(t, yt)-B(t)u(t) (to <- <- tl a.e.).

Since y pz:(b, u), we have

(2.33) (t)=A(t, yt)+L(t, yt)+(B(t)+C(t))u(t) (to<=t<=tl a.e.).

Letting x =y+z and adding (2.32) and (2.33) gives (2.1). Since x=yto+Zto
+ r()o, we conclude that x p( + r(p)to, S). Thus, SO steers + r(o)t to x,

yl +z 0 at time tl for the system (2.1).
Define w" N3--> X by

(2.34) w(O) + r(o).
We claim that the range of o covers a neighborhood of the origin in X. To see this,
differentiate ’(4) M(r(), ) at ff 0, giving D’(0) D1M(O, 0)D’(0) +D2M(0, 0).
Since D2M(0, 0)= 0 and since (I-DIM(O, 0))-1 exists, we get D((0)= 0. Now by
(2.34) and the chain rule, Dw(O) L Furthermore o(0) 0, so by the implicit function
theorem, the claim follows. For each e N3, SO steers w() to 0 e X at time tl for (2.1),
and this proves the theorem.

Proof of Theorem 2.1. For system (2.9), equation (2.28) takes the form

.l(t)=fl(t yl(t)+zl(t y2 2 2 (t)u(t),+z,, u(t))-Al(t)yl(t)-O(t, y,
(2.35)

z’2(t) f2(t, y2(t)+ z2(t), u(t))-A2(t)y2(t)-B2(t)u(t)
and (2.29) takes the form

zzl(t)= Al(t)zl(t)+ O(t, z ,) (to --< -< tl a.e.)

(2.36) (t) A.(t)zZ(t)

z(tl) 0

where Al(t)=D2fl(t, O, O, 0), O(t, ") D3fl(t, 0, 0, O),Bl(t)=Dafl(t, O, O, 0), A(t)
D.f2(t, 0, 0), and B(t)= D3f(t, O, 0).

Clearly the only solution of (2.36) on [to-r, tl] which is constant on [to-r, to] is
z(t)-= 0, so (H2) holds. If u(t) 0 for tl-2r<=t<-tl and y(t) 0 for tl-3r<=t<=tl, then
the second equation of (2.35) shows that if z(tl) 0 then z2(t) 0 for tl 2r <= -< tl. We
can then conclude from the first equation of (2.35) that zl(t) 0 for tl r =< <- tl. Hence
(H1) holds, with =tl-2r. By Theorem 2.7, the null controllability of (2.7) on
[to, tl- 2r] implies the local null controllability of (2.1) on [to, tl], completing the proof.

In the above proof, note that we never used the fact that y(t) 0 for tl 3r <- <
tl 2r. The only reason for requiring null controllability of (2.7) on [to, tl 2r] instead of
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just on [to, tl r] was so that we could take u(t) 0 on [ta 2r, tl] in the second equation
of (2.35). Clearly, if ]’z is independent of its third argument, then we need only have
u(t) 0 on [tl-r, tl] and we can take tl- r. Thus, we have the following theorem.

THEOREM 2.8. Let the hypotheses of Theorem 2.1 hold, except require only that
tx- to> 2r, and assume that 2 is independent of its third argument. Then the null
controllability of (2.7) on [to, tx- r] implies the local null controllability of (2.1) on [to,

The following theorem relates to systems such as (2.10).
THEOREM 2.9. Let L: J xX R" satisfy (A5)-(A7) and let C: J l,, be square-

integrable. Let g: J xN x R -R satisfy the following:
(i) g(t, ,. is continuously differentiable for each J.
(ii) g(. x, w) is measurable for all (x, w) N x
(iii) For each compact set K N there exists an integrable functionM J [0, o),

and square integrable functions Mi: J - [0, ), 2, 3, such that

IIDzg(t, x, w)ll_<-M + Mz(t)iwl,
IIO g(t, x, w)ll<-M3(t)

.for all J, w R ", x K.
(iv) g(t, O, O) 0 for all J.

Let q(t, O) be as in (A8) and assume that the range ofg is contained in the null space o]
l(t, O) ]oreach J, 0 [-r, 0]. LetA(t)=Dzg(t, O, O) andB(t)=D3g(t, O, 0). Then the
system

(2.37) (t) g(t, x(t), u(t)) + L(t, xt) + C(t)u(t)

is locally null controllable on [to, ta]/]" either of the following two conditions holds:
(a) ta-to > 2r and the system

(2.38) :(t) A(t)x(t) + L(t, x,) + (B(t) + C(t))u(t)

is null controllable on [to, tl- r], or
(b) g is independent of its third argument and (2.38) is null controllable on [to, ta].
Proof. Note that system (2.37) is in fact of the form (2.1), with [(t, x,, u(t))=

g(t, x(t), u(t)). For system (2.37), equation (2.29) is equivalent to a linear ordinary
differential equation, and it follows easily that (H2) is satisfied. Equation (2.28)
reduces to

.(t) g(t, y(t)+ z(t), u(t))-A(t)y(t)-B(t)u(t).

Assuming that y(t) 0 and u(t) 0 for tl r _-< <= tl and that z(t) 0, we see that
z(t)=0 for tx-r<=t<-tx. Hence, when condition (a) holds, (HI) is satisfied with

t- r. If g is independent of its third argument, it is necessary only to assume that
y(t) 0 for tl- r =< t-< tx and that z(t) 0 in order to conclude that z(t) 0 for
ta-r<-t<-tl. Thus, (H1) is satisfied under condition (b) with = tl. Appealing to
Theorem 2.7, we now get the desired local null controllability of (2.37) under either
condition (a) or (b).

In the following example, Theorem 2.7 is applied directly. None of Theorems 2.1,
2.8 or 2.9 is applicable.

Example 3. Consider the system

(t) xa(/)2 + x2(t) + x2(t- 1)2,
(2.39) ,2(t) sin X3(t-- 1), + X2(t)2 q u(t),

.3(t) X3(t) + X3(t-- 1) + u(t).
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This system is of the form (2.1), with

L(t, b)= 0

3(0) + 3(--1

+(0) + 6(0)+(-,
f(t, 49, w)= sin b3(-1) + b2(0)2

0

Clearly (A1)-(A8) are satisfied. Equations (2.28) and (2.29) take the form

z" l(t) (yl(t)+ z,(t))2 + z2(t)+ (y2(t- 1)+ z(t- 1))2,
(2.40) :/.(t) sin (y3(t- 1) + z3(t-- 1)) + (y2(t) + z(t))- y3(t- 1),

and
3(t) 0

.(t)=z(t),

(2.41)

3(t) 0

respectively.
Suppose [to, tl] is of length greater than 3, and let tl 2. The linear approxima-

tion to (2.39) is

21(t)=xz(t),

2z(t) x3(t- 1)+ u(t),

23(t) x3(t) + xa(t- 1) + u(t)

which is the same as the linear approximation in Example 1. As pointed out there, this
system is null controllable on [to, ] for any > to + 1. Hence, we need only verify that
(HI) and (H2) hold for (2.39).

It is obvious from (2.41) that (H2) holds. To check (HI), suppose y
C([to- 1, tl], R 3) satisfies y(t) 0 for 1 -<_ <- h, and suppose z is a solution of (2.40)
on [to- 1, tl] satisfying Z(tl) 0. Then z3(t) 0 for to =< -< tl, so the second equation of
(2.40) shows that z2(t)= 0 for <-t <= h. Now the first equation of (2.40) shows that
Zl(t) 0, + 1 <= <- h. Hence z(t) 0 for + 1 <- <- tl, which can be rewritten as z, 0.
Thus, (H1) holds, and we can conclude by Theorem 2.7 that (2.39) is locally null
controllable on [to, tl].

System (2.39) can be modified slightly to illustrate a technique of using the control
to "blot out" certain terms, thus reducing a system to a simpler one. This is shown in the
next example. Such a technique is helpful in various situations. It will be used again in
3 to reduce system (3.5) to system (3.3). This same technique is essentially the one

used in the proof of [1, Prop. 3.1].
Example 4. Consider the system

2(t) Xl(t)2 + x2(t) + x2(t- 1)2,
(2.42) 22(t)=sinx3(t-1)+x2(t)2+xl(t-1)2+u(t),

23(t) x3(t) + x3(t-- 1)+ Xl(t- 1)2 + u(t).

If the control t steers b X to 0 eX at time t for the system (2.39) and if is the
corresponding trajectory, then (2.42) is satisfied, with x and u(t)= a(t)-(t- 1)2.
Hence the control u steers 4 to 0 e X at time t for system (2.42). By the results of
Example 3, therefore, we conclude that (2.42) is locally null controllable on any interval
[to, hi of length greater than 3.
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3. Cascading techniques. Application of Theorem 2.7 involves verification of null
controllability of the linear approximation to the system being considered. In making
such verification, Corollary 3.3 in [1] is often useful (e.g. Example 1 of 2.1). In [1 ],
"null controllability" is defined to mean null controllability on arbitrary intervals of
length greater than r. With this definition, [1] gives the definitive result on the null
controllability of systems of the form

k

(3.1) it(t) E Aix(t- ri) + Bu(t).
i=0

In the present paper, however, we are dealing with null controllability on a fixed interval
[to, tl] rather than with null controllability as defined in [1]. Hence, additional results
are desirable, besides those of 1 ], for determining null controllability of linear systems
like (3.1).

One such additional result, which applies to the case where m 1 and b R", is
originally due to Kirillova and Churakova [7]. For the system

(3.2) (t) Ax(t- r) + bu(t)

to be null controllable on every interval [to, tl] of length greater than nr, it is necessary
and sufficient that the matrix [b, Ab, , An-lb] have full rank. An important special
case, for which the stated matrix does have full rank, is the system

,(t) xi+l(t- r) (i 1,..., n- 1)
(3.3)

2n(t)=u(t).

In spite of the simplicity of (3.3), the null controllability of (3.3) actually implies the
sufficiency part of Kirillova and Churakova’s result regarding the general system (3.2).
We shall demonstrate this below. Theorem 3.1, the main result of this section, can be
applied to system (3.3). Hence, sufficiency in Kirillova and Churakova’s result follows
as a special case of our results. Another linear system, more general than (3.3) (and not
included in the systems considered by Kirillova and Churakova), to which Theorem 3.1
will apply is

i(t) aiixi(t) 4- ai,i+ Xi+l(t q) + ai,i+2xi+2(t 2q) +" + ainXn (t (n i)q

(i=l,...,n-1)
(3.4)

Ycn(t)= a,x(t)+ u(t).

Theorem 3.1 applies to nonlinear systems as well as linear. In some cases, null
controllability of a nonlinear system can be determined by using Theorem 3.1 directly,
rather than by first taking the linear approximation. See Example 1 below.

As mentioned above, the null controllability of (3.2) can be checked by_using the
fact that (3.3) is null controllable. To show this, let A 6///n, let b Rn, suppose
tl > to + nr and suppose [b, Ab, , A"-Ib has full rank. By a suitable linear change of
coordinates in R ", (3.2) may be brought to the form

(3.5) z’(t)

0 1 0 0 0

0 1 0

z(t-r)+ u(t)
0 0 1

Oll 012 013 Ol
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where x(t)=Pz(t) for some invertible P E[nn. This follows from the assumed rank
condition [8, pp. 90-91]. Suppose $ X. Then there exists a t L2(j, R) steering $ to
0X at time tl for the system (3.3). Let z be the corresponding trajectory. Then
u(t)=a(t)-alzl(t-r) nzn(t-r) steers $ to 0X at time tl for the system
(3.5). Hence (3.5) is null controllable on [to, tl], and we draw the same conclusion
for (3.2).

Theorem 3.1 extends the situation of system (3.4) in two ways. First, a nonlinear
analogue of (3.4) is considered, and second, the control is allowed to occur in other than
just the final equation. This second extension will be made possible by introducing lags
in the control.

In 2, the definition of niall controllability was given for the system

(3.6) (t) F(t, x,, u(t))

where F, defined on an appropriate domain, satisfied (A1)-(A4). For a system with lags
in the control, we shall need to modify this definition slightly. Let k be a positive integer,
let N be an open convex neighborhood of the origin in R" and let F: J C([-r, 0], N)
Rk’R satisfy (A1)-(A4). Let h ->0 and let hl,. , hk [0, hi, with hi # hj for #/’.
For any u L2(J, R"), define t to be the extension of u to [to-h, tl] which is zero on
[to-h, to). We generalize (3.6) to the control system

(3.7) (t) F(t, xt, (Fu)(t)),

where F: L2(j, R ") L2(j, R k,,) is the operator given by

(3.8) (Fu)(/) (to <-- _-< tl).
(t hk)_]

Just as in the case of (3.6), we say that a control u L2(j, R ") steers 4- X to X at
some time (to, tl] for the system (3.7) if there exists a trajectory x of (3.7) cor-
responding to u, with x b and x q. Define

(3.9) U {u L2(j, R’): u(t) 0 for J f’) [ h, tl]}.

For (to, tl], system (3.7) will be called null controllable on [to, ] if for every b X
there exists a control u U which steers bto 0 X at time . System (3.7) will be called
locally null controllable on [to, ] if such a u exists for each b in some open neighborhood
of the origin in X. Note that in these definitions, if u(t)= 0 were only required for
< -< tl, we could not necessarily guarantee that the trajectory corresponding to u and
b would remain zero on (, tl], due to the lags in the control. This is the reason for giving
the definitions as we have.

In proving Theorem 3.1, we shall need an extension of Proposition 2.5 applicable
to the system (3.7). Define P(4, u) C([to-r, t], R) to be the solution of

it(t) F(t, x,, (ru)(t)),

Xto (

on [to-r, t] for any pair (d, u)X L2(J, R) such that that solution exists. Then
P(d, u) exists for all pairs (d, u) in some open neighborhood of the origin in X
L2(J, Rm), and on this neighborhood, p is continuously differentiable. The proof of
this result is constructed exactly as is the proof of Proposition 2.5, with the operator H
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given by
(t)

H(x, u)(t)= F(s, xs, (ru)(s)) ds.

THEOREM 3.1. Let q > O. For each 1, , n, let ri {0,. , n i}, let Ni c R r,+l

be an open convex set containing the origin, and let gi: Nix R"--> R be continuously
differentiable and satisfy gi(O, O)= O. Assume that rg > 0 ]:or at least one value of i. Let
r=maxriq, suppose tl-to>r+(n-1)q, and suppose that the ordinary differential
control system

(3.10) i-- gi(Yi, Yi+, Yi+r,, U) (i 1,’’’, n)

is locally null controllable (in the pointwise sense usual for such systems) on [to, ta-r-
(n 1)q]. Then the control system

(3.11) Yc,(t)- g,(x,(t),X,+l(t-q), ,x,+n(t-rq), a(t-(n-i)q)) (i=l,...,n)

is locally null controllable on [to, tl] in the sense defined for system (3.7).
Note. It should be clear that for some F satisfying (A1)-(A4) defined on the

appropriate domain and for some F of the form (3.8), system (3.11) is indeed of the form
(3.7). In particular, r is as defined in the statement of the theorem, h (n- 1)q and
k=n.

Proof. Let tl- r-(n 1)q. Let N1 be an open neighborhood of the origin in R"
with the property that for any r/ Na there exists a u L2(J, R’) steering y(to)= r/to
y() 0 for the system (3.10). The solution x p(b, u) of (3.11) satisfying Xto b exists
on [to- r, tl] for all (b, u) in some open neighborhood of the origin in X x L2(J, R’),
and x depends continuously on (b, u) in this neighborhood. In particular, there exists an
open neighborhood N2 of the origin in X such that for all b N., x p(b, 0) exists and
x(t) Na for to- r =< <_- t. Fix b N. and let p(b, 0). We shall assume (without loss
of generality) that N1 {X R":]xi[ < e, 1,..., n} for some e > 0.

Let rt =(a(to+(n-1)q, ,z(to+(n-2)q), ,,fn(to)), let u L2(j,R ") steer
y(to)= to y()=0 for the system (3.10) and satisfy u(t)-0 for <t<-q, and let
y 6 C([to, ta], R n) be the corresponding trajectory. Note that y(t) 0 for <_- <_- tl. We
shall show that u steers q5 to 0 X at time tl for the system (3.11). This will complete the
proof, since it is readily seen that u Utl and since b 6 N2 is arbitrary.

Define x 6 C([to- r, tl], R ") by

(3.12) x,(t)= { "’(t)yi(t-(n-i)q)
if to- r <- <= to + (n i)q,
if to + (n i)q <-_ <- tl,

1, , n. Then for to <- <- to + (n i)q a.e., we have

Yc(t)=x(i)

g,(,(t),..., ,,+r,(t- riq), O)

gi(x,(t),’’’, x,+n(t- tq), (t-(n i)q)),

and for to + (n i)q <- <= tl a.e., we have

Yci(t) #i(t- (n i)q)

g,(yi(t-(n -i)q), y,+a(t-q-(n-(i + 1))q), , y,+n(t-r,q

(n (i + r))q), (t- (n -i)q))

gi(xi(t), Xi+l(t-q),’’’, Xi+r,(t--riq), (t-(n -i)q)).
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Thus, (3.11) holds for to<-t<-tl a.e. Furthermore, Xto=to=, and for tl-r<-_t<-t,
xi(t) yi(t- (n i)q) O, 1,. , n. Hence u steers b to 0 s X at time tl for the
system (3.11).

Example 1. Consider the system

.x(t) =--Xx(t)--x2(t-- 1)3,
(3.13)

2(t) -XE(t) + u(t).

Local null controllability of this system cannot be established by using Theorem 2.7,
due to the fact that the linear approximation is not null controllable. However, we can
compare (3.13) to the system

;x=--y--y,
(3.14)

5’2 --y2+ U,

which is locally null controllable on [to, ] for any > to. This can be shown by a
modification of the argument given in [8, p. 365]. (In [8] it is shown only that there exists
a > to such that (3.14) is locally null controllable on [to, ].) We can therefore conclude
that (3.13) is locally null controllable on [to, t] for any tl > to + 2. (Note that in applying
Theorem 3.1 to (3.13), we must take h 1, while the natural h is h =0. This is no
drawback, however, since the conclusion of Theorem 3.1 gives local null controllability
in the sense defined for system (3.7) with h 1. This is a stronger result than local null
controllability with h 0.)

At the beginning of this section, we discussed how a result such as Theorem 3.1
could be used in conjunction with Theorem 2.7. Even more can be gained in this regard
by extending Theorem 2.7 to include systems with lags in the controls. We consider the
extension of (2.1) given by

(3.15) (t) f(t, x,, (ru)(t))+L(t, x,)+ C(t)(Fu)(t)

and its linear approximation

(3.16) (t) A (t, xt) + L(t, xt -[" (n (t) + c(t))(ru )(t),

where [, L and C are as in 2, except that C L2(j, d//,.k,,) and f is defined on
J C([-r, 0], N) x R k", where N c R" is an open convex set containing the origin. The
appropriate modification of (HI) here is as follows:

(HI’) For any u U and any y C([to-r, tl], N) satisfying y(t) =0for -r<-t <-
ta, there exists no solution z of

(3.17) 2(t) f(t, y, + z,, (Fu)(t))-A(t, y,)-B(t)(Fu)(t)

on [to- r, tl] which satisfies both z(tl) 0 and Ztl l O,

Hypothesis (H2) is as in 2. We restate it here for convenience.
(H2) The only solution z C([to-r, ta], R") of

2(t) A(t, zt) (to <- <- tx a.e.)
(3.18)

z(ta) 0

which is constant on [to-r, to] is z 0.
THEOREM 3.2. Let (A1)-(A8) hold ]:or the system (3.15). Let A(t, )= D2f(t, O, O)

andB(t)= D3f(t, O, O).Let (to+ r, tl],suppose (HI’)holdsforthis andsuppose (H2)
holds. Then the null controllability of (3.16) on [to, ] (in the sense defined for systems
(3.7)) implies the local null controllability of (3.15) on [to, t] (also in that sense).
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The details of the proof will be omitted. We point out only that the space U
occurring in the lroof of Theorem 2.7 must be replaced here by Ui defined by (3.9) and
that Lemma 2.6 can be extended in a natural way to establish the existence of an
operator S (X, Ui) such that for any b X the solution y of

y(t)=A(t, yt)+L(t, yt)+(B(t)+C(t))(rs4)(t),

satisfies y(t) 0 for - r-< t_-< tl. Using this operator S, one proceeds in a manner
analogous to the proof of Theorem 2.7.

Note that in applying Theorem 3.2, the same value of r must be used for both (3.15)
and (3.16), since the state space fo/" both systems must be the same.

Before presenting the next example, we recall that for linear systems global null
controllability and local null controllability are equivalent. Hence, for linear systems
Theorem 3.1 holds with the word "locally" deleted.

Example 2. Assume tx > to + 10, and consider the system

Am(t) Xx(t) + x2(t- 1)+ x3(t- 2)2 + u(t- 2).

(3.19) A2(t) x2(t) + u(t- 1),

A3(t) x2(t- 3)3 + u(t).

This is a system of the form (3.15), with

l l

bm(O) + q3(-2)2

]f(t, qb, w)= 0 C I.
b2(--3)3

It is readily seen that (A1)-(A8) hold.
The linear approximation to (3.19) is

(3.20)

Am(t) Xl(t) + x2(t- 1)+ u(t- 2),

A2(t) x2(t) + u(t- 1),

A3(t)=u(t).

By Theorem 3.1, (3.20) is null controllable on [to, F] for any F > to + 3. However, in this
application of Theorem 3.1, r 1 is used, and the maximum delay in system (3.19) is
r 3. For r 3, h 2 (so that the state space is C([-3, 0], g3)) we can conclude only
that (3.20) is null controllable on [to, ] for any > to + 5. In particular, we take tl 5.
We shall show that (HI’) holds for this and that (H2) holds.

Let A(t,. )= D2f(t, 0, 0) and B(t)= D3f(t, 0, 0). Then (3.18) reduces to an initial
value problem for an ordinary differential equation, so (H2) is obviously satisfied.
Equation (3.17) becomes

(3.21)

21(t) Zl(t)+ (y3(t- 2)+ z3(t- 2))2,

2(t) O,

23(t) (yE(t- 3) + ZE(t- 3))3.
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Assume y C([t0- r, tl], R 3) satisfies y(t) 0 for- 3 -< -< tl and assume z is a solution
of (3.21) on [to-r, tl] with Z(tl)=0. To show that (HI’) holds, we must show that
z(t) =0 for tl-3<-t<-tl. Clearly z2(t)= 0 for to<-t<-tl, and so the third equation of
(3.21) shows that z3(t)=0 for <=t<=tl. Thus, for +2-<t-<tl, we have z3(t-2)
y3(t-2)=0. Thus, the first equation of (3.21) gives Zl(t)=0 for +2<=t<-tl. We
conclude that z(t) 0 for + 2 _-< _<- tl, which shows that (HI’) holds. (Here one sees that
it was necessary to have t > to + 10.) We can now apply Theorem 3.2 to see that (3.19) is
locally null controllable on [to, tl].

The above two examples and the other examples throughout this paper illustrate
the fact that there are many nonlinear control systems involving functional differential
equations which are indeed locally null controllable. However, the lack of a theorem
analogous to Theorem 1 of Chapter 6 in [8! makes the possibility of a comprehensive
theory of null controllability doubtful for such systems. The most that one can
reasonably hope to find are various techniques, such as the ones gives in this paper,
which are applicable to systems of specific types.
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EQUILIBRIUM POINTS IN NONZERO-SUM n-PERSON
SUBMODULAR GAMES*

DONALD M. TOPKIS

Abstract. A submodular game is a finite noncooperative game in which the set of feasible joint decisions
is a sublattice and the cost function of each player has properties of submodularity and antitone differences.
Examples of submodular games include 1) a game version of a system with complementary products; 2) an
extension of the minimum cut problem to a situation where players choose from different sets of nodes and
perceive different capacities, with special cases being a game with players choosing whether or not to

participate in available economic activities and a game version of the selection problem; 3) the pricing
problem of competitors producing substitute products; 4) a game version of the facility location problem; and
5) a game with players determining their optimal usage of available products. A fixed point approach
establishes the existence of a pure equilibrium point for certain submodular games. Two algorithms which
correspond to fictitious play in dynamic games generate sequences of feasible joint decisions converging
monotonically to a pure equilibrium point. Bounds show these algorithms to be very efficient when the set of
feasible decisions is finite. An optimal decision for each player is an isotone function of the decisions of other
players.

Introduction. Consider a noncooperative n-person game with the players indicated
by 1,..., n. The decision of player is an mi-vector xi. The joint decision is
x =(Xl,’",x,). The set of feasible joint decisions is a subset S of E where
m i=1 mi. The feasible decisions for a given player may depend upon the decisions
chosen by the other players. (By assigning a very large or infinite cost to each m-vector
not in S one could embed such a game into a game in which any m-vector is considered
feasible, but that approach is not convenient here because it is not easy to transform
subsequent assumptions about the players’ cost functions into equivalent properties for
such extended costs.) Let x xi (Xl, xi-1, Xi+l, Xn) be the vector of decisions
of all players except player i. Let (x; yi) (xl, , xi-1, yi, Xi+l, , xn) be the vector
of joint decisions for all n players where yi is the decision of player and x xi is the
vector of decisions of the other n 1 players. The set of feasible decisions for player
given x xi is Si(X) {yi’(X; Yi) E S}. The vectors x xi and (x; yi) and the set Si(x do
not depend on xi. Define Ti {x xi Si(x) is nonempty} and Si x-x,’, Si(x). As a
result of a joint decision x E S, player incurs the cost fi(x) where fi(x) is a real-valued
function on S for 1,..., n. A feasible joint decision x 6 S is an equilibrium point if
fi(x)<-fi(x; yi) for all yi6 Si(x) and i= 1, ,n.

If x and y are real numbers, then x v y max {x, y} and x ^ y min {x, y}. If x and y
are n-vectors, then x v y (xl v yl, , xn v y,) and x/x y (xl/x y 1, , xn/x y,). If a
subset L of E" has the property that x L and y 6 L imply that x v y E L and x ^ y 6 L,
then L is a sublattice of E". If f(x) is a real-valued function on a sublattice L of E and if
f(x ^ y)+f(x v y)<_-f(x)+f(y) for all x L and y 6 L, then f(x) is submodular on L. If
f(x) is a function from L

_
E into E" and if x _-< y in L implies f(x) <-/(y)(f(y) _-< f(x)),

then f(x) is isotone (antitone) on L. If f(x, y) is a real-valued function on L__ E"+’

where x 6 E" and y E and if f(x, w)-f(x, y) is antitone in x on L for all w -> y, then
f(x, y) has antitone differences in (x, y).

A game is a submodular game if S is a nonempty sublattice of E",fi(x) is
submodular in xi on Si for each x xi Ti and each i, and fi (x) has antitone differences
in (x x;, xi) on Ti Si for each i. This paper presents some examples of submodular

* Received by the editors October 10, 1978 and in revised form April 17, 1979.
t Bell Laboratories, Holmdel, New Jersey 07733. This research was supported in part by the National

Science Foundation under Grant GP-25081.
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games, gives conditions for the existence of an equilibrium point in a submodular game,
and gives two algorithms for finding or approximating an equilibrium point in a
submodular game.

Section 1 provides further definitions and background relevant to the considera-
tion of submodular games in subsequent sections.

Section 2 presents a variety of examples of submodular games. Example (a) is a
game version of a system with complementary products. Example (b) extends the
minimum cut problem to a situation where n players choose from among different
subsets of nodes and perceive different capacities. An application of the minimum cut
game involves players choosing whether or not to participate in certain economic
activities, with a special case being a game version of the selection problem. Example (c)
considers the pricing problem of n competitors producing substitute products. Example
(d) is a game version of the problem of locating new facilities in the plane. Example (e) is
a game with the players determining their optimal usage of available products.

Section 3 uses a fixed point approach to establish the existence of an equilibrium
point in certain submodular games. Actually, a greatest and a least equilibrium point
exist.

Section 4 gives two algorithms for seeking an equilibrium point in a submodular
game. The operation of the algorithms corresponds to fictitious play in certain dynamic
games. Under conditions slightly stronger than required for the existence result of 3,
each algorithm generates a sequence of feasible joint decisions which converges
monotonically to an equilibrium point. Each algorithm has an inherent check which
determines whether or not an equilibrium point has been attained. When S contains a
finite number of elements there are bounds on the number of iterations required by
each algorithm to findan equilibrium point, and these bounds show the algorithms to be
very efficient. In a submodular game an optimal decision xi for player is an isotone
function of the decisions x xi of the other players.

1. Further definitions and background. The partially overlapping results of
Bergman [4] and Topkis [35] characterize the structure of sublattices of E. See also
Baker and Pixley [1].

A subset L of E is a chain if x L and y L imply that either x -< y or y -< x.
Suppose that L is a subset of E"/" and elements of L are denoted (x, y) where

x E and y E. The section of L at y E is L {x’(x, y) L}. The projection of L
on the last rn coordinates is {y" Ly is nonempty}. The sections and projections of a
sublattice are also sublattices.

In terms of the game, S(x) is the section of the feasible set $ at x- xg, T/is the
projection of S on the coordinates of x-xi, and Sg is the projection of $ on the
coordinates of xi. If S is a sublattice of E’, then each $i(x) and Si is a sublattice of E
and each Ti is a sublattice of E"-’’.

If x s L
_
E and y =< x (x <- y) for each y L, then x is the greatest (least) element

of L. A topological result of Birkhoff [5] implies that a nonempty compact sublattice of
E has a greatest element and a least element. See also Frink [13] and Topkis [36].

Applying a result of Birkhoff [5], Tarski’s fixed point theorem [30] states in part
that if L is a nonempty compact sublattice of E" and f(x) is an isotone function from L
into L, then there exists a fixed point for f(x) in L.

If X and Y are nonempty sublattices of E", then X =< Y if x X and y Y imply
that x ^ y s X and x v y s Y. Veinott [personal communication] introduced the relation
-<. The collection of all nonempty sublattices of E" together with the relation -< is a
partially ordered set [37]. If {L}y y is a collection of nonempty sublattices of E" for
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y_c E and if y =< w in Y implies Ly <=" Lw, then Ly is ascending in y on Y. The
property that Ly is ascending is the same as the property that Lr is isotone with respect
to the ordering relation -<P. Veinott [personal communication] showed that the section
of a sublattice is ascending in its argument. If L is a sublattice of E then Ly
{x" x L, x -< y} and Ly {x" x L, y =< x} are ascending in y on {y’Ly is nonempty}. If
Ly is ascending in y on Y

___
E and each Ly has a greatest (least) element gy (_xy), then

gy(_xy) is isotone in y on Y [37].
If f(x) is a real-valued function on L __. E and has antitone differences in (x., xk) for

all j k when each xi is held fixed for j and k, then f(x) has antitone differences on
L. Let u denote the ith unit vector in En. A function f(x) has antitone differences on E
if and only if f(x + eui)-f(x) is a.ntitone in x. for all ij, e >0, and x. If f(x) is
ditterentiable on En, then f(x) has antitone differences on E if and only if Of(x)/Oxi is
antitone in x. for all j and x. If f(x) is twice differentiable on E, then f(x) has
antitone differences on E if and only if 2f(x)/OxiOxj <= 0 for all j and x.

Theorem 1.1 shows an equivalence between antitone differences and "sub-
modularity. The property of antitone differences is more meaningful economically and
is often easier to recognize, while the property of submodularity is more convenient to
use mathematically. If L

___
E for i,= 1, , n then X i=1 Li is a product set in E".

THHOREM 1.1 [37]. lf f(x) is submodular on the sublattice L ofE, then f(x) has
antitone differences on L. IfL is a product set in E andf(x) has antitone differences on L,
then f(x is submodular on L.

Consider the collection of optimization problems

(1) minimize f(x, y) subject to x Ly
_
En,

where both the constraint set and the objective function depend on the parameter y for
y e Y ___E’. Let L* be the set of optimal solutions for (1) given y Y, and let
Y* {y" L* is nonempty}

THEOREM 1.2 [37]. If L is a sublattice of F_, , Lr
_
L is ascending in y on Y

E", f(x, y) is submodular in x on L for each y Y, and f(x, y) has antitone differences in
(x, y) on L x Y, then L* is ascending in y on Y*. If, in addition, Ly is compact andf(x, y)
is lower semicontinuous in x on Lr for each y, then each L*y is a nonempty compact
sublattice which has a greatest element* and a least element x*_ r and both * and x*_ r are
isotone in y on Y.

The conditions on f(x, y) in Theorem 1.2 hold by Theorem 1.1 if f(x, y) is twice
differentiable on a convex product set containing L x Y and ifO2f(x, y)/OxOxi <- 0 for all

j and all (x, y) and O2f(x, y)/Oxyk <_-0 for all and k and all (x, y).
The above results and concepts can be extended to include the case where the

variable is a subset chosen from a given finite set N instead of being an n-vector. This
can be done by defining an indicator vector with one component corresponding to each
element ofN so that this component takes on the value 1 if the corresponding element is
in the chosen subset and 0 otherwise. The above results and concepts would then apply
when the variables are subsets if and only if they apply when the variables are the
corresponding indicator vectors.

A broader and more general discussion of the problem of minimizing a submodular
function on a sublattice appears in [37]. Topkis [31], [33], [34-1, [37] and Veinott
[personal communiction] have developed other applications on the theory of [37].
Maschler, Peleg, and Shapley [17-1 and Shapley [29] have analyzed n-person coopera-
tive games in which minus the characteristic function is submodular. An earlier version
of parts of 3 and 4 appeared in [32].
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2. Examples ot submodular games. This section gives various examples of classes
of submodular games. Under the additional regularity conditions required in the next
two sections, 3 shows that an equilibrium point exists for each of these games and 4
gives two algorithms for finding or approximating an equilibrium point for each of these
games. Examples (b) and (d) note existing, algorithms for solving those games for the
special case n 1 or, equivalently, for solving the problem of any player where the
decisions of the other n 1 players are given, and these algorithms can effectively solve
the subproblems at each iteration for the algorithms of 4.

Example (a). Games with complementary products. Antitone differences is a
well-known condition [26] for a cost function to be that of a system of complementary
products. Suppose that f(x) is the cost function (or minus the utility function) for a
system of n products whose levels are x- (xl,’’’, xn). Then f(x + eui)-f(x) is the
additional cost for an additional e > 0 units of product i. Antitone differences for f(x) is
equivalent to the property that the net additional cost for additional product will not
increase if there is more of product j where j i; that is, the desirability of more product
will never decrease if there is an increase in the level of product j.

Now consider the n-player game in which each player chooses an mi-vector xi of
products, the vector of all products chosen x (xl, , xn) must be in a subset S of E
where m ’.i=1 mi, and the choice of x results in a cost fi(x) f.or player i. Suppose that S
is a sublattice of E, L is a product set in E with S L, and each f(x) has antitone
differences in each pair (Zh, Zk) such that Zh is a component of xi and Zk is a component
of x other than Zh. The latter assumption means that from each player i’s point of view
(that is, with respect to that player’s cost function) each product chosen by that player is
complementary with all other products chosen by that player and by any other player.
This is a submodular game by Theorem 1.1.

Example (b). Minimum cut games. Consider a network with a source s, a sink t, and
a set N of m other nodes. The set N is divided into n disjoint sets of nodes
N1, N2, N,, where Ni has mi elements. Thus N (3 i= Ni, N f-)/V for all
/’, i= m m, and the network has m + 2 nodes. If X

_
N then X t3 {s} is a cut.

If there is a real-valued nonnegative capacity function c (w, z) defined on each pair
of nodes (w, z) from among Nt3{s}t3{t} then the associated cut capacity function is
[(X)=wX),,x c(w, z) where X___N. If is optimal for the problem of
minimizing f(X) over X

_
N, then ., 0 {s} is a minimum cut.

There are n players 1,..., n. Each player is interested in optimizing that
player’s own minimum cut problem in this same network with nodes N t3 {s} (_J {t}. The
different players are faced with different problems. Player is only able to choose a set
of nodes Xi from N;. The other players choose the nodes t3., X. for the cut from
LI. N.. Player has no control over those nodes from (3 ji Nj in the cut and sees them
as fixed. Each player has a capacity function c(w, z), and the associated cut capacity
function is f(X) for X

_
N. The problem of player is to minimize fi(Xi (Uii Xi))

over subsets X of Ni where X. is a predetermined subset of N. for each j i. This is the
minimum cut game.

Ore [personal communication] pointed out that a cut capacity function is sub-
modular on the power set of N. A proof is in [31], [33]. It follows directly from this result
that fg(Xi LI (U. X.)) is submodular in X; for X; N,. and has antitone differences in
(Xi, X.) for X

___
Ni, X. N, and j i. The hypotheses of the n-person submodular

game thus hold for the minimum cut game.
Minimizing fi(X J (LI. X.)) over Xi

_
Ni is equivalent to finding a minimum cut

in a capacitated network with m + 2 nodes consisting of a source s’, a sink t’, and the
’(w, z) c(w, z) fornodes N;, where the capacity function c(w, z) is such that c



EQUILIBRIUM POINTS 777

w 6Ni and z 6Ni, ci(s’, z)=ci(s, z)+,wU,#,xi ci( W, 7,) for z Ni, ci(w, t’)= ci(w, t)+
zJi#,Nj--X) Ci(W, Z) for w Ni, and c (w, z) 0 otherwise. The minimum cut problem
is dual to the maximum flow problem [11], [12]. Efficient algorithms are available for
solving the maximum flow problem [9], [10], [15]. After finding a maximum flow, it is a
simple matter to find the greatest minimum cut and the least minimum cut. [12, pp.
11-14].

As an example of the minimum cut game, consider an n-person game in which
player chooses whether or not to participate in the mi economic activities contained in
the set Ni. The sets Ni for 1,. , n are disjoint and so N t_J 7= Ni has rn 7= mi
elements. The set of all activities N is divided into two sets S and T with S U T N and
$ f3 T . The activities of S are not in themselves profitable, so if player chooses
activity w N f’l S then incurs a net cost Cw >- O. The activities of T are in themselves
profitable, so if player chooses activity w N f-) T then receives a net profit Vw > O.
Each activity available to a player is complementary with each activity available to that
player or to any other player. Such complementarity could arise where an activity of one
player may benefit from the use of transportation facilities, distribution outlets, or
product inputs that become available as a result of other activities undertaken by the
same player or other players. The effect of this complementarity between activities is
that player incurs an additional cost b (w, z) => 0 if chooses activity w N and if the
player/" for whom z N. does not choose activity z, where/’ may or may not equal i. This
cost structure might induce a player to choose an unprofitable activity from N f3 S in
order to reduce the costs associated with choosing profitable activities from Nif) T. If
player/" has chosen some X.

_
N. for all/" i, then the problem for player is to minimize

hi(X)--,wX,tqsCw-weX,tqTl)W+,wX,zc:xb(w,z over XiNi where X=
U.= X/. It is possible to express this game as a minimum cut game as follows. Construct
a network with a source s, a sink t, and m other nodes corresponding to each of the
activities of N. For each define a nonnegative capacity functionci(w,.z) on each pair of
nodes (w, z) from among NLJ{s}{t} so that Ci(S, Z)’- l)z if z Ni T, ci(w, t) =Cw if
w N f3 S, ce(w, z) b(w, z) if w N/and z N, and ci(w, z) 0 otherwise. For player
the associated cut capacity function for X

_
N is f(X) wXsztxs) ci(w, z)

A special case of the above game dealing with choosing among economic activities
involves an n-person game version of the selection problem. Player selects a set W
from a finite collection of items Si. The cost to player of choosing item w from $i is

Cw > 0, so incurs the cost Y. w, Cw for selecting a set. W. The sets Si and Si are disjoint
for j, and $ LI i--1 Sg. There is a finite collection of projects T potentially available
to player i. The sets T and T. are disjoint for /’, and T L3 i= T. Project z T/has a
value Vz >- 0 to player and its value can only be realized if a subsetD of the items S are
available. For a project z and W

___
S, define Uz (W) to be 1 if Dz

_
W and 0 otherwise.

Thus Uz (W) 1 if and only if it is possible to undertake project z with the items of W.
The value to player of possible projects given items W is zr, VzUz(W). Given that
player /" has chosen W. Si for all j i, the problem of player is to minimize

wW, Cw-zr, VzUz(W) over W/ Si where W LJi__ W/. Let M be an arbitrarily
large positive number. Because it is the object of each player to minimize that player’s
net cost, the game is effectively unchanged if the requirement that the items Dz be
available in order to undertake project z is replaced by having player incur the cost M
if undertakes project z without all the items Dz being available. Define Ng Si LI T for
each and N $ U T LI i= N. The set N is the collection of all economic activities,
both items and projects. For w and z in N, define b (z, w) M if z T and w Dz and
b(z, w)=0 otherwise. Player incurs the cost b(z, w) by choosing activity z Ni if
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player/" for whom w eN does not choose activity w, where/’ may or may not equal i.
This transforms the game version of the selection problem into an equivalent game
which is a special case of the above game involving choosing economic activities, where
the latter game is itself an example of the minimum cut game. Each player’s problem in
the game version of the selection problem involves solving a minimum cut problem in a
bipartite network. Balinski [2] and Rhys [23] considered the selection problem and
showed that it can be solved by solving a minimum cut problem in a bipartite network.
The game version of the selection problem degenerates to their selection problem when
n=l.

Example (c). Competitive pricing with substitute products. Consider a system with n
competitors 1, , n. Each.competitor produces a single product. The n products
are substitutes for one another. The products might be virtually identical items bearing
different labels as with competing brands of gasoline, or they might be different items
with similar purposes such as beef and chicken. The problem for each producer is to
determine the price pi for product i. The vector of prices is p (Pl, ",pn). The price pi

must come from a set of possibilities Si. Furthermore, each producer requires that the
price pi be within a given range of the prices of the other products, and for some real
numbers aii and bii for j this requirement is expressed as p 6 W/= {p: aii <- pi Pi <-- bii
for all j # i}. The set of feasible price vectors is thus S (X g= S) 0 (f3 i= W). The set S
is a sublattice of En. The demand for product depends on the price vector p according
to a known function D(p). The total revenue for product given p is pDi(p). There is a
unit production cost ci for product i, so the total production cost for product is ciDi (p).
Assume that S

_
[ci, az), so no feasible price is below the production cost. The net profit

for product is (p c)D(p). The net cost f(p) for product is minus the net profit, so
f(p) -(pi- ci)D(p). Given the prices p. for the other competitors j i, producer is
interested in choosing pg to minimize fg(p) over feasible pi. This competitive situation is
an n-person nonzero-sum game.

Consider the following two hypotheses:
(A) Di(p) is an isotone function of p. for each j i;

and
(B) -Di(p) has antitone differences in (p, p.) for all j i.

Conditions (A) and (B) have natural economic interpretations. Condition (A) states
that increasing the price of product j will increase the demand for product i, and this is a
standard definition for substitute products. Condition (B) states that cutting the price pi

for product will result in a greater increase in the demand for product if the price Pi
for product j happens to be lower; that is, the demand for product is more sensitive to
its price when another product j is more competitive by virtue of its lower price. By (B),
an increase in the price of beef would cause a greater reduction in the demand for beef if
the price of chicken happens to be lower. (The discussion of a price cut for product
leading to an increase in its demand is for illustration. These conditions do not preclude
an anomaly in which demand for a product could increase with its price.) Condition (B)
always holds in the case where Di(p) is a separable function of p.

Conditions (A) and (B) together imply that fi(p) has antitone differences in (p, p)
for all/" i. This is therefore a submodular game.

In the case for which S E" and each D(p) is an affine function, Levitan and
Shubik [16] considered the above model and found a closed-form algebraic expression
for an equilibrium point.

A similar model can be developed where the demands depend on advertising
expenditure instead of price.

Example (d). The location problem game. Consider the problem of locating n new
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facilities in the plane E2 where there are already p existing facilities. The 2-vector Xi
indicates the location chosen for new facility for 1, n, and each xi must be in a
set Si. The 2-vector wk indicates the location of existing facility k for k 1, , p. Let
d (a, b) be some symmetric measure of the distance between vectors a and b in E2. For
each pair of new facilities and/" there is a cost citd(xi, xt) where c0 is nonnegative and
symmetric. For each new facility and old facility k there is a cost hikd(xi, w) where
is nonnegative. The coefficient ct may represent the flow between new facility and new
facility/" times the cost per unit flow per unit distance between and/’. The coefficient
h may represent the flow between new facility and old facility k times the cost per
unit flow per unit distance between and k. The problem is to locate the n new facilities
in the feasible region so as to minimize the sum of all costs. That problem is to minimize
(1/2) /=1 /’=1 card(Xi, x/) q-Y’/=l hikd(xi, w) subject to xi Si for each i.

Now consider a version of the location problem where n decision-makers
independently choose locations for different collections of facilities. For 1,..., n
player controls the location of mi new facilities. The new facilities are indexed
/’ 1,..., m where m __1 m. The set O consists of the indices of the mi facilities
located by i. Player chooses the location xt of new facility ] Oi from a set St --, E2. The
2-vector w indicates the location of existing facility k for k 1,. , p. The function
d(a, b) is a symmetric measure of the distance between a and b in E. For each pair of
new facilities and k both located by player i, there is a cost ctkd (xt, x) to player where

ct is nonnegative and symmetric. For each pair of new facilities and k with player
locating/’ and some other player locating k, there is a cost ctkd(xt, x) to player where

ct is nonnegative. For each new facility located by player and each existing facility k,
there is a cost htkd(xt, w) to player where ht is nonnegative. The coefficients
and ht may have interpretations as in the 1-player problem described above. Player
wants to choose feasible locations for facilities Oi to minimize total related costs.

The problem of player is to minimize fi(x)=(1/2),to,o, ctkd(xt, x)+
JOikUeiOeCjkd(Xj, Xk)+ O,k=lhtkd(XhWk subject to xtSt for all jOi
where x =(Xl,’’ ", x,)E If each St is a sublattice of E2 and if d(a,.b) is sub-
modular on E4, then this is a submodular game.

If d(a, b)= la- bll + la2-b21, then the distance measure is rectilinear. This d(a, b)
is submodular on E4 by Theorem 1.1. The rectilinear distance would seem an
appropriate distance measure where travel between facilities must be on perpendicular
city streets or along perpendicular aisles in a machine shop. Picard and Ratliff [21] and a
number of other authors cited in [21] have considered the rectilinear distance facility
location problem corresponding to the 1-player game with each St E2, and they have
given algorithms which solve this problem.

The distance measure d(a, b)=(al-bl)2+(a2-b) is submodular on E4 by
Theorem 1.1. White [40] considered and solved the facility location problem cor-
responding to the 1-player game with this distance measure and each St E2.

By Theorem 1.1, the Euclidean distance measure d(a,b)=((al-bl)2+
(a2-b2))1/2 is not submodular on E4.

Example (e). A game with optimal product usage.. Consider a situation in which n
players 1,..., n each choose a subset of p products k 1,...,p to use. The
decision of player is denoted by a p-vector xi (Xl, , xip) such that each Xik equals
either 0 or 1 where Xik 1 indicates that player chooses to use product k and Xik 0
indicates that player chooses not to use product k. Player may only choose certain
combinations of products, so Xi is restricted to a subset Si of )< p

__1 {0, 1}. If player
chooses to use product k then the usage is a fixed amounta > 0. If player uses product
k then incurs a cost which is a function of the total amount of product k used by all the
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players. That cost is Cik (-,,/.n= aikXik). Player incurs no cost wi.th respect to product k if
chooses not to use product k. Define bik(Xik, Z)--ik(Z) if Xik 1 and bik(Xik, Z)--0 if
Xik =0. The cost to player for product k is thus bik(Xik, i=1 aikXik)" In using the
products indicated by a decision xi, player receives a reward vi(xi). The problem for
player is thus to minimize fi(X)--.,pk=l bik(Xik, i=1 aikXik)--Vi(Xi) subject to xi e Si
where x (xl,. ", xn).

This game is a submodular game if each Si is a sublattice of Ep, each Ck(Z) is
antitone in z on [aik, o0), and each -v(xi) is submodular on $i. The property that Ck(Z)
be antitone implies that bik(Xik, "j=l akXjk) has antitone differences in (Xik, Xjk) on
{0, 1} {0, 1} for each j i.

The set Si is a sublattice if Si X p {0, 1}. The set S is also a sublattice if it
includes constraints that player can choose certain products only if chooses certain
other products. The inequality Xik--Xr----< 0 defines a sublattice, and that inequality
requires that player can choose product k only if also chooses product r.

Suppose that Ck (z) is the cost of producing z units of product k for the use of the n
players, where Ck(0)-0 and Ck(z) is concave on [0, ). Thus there are increasing
returns to scale in the production of product k. The cost of producing product k is
allocated to the n players in proportion to their use of product k. The cost to player as a
result ofa decision to use product k is thus Ck(Z)= (ak/z)Ck(z). The properties that
Ck(0) 0 and that Ck(z) is concave on [0, o) imply that Ck(z)/z is antitone in z on
(0, o) and therefore ck(z) is antitone in z on [aik, o).

The condition that -v(x) is submodular indicates that the k products are
complementary from the point of view of the reward function of player i. That condition
holds if v(x) is separable.

Rosenthal [25] showed the existence of an equilibrium point in a game related to
that described above. His game model required that each aik- 1, Ck(Z) does not
depend on i, and (x)-0, while it did not require that cik(z) be antitone and it

{0,1}permitted S to be any subset of X k=l

3. Existence of an equilibrium point. Throughout tliis section and 4, assume that
the game under consideration is a submodular gama.

Let S(x)=(Xi= S(x))fflS,g(x,y)=,i=lfi(x;y) for xeS and yeS(x), and
Y(x)={y: y eS(x), g(x, y)=infzs, g(x, z)} for x eS. Ponstein [22] introduced the
mapping Y(x) to generalize the earlier work of Nash [18], [19]. Ponstein [22] proved
that if x e Y(x) then x is an equilbrium point, and the converse statement is also clearly
true. Thus finding an equilibrium point is equivalent to finding a fixed point for the point
to set mapping Y(x) on S.

LEMMA 3.1. IfS is compact and fi(x) is lower semicontinuous in xi on Si(x) for all x
in S and each i, then Y(x) is ascending in x on S and for each x in S the set Y(x) has a
greatest element ;(x) and a least element y (x) such that ;(x) and y (x) are isotone

functions from S into S.
Proof. Since S is compact it follows that Si(x) is a compact subset of E"’ for

1, , n and all x, and so S(x) is a compact subset of E"* for all x in S. If x is in S then
x is inS(x) andso S(x) is nonempty. By hypothesis, $(x) is ascending in x on S, g(x, y) is
lower semicontinuous in y on S(x) and submodular in y on S for each x in S, and g(x, y)
has antitone differences in (x, y) on S S. This result then follows by applying Theorem
1.2 to the problem of minimizing g(x, y) over y in $(x) for x in $.

Algorithm II of 4 uses the isotone functions 37(x) and y(x) to construct an
equilibrium point, but their use in the existence result of Theorem 3.1 is not con-
structive.
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THEOREM 3.1. lfS is compact andfi(x) is lowersemicontinuous in Xi on Si(x) ]:or all x
in S and each i, then the set of equilibrium points is nonempty and a greatest and a least
equilibrium point exist.

Proof. By Lemma 3.1, ;(x) exists and is an isotone function from the compact
sublattice S into itself. It follows from Tarski’s fixed point theorem [30] that 37(x) has a
greatest fixed point which takes the form sup {x: x S, x =< )7 (x)}. Since 37()
Y(Y), is an equilibrium point.

Pick any equilibrium point . Then Y() so <-37(). Thus Y-<
sup {x: x S, x -< 37 (x)} and is the greatest equilibrium point.

The existence of a least equilibrium point follows dually. [3
When n 1 the problem of finding an equilibrium point degenerates to the

mathematical programming problem of minimizing fl(x) subject to x in S. When n 1
and the hypotheses of Theorem 3.1 hold, Theorem 1.2 implies that the set of
equilibrium points is a compact sublattice of E". The following examples show,
however, that when n > 1 and the hypotheses of Theorem 3.1 hold, the set of
equilibrium points need not be compact and it need not be a sublattice. (Even without
the submodular game’s special assumptions about S and the cost functions, the set of
equilibrium points is compact under the hypotheses stated in Theorem 4.2 by a proof
similar to the first paragraph of the proof of Theorem 4.2. In the next example, $,. (x) is
not a lower semicontinuous mapping.)

Let n=2, rnl=m2= 1, S={x:xl, x2[O, 1]}{x:x=x2(1,2]}, fx(x)=xl, and
f2(x) x2. The set of equilibrium points is {(z, z):z {0} t5 (1, 2]} which is not closed.

Let n =3, rnl m2 m3 1 S= >(3 [0, 1], and fl(X)--f2(X)-"f3(X)----X1X2X3i=1

Then (1, 0, 0) and (0, 1, 0) are equilibrium points but (1, 1, 0) (1, 0, 0) v (0, 1, 0) is not
an equilibrium point, so the set of equilibrium points is not a sublattice of E3.

A joint decision x in S is a strong equilibrium point [20] if there does not exist a
subset N

___
{1, , n} of the n players such that the sum of the costs to these players can

be strictly decreased by finding a new feasible joint decision which leaves unchanged the
decisions of the players not in N. Even if n 2, m m2-- 1, and fx(x) and-/2(x) are
submodular and convex, a strong equilibrium point may not exist. If S [0, 1] [0, 1],
f(x) x- x2, and rE(X) x-xl, then (0, 0) is the unique equilibrium point but players
1 and 2 can decrease the sum of their costs by choosing (1/2, 1/2).

4. Algorithms for approximating an equilibrium point. Based on a suggestion by
Brown [6], Robinson [24] proved that one can approximate a mixed strategy equilib-
rium point for a static zero-sum two-person finite game as a result of fictitious play in a
sequential game corresponding to a natural behavioral process. At a given iteration
each player assumes that the other player will choose the mixed strategy determined by
the relative frequency of the pure strategies that the other player has already chosen,
and each player either in turn or simultaneously chooses the best individual pure
strategy. With new pure strategies having been chosen, each player’s relative frequency
of pure strategies is updated and the next iteration begins. See also Danskin [7]. An
example of Shapley [28] shows that this procedure need not generally succeed for
nonzero-sum two-person finite games.

Algorithms I and II below approximate a pure equilibrium point for a static
nonzero-sum n-person submodular game as a result .of fictitious play in sequential
games corresponding to natural behavior processes. Algorithm I corresponds to the
iterative decision-making process by which the n players take turns with each player
successively minimizing that player’s own cost function with respect to feasible
decisions while the decisions of the other n 1 players are held fixed. In the case where



782 DONALD M. TOPKIS

each player’s set of feasible decisions is independent of the decisions of the other
players, Algorithm II corresponds to the iterative decision-making process by which
each of the n players concurrently and individually chooses the next decision by
minimizing that player’s own cost function under the assumption that the other n 1
players will hold their decisions unchanged. A new joint decision is put together by
combining these n individually determined decisions, and the next iteration then
begins.

ALGORITHM I. This algorithm proceeds by starting with x’= x, where x is the
least element of S. Given x k’i in S where k and are nonnegative integers with < n, the
next point xk’i+l=(x k’i’, /k+l) is generated by picking 37/k+l to be the least Yi+I to
minimize [i+l(x k’i’, Yi+I) over Y;+I .in Si+x(Xg’i). When x ’" has been generated for some
k, set x k+1’ xk.n and continue.

Given the decisions x xi of the other n 1 players, the problem of player is to
minimize f(x) over xi in S(x). Theorem 1.2 implies that the optimal decision xi for
player is an isotone function of the decisions x--. xi of the other players. Lemma 4.1
uses that result to show that x k’i is isotone in k and i.

LEMMA 4.1. IfS is compact and [(x) is lower semicontinuous in x on S(x) ]:or all x
and each i, then Algorithm I generates a sequence x k’i which is isotone in k and ]:or

O, 1, , n and k 0, 1 . Hence there exists . in S such that limk- X
k’i ]:or

i=0, 1,’’’,n.
Proof. By Theorem 1.2, Algorithm I is well-defined and generates an infinite

sequence {xk’i}.
Since x’ x, X

O’i <-- X 0’i+I for 0, n 1. Now suppose that X
k’i =’Z X k’i+l for

all k<K and i=0,...,n-1 and that xK’i<=x I’+1 for i=0,... ,I-1 where 1-<K
and 0-< 1 =< n 1. Since this supposition holds for K 1 and 1 0, it suffices to show
that x :’z -<x K’z+l for the proof to follow by induction. Because c1 is the least
minimizing point of fl+l(X K-I’I’, YI+I) over YI+I in SI+I(xK-I"I), Y-K!+I is the least
minimizing point of ft+x(X K’z’, Yz+l) over Yt+l in S+I(xK’I), and xK-I’1 < x K’, Theorem

-K-11.2 implies that YI+I ----< /K+I and hence

xK,I (xK,I -K-1 K,I xK,I+I"YI+I )(X 37/K+1

Lemma 4.1 reduces the problem of finding x k’i+l given X
k’i for i< n from a

minimization problem over Si/l(X k’) to a minimization problem over $g/(Xk’)f3
IX k’i

i+1,

The following result shows that there is a check inherent in Algorithm I which
indicates whether or not an equilibrium point has been attained.

LEMMA 4.2. If a point appears n successive times in the sequence {x ’i" k >-0,
1 <- <-_ n } generated by Algorithm I, then thatpoint is an equilibrium point. IfAlgorithm I
generates an equilibrium point at some iteration, then that point will be generated at all
subsequent iterations.

Proof. The first part follows directly from the definition of an equilibrium point.
Suppose x ’i is an equilibrium point where < n. To establish the second part it

k,i+l k,i k,isuffices to show that x ’i/1= x k’i or, equivalently, that xi/ xi+. Since x is an
k,iequilibrium point, Xi/l minimizes fi/(x ’’, yi/l) over yi/l in Si+l(X k’) and so by

k,i+lconstruction xg+k’i+ll < xki:’. However, X/k-t " X/ki?l by Lemma 4.1, and so x i+1

THEOREM 4.1. IfS has a finite number ofelements and no chain contained in S has
more than qi elements for 1, , n, then. Algorithm I generates an equilibrium point in
no more than (n 1)(= qg)- n 2 + n + 1 iterations.
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Proof. By Lemma 4.1, x’i is isotone in k and for 0, 1, , n, k 0, 1, and
fixed/’ 1, , n. Thus as Algorithm I proceeds x’i can change its value no more than
qj- 1 times and hence x k’i can change its value no more than .= (q- 1) times and the
sequence {x k’i} can contain no more than Yj= (qj 1) + 1 distinct elements. Since x ’i is
isotone in k and and S is finite, Algorithm I must eventually generate some point at
some iteration such that the same point is generated at all subsequent iterations. By
Lemma 4.2, that last distinct point generated must be an equilibrium point. Since x ’i is
isotone in k and all appearances of a point in this sequence must be consecutive, and by
Lemma 4.2 no point except the last distinct one generated can appear in {xk’i:k _-->0,
1 _--< _--< n} more than n 1 times. Thus Algorithm I must attain an equilibrium point in
no more than (n 1) .= (q. 1) + 1 iterations. Vl

Theorem 4.1 indicates that Algorithm I is quite efficient computationally when $ is
finite. If S is finite, Si(x) Sg for all x in $ and 1, , n, and $i has pi elements, then
adding one element to S. will add 1-Ii,. P elements to $ but the bound on the number of
iterations required by Algorithm I will increase by either n- 1 or 0. If S is finite and
q = for 1,..., n then the bound on the number of iterations required by
Algorithm I is (n 2 n )( 1) + 1 which varies with n , while there are at least " feasible
joint decisions if Si(x)= Sg for all and all x in S. For example, if n 20, Sg
{1,..., 10} for 1,..., 20, and S )< g= S;, then S contains 102 feasible joint
decisions but Algorithm I will generate an equilibrium point in no more than
n(n 1)(- 1)+ 1 (20)(19)(9)+ 1 3421 iterations. Since each iteration requires
looking at no more than 10 joint decisions and making at most 9 comparisons, one can
find an equilibrium point for this problem with 102 feasible joint decisions by looking at
no more than 34,210 joint decisions and making no more than 9(3421)= 30,789
comparisons.

A point to set mapping F from A E" into qonempty subsets of E is a lower
semicontinuous mapping [3] if {x k" k 1, 2, .}

_
A, limk-, X

g
6 A, and 37 F(:)

imply that there exist yk F(x k) for k 1, 2, such that limk- yk ;. If S contains a
finite number of elements or if S >(

__
Si where S

_
E"’ for 1, , n (so that

S(x) $ for all x x in Ti and each i), then S(x) is a lower semicontinuous mapping
from Ti into subsets of E" for each and S(x) is a lower semicontinuous mapping from
S into subsets of Em.

THEOREM 4.2. IfS is compact, Si(x) is a lower semicontinuous mappingfrom Ti into
subsets ofE" for each i, and fi (x) is continuous on $ for each i, then the limit point of
{x k’i} generated by Algorithm I is an equilibrium point. Furthermore, is the least
equilibrium point.

Proof. Pick any i, 1 <= <- n, and any )i in Sg($). Since limk- X
k’i and Si(x) is a

lower semicontinuous mapping, there exists y,.k in Sg(x k’i) for k 0, 1,... such" that
limg_. y

g
37. By the construction of Algorithm I, fi(x k’i) <-fi(x k’i" y/k) for all k. Then

by the continuity of fi(x), fg($) <-f($; )7i). Because f(Y) <-f(; )7) for each and all ;i in
S(Y), is an equilibrium point.

Let be an equilibrium point. Since x’= x, x’ <. Suppose x g’i < for some
k,i+lk >-_O and O<=i <=n- l. Since xg/l istheleastminimizingpointof/g/l(Xg’.yi/)over,

y+l in Si+l(xk’i), )i+1 minimizes/i+1(; y+l) over Yi+l in Si+1(), and x ’i <=, Theorem
1.2 implies that xkj;-a --<+1 and hence

X
k,i+l (X k,i

Thus by induction x k’g -<- for all k and and so
When f(x) f(x) for all x in S and each then under the assumptions of Theorem

4.2, f(,) <=f(; yi) for all y in S() and each i, where is the limit point of the sequence
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generated by Algorithm I. If also S X i=a Si where Si CC_. Em’ for each (so Si(x) Xi for
all x ---xi in T and each i), Si is convex for each i, and [(x) is differentiable on S, then
(y- $). V/($)_-> 0 for all y in S. If/(x) is also pseudo-convex on S, then is the least
minimizing point of[(x)on S. When m 1 for each i, Veinott [38] established that {x k’}
converges monotonically to an optimum for the nonlinear programming problem of
minimizing [(x) subject to x e S under all the above assumptions. This nonlinear
programming algorithm falls into the class of coordinate descent algorithms [8], [14],
[27], [39], [41]. Indeed, even if the assumptions that x’= x, that/C(x) be submodular,
and that the minimizing point chosen at each iteration be the least minimizing point are
deleted, it still follows by applying the techniques of Zadeh [41] (who considered a
slightly less general case) that every accumulation point of {x k’} is optimal for this
particular nonlinear programming problem.

ALGORITHM II. The second algorithm proceeds by starting with x. Given x k in S,
the next point X k+l is the least y to minimize g(x , y) over y in S(xg). Thus X

k+l --y (xk).
LEMMA 4.3. IfS is compactandfi(x) is lower semicontinuous in xg on Si(x) for all x in

S and each i, then Algorithm II generates a sequence x k which is isotone in k for
k O, 1,.... Hence there exists , in S such that limk-,oo x k --.

Proof. By Theorem 1.2, Algorithm II is well-defined and generates an infinite
sequence {xk}.

Clearly x<-x Suppose x k-a <x k for some k > 1 Then by Lemma 3.1 x k

y(x k-l) <= y_(x k) X k+l, and by induction the proof is complete.
Lemma 4.3 reduces the problem of finding x k’+ given x k from a minimization

problem over S(x k) to a minimization problem over $(x k) f)[x k,
The following result shows that there is a check inherent in Algorithm II which

indicates whether or not an equilibrium point has been attained.
LEMMA 4.4. A point x k generated by Algorithm II is an equilibrium point ifand only

if x k
X k+l.

Proof. If x k x /a then x k y_(x k) Y(x k) and so x k is an equilibrium point.
If x k is an equilibrium point then x k Y(x k) and so x k >- y (x k) x k/. However,

k k+l k k+lx _-<x by Lemma 4.3, so x =x
THEOREM 4.3 If $ has a finite number of elements and no chain contained in $ has

more than q elements, then Algorithm II generates an equilibrium point in no more than
q- 1 iterations.

Proof. If any element appears more than once in the sequence {x k} then by Lemma
4.3 it must appear at least two times consecutively in the sequence and by Lemma 4.4 it
is an equilibrium point and is the last distinct element in {xk}. Thus at most one point can
appear more than once in {x k } and such a point is an equilibrium point. Since $ is finite
at least one point must appear more than once in {xk}. Therefore if {x k} contains K
distinct elements, then the elements x, xK-2 will appear exactly once, x k x K-a

for all k ->K 1, xK-a is an equilibrium point, and so an equilibrium point is attained in
K 1 iterations. By Lemma 4.3 the distinct elements of {x} form a chain so K -< q and
an equilibrium point is attained in no more than q- 1 iterations.

If S is finite, Si(X)"-Si for all x- x in Ti and each i, and Sg has pg elements, then
adding one element to S. will add 1-Iie. Pg elements to S but the bound on the number of
iterations required by Algorithm II will increase by either 1 or 0. If $ is finite and qi is
defined as in Theorem 4.1 then q- 1 <---1 (qi- 1)so a bound, 2i=1 (qi-- 1), exists for
the number of iterations required for Algorithm II to attain an equilibrium point such
that this bound is proportional to the number of players when qi- for all i. If aj-< bj
are integers for/" 1, , m and S

_
{z" ai <- z. -< bi, z. integer for 1 <-/" <- rn }, then

q-<--1 (bi-ai)+ 1 while S may have as many as I-Ii=l (bi-aj+ 1) elements. Similar
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bounds with additive rather than multiplicative components can be found for qi for use
in the bound of Theorem 4.1.

THEOREM 4.4. IfS is compact, S(x) is a lower semicontinuous mappingfrom S into
subsets of E"*, and fi(x) is contintinous on S for each i, then the limit point of {x k}
generated by Algorithm II is an equilibrium pojnt. Furthermore, is the least equilibrium
point.

Proof. Pick any )7 in S(Y). Since limk_o x k : and S(x) is a lower semicontinuous
mapping on S, there exists yk in S(x k) for k 0, 1,. such that limk_,o yk )7. By the
construction of Algorithm II, g(x k, x k+l) <= g(x k, yk) for all k. By continuity, g(ff, Y) <-
g(X, )7). Because g(,f, .f)-< g(Y, 37) for all 37 6 S(Y), : 6 Y(Y) and so Y is an equilibrium
point.

Let be any equilibrium point. Clearly x -<_.f. Suppose x k <= for some k. By
Lemma 3.1, xk+= y(xk)=< _y(). Since is an equilibrium point, 6 Y() and so
y()-<. Thus x k+l Z=y and by induction x k <= for all k. Therefore ,f =limk_X k <=
X. 71

The conditions required to establish the existence of an equilibrium point in
Theorem 3.1 are weaker than those assumed in this section to prove that Algorithms I
and II actually approximate such an equilibrium point. The additional assumptions are
that each Si (x) be a lower semicontinuous mapping for Algorithm I, that S(x) be a lower
semicontinuous mapping for Algorithm II, and that for each algorithm fi(x) be
continuous in x on S for each rather than that fi(x) be lower semicontinuous in xi for
each i. The following two examples show that these stronger assumptions cannot be
dispensed with entirely.

Let n=2, ml=m2 1, S={x’x=(1, 1)-(l/k, l/k) for k= 1, 2,...}
{x’x=(1,1)-(1/(k+l),l/k) for k l, 2, .} l,3 {(1,1)} l..J {(1, 2)}, ]’(x)=-x, and
/2(x) -x2. This example satisfies the conditions of Theorem 3.1. The unique equilib-
rium point is (1,2). However, if zk (1, 1)-(l/k, Ilk) for k 1, 2,. and .=(1, 1)
then limk- Z

k . and 2 $2(,) but $2(z k) (1 l/k, 1 1/(k 1)) for k -> 2 so there
does not exist {yk} with y2

k S2(z k) for k 1, 2,... and limk- y2
k 2. Thus S2(x)is not

a lower semicontinuous mapping on T2 and hence S(x) is not a lower semicontinuous
mapping on S. For this problem Algorithm I will generate xk’=
(1, 1)- (1/(k + 1), 1/(k + 1)) and x k’a= (1, 1)- (1/(k + 2), 1/(kk+ 1)) for k 0, 1,. ,
and Algorithm II will generate x k= x k/2, for even k and x x(k-/2, for odd k.
However, since lim_,o x g’= lim_oo x ’1 limk_,oo x k (1, 1) # (1, 2), neither
Algorithm I nor Algorithm II approximates an equilibrium point here.

Let n=2, mx=m2=l,S=[-1, O][-1,1],f(x)=(2Xx-X2)2 for xS, f2(x)
(2x2 x1)2 for x S and x {0} [0, 1 ], and f2(x) -x for each x {0} [0, 1 ]. The set S
is a compact sublattice. Both f(x) and fa(x) have antitone differences because their
derivatives with respect to x2 exist and are an antitone function of x. The function fl(x)
is continuous, while fe(x) is lower semicontinuous but not continuous. The unique
equilibrium point is (0, 1). However, starting with x= (-1, -1) both Algorithms I and
II generate sequences of points which converge upwards to (0, 0).

If Algorithms I and II begin with the greatest instead of the least element of S and
"least" is replaced by "greatest" in the statements of the algorithms, then by dual
arguments all results in this section will hold with "isotone" replaced by "antitone" and
"least" replaced by "greatest" and so each algorithm will generate a sequence of points
converging downwards to the greatest equilibrium point.

Both Algorithm I and Algorithm II can be modified so that at each iteration the
solution chosen for the minimization problem can be any optimal solution (not
necessarily the least one) that assures that the sequence generated is isotone.
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ERRATUM: ALGEBRAIC THEORY OF LINEAR TIME-VARYING SYSTEMS*

EDWARD W. KAMENt AND KHALED M. HAFEZ

On page 509, the correct copy for line 6 was inadvertently replaced by a dupli-
cation of the copy appearing on line 12. Line 6 of this page should read"

Case 1. If T is the empty set, we can take u, =0 and u.=aj for/=0, 1," ", i- 1,

*This journal, 17 (1979), pp. 500-510.
tSchool of Electrical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.
tDepartment of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38153.
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